Miscellanea False Discovery Rate for Scanning Statistics

Total Page:16

File Type:pdf, Size:1020Kb

Miscellanea False Discovery Rate for Scanning Statistics Biometrika (2011), 98,4,pp. 979–985 doi: 10.1093/biomet/asr057 C 2011 Biometrika Trust Printed in Great Britain Miscellanea False discovery rate for scanning statistics BY D. O. SIEGMUND, N. R. ZHANG Department of Statistics, Stanford University, 390 Serra Mall, Stanford, California 94305-4065, U.S.A. [email protected] [email protected] Downloaded from AND B. YAKIR Department of Statistics, The Hebrew University of Jerusalem, Jerusalem 91905, Israel [email protected] http://biomet.oxfordjournals.org/ SUMMARY The false discovery rate is a criterion for controlling Type I error in simultaneous testing of multi- ple hypotheses. For scanning statistics, due to local dependence, clusters of neighbouring hypotheses are likely to be rejected together. In such situations, it is more intuitive and informative to group neighbouring rejections together and count them as a single discovery, with the false discovery rate defined as the pro- portion of clusters that are falsely declared among all declared clusters. Assuming that the number of false discoveries, under this broader definition of a discovery, is approximately Poisson and independent of the number of true discoveries, we examine approaches for estimating and controlling the false discovery rate, and provide examples from biological applications. at University of Pennsylvania Library on May 30, 2013 Some key words: False discovery rate; Multiple comparisons; Poisson approximation; Scan statistic. 1. INTRODUCTION In a pioneering paper, Benjamini & Hochberg (1995) initiated a fruitful line of research into the false discovery rate as a method to evaluate Type I error when simultaneously testing large numbers of hypothe- ses. We use their notation, so R is the number of discoveries that emerge as a result of a particular statistical procedure, and V is the number of false discoveries among them. Then S = R − V is the num- ber of true discoveries. The false discovery rate is the expected relative proportion of false discoveries, FDR = E(V/R; R > 0). These quantities are defined implicitly in terms of the specific procedure that is used to make discoveries. We are concerned with estimation and control of false discovery rates when there is substantial local correlation among the statistics used for testing the hypotheses. Due to local correlation, large values of the statistic tend to occur in clumps, and multiple rejections within a clump may constitute only a single discovery, as it relates to model identification. Yet a possibly large number of correct rejections at some locations can inflate the denominator in the definition of false discovery rate, hence artificially creating a small false discovery rate, and lowering the barrier to possibly false detections at distant locations. Scanning statistics to detect sparsely distributed signals provide typical examples. In the examples that follow, there is an underlying set of observations yt , where t varies over an indexing set having some geometric structure. The yt are often assumed to be independent, but this is not necessary, providing the dependence between them is local with respect to the geometric structure. The test statistics {Zt : t ∈ D}, where Zt is a function of t and of the ys for s ∈ Nt , an appropriate neighbourhood of t, are related by a measure of distance within the scanning index set D. Hence, values of Zt and Zs for nearby t and s in D 980 D. O. SIEGMUND,N.R.ZHANG AND B. YAKIR are correlated, so a large value at a specific τ ∈ D causes a cluster of large values at t close to τ.Thus,a group of large values of Zt within close proximity are often associated with a single signal. Example 1. The random fields to detect local activity in an fMRI scan as discussed in a series of papers by Worsley, for example, Worsley et al. (1992)orSiegmund & Worsley (1995). Example 2. Massively parallel paired end DNA re-sequencing used to detect structural variation in genomic sequences. For a review, see Medvedev et al. (2009). The data come in the form of distances yt between mapped positions of relatively short paired reads from the ends of DNA sequences of approxi- mately w base pairs in length, with the leftmost read mapped to position xt in the genome. Where there are no structural variations one observes, after subtracting w and standardizing, yt that are independent and have a standard normal distribution. For read pairs that straddle the breakpoint τ of a structural variation, the distribution of some percentage of the yt ,forτ<xt τ + w, is shifted by an unknown amount δ, which is related to the size of the variant. The score statistic with respect to δ to test for a breakpoint at τ is Downloaded from | τ+w |/w1/2 τ τ+1 yt . A scan is conducted with varying over the genomic region of interest to find putative breakpoint locations. Example 3. The scan statistics of variable window width used in Zhang et al. (2010) and Siegmund et al. 2011 to detect common regions of copy number variation in a set of subjects. An appropriate likeli- http://biomet.oxfordjournals.org/ hood based statistic for the special case of a single sequence (Olshen et al., 2004) is similar to that of the preceding example, but the window width is unknown, so the scan involves two-dimensional maximization with respect to τ and w. Example 4. A genome scan to detect either linkage or association between a phenotype and related genetic variation, e.g., Lander & Botstein (1989), Siegmund & Yakir (2007). The main results of this paper are methods for estimating and controlling the false discovery rate of a given procedure, with discovery defined in the sense of detection of sparse, local signals. In order to focus on the conceptual aspect of how one defines a discovery, our assumptions are given in general, at University of Pennsylvania Library on May 30, 2013 abstract terms, and we avoid, except for a few comments, the necessarily technical and application spe- cific discussion of methods to ensure and test the validity of those assumptions. Motivated by a different genomic application, Zhang (2008) contains a similar approach without any theoretical analysis. In an unpublished 2011 manuscript in the Harvard University Biostatistics Working Paper Series A. Schwartz- man, Y. Gavrilov and R. J. Adler discuss a different approach to the same general issue under specific technical assumptions motivated by and apparently limited to a one-dimensional process having the struc- ture of Example 1. Our two central assumptions are (i) the distribution of the number of false discoveries, V , is Poisson, with expected value λ; and (ii) the number of false discoveries is independent of the number of true discov- eries, S. The number of true discoveries must be nonnegative, but otherwise may follow any distribution. The Poisson assumption is valid asymptotically in a variety of applications. These include the examples given above under the assumptions made in the cited references, or more generally if one makes suitable adjustments when there are local dependencies in the underlying observations. See Aldous (1988)for numerous examples, Lindgren et al. (1983) for relevant general theorems under different sets of condi- tions, and Arratia et al. (1989) for a flexible Poisson approximation theorem that applies quite generally to processes involving local dependence. Methods for determining λ depend on the specific problem. Illustrative examples based on more explicit assumptions about the underlying process are discussed below. The assumption of independence between V and S is more subtle. If we treat the locations of the signals in D as fixed but unknown quantities, then D can be partitioned into disjoint sets D0 ∪ D1, where D0 are hypotheses that, if rejected, would be considered part of a false discovery, and D1 are hypotheses that, if rejected, would be considered part of a true discovery. For example, in the simple case of a one-dimensional scan with fixed window size w as in Example 2, suppose the true signals are a set of intervals I within the scan region. If we count those windows that overlap with any interval in I towards true discoveries, and the rest towards false discoveries, then D0 ={t : (t, t + w] ∩ ι =∅,ι∈ I} and D1 = D \ D0. Then, V Miscellanea 981 would be a function solely of {Zt : t ∈ D0}, while S would be a function solely of {Zt : t ∈ D1}. At least when the true signals are sparse, approximate independence between V and S would follow if long-range dependencies between {Zt : t ∈ D0} and {Zt : t ∈ D1} are negligible. In practice, near overlap of detected signals is a danger sign regarding possible violation of this hypothesis of independence. For a more detailed discussion, see § 3·1. Significant long range dependence between {Zt } may cause nonnegligible dependence between V and S. Scanning procedures that are based on a collection of localized tests are inherently designed for problems where dependence can be assumed to be local, since if long range independence does not hold, then procedures that account for that dependence would be preferred on the basis of greater power. The estimator that we propose for the false discovery rate is FDRˆ = λ/(R + 1), (1) where λ is the expected number of false discoveries and R is the total number of discoveries. This esti- Downloaded from mator has been considered by Efron (2010) in the framework of hypothesis testing with a large number of independent hypotheses and, except for the constant 1 in the denominator, is the same as that suggested by Zhang (2008). In some cases, the parameter λ can be derived analytically. In other cases it, can be computed via permutations or simulations conducted under the null assumption. In § 2, we show that the estimator (1) is unbiased under assumptions (i) and (ii).
Recommended publications
  • Multiple Testing
    The p-value Familywise Error Rate Fisher's Method False Discovery Rate Chapter 8 Hypothesis Testing Multiple Testing 1 / 20 The p-value Familywise Error Rate Fisher's Method False Discovery Rate Outline The p-value Familywise Error Rate Fisher's Method Benjamini-Hochberg Procedure False Discovery Rate 2 / 20 The p-value Familywise Error Rate Fisher's Method False Discovery Rate The p-value In 2016, the American Statistical Association set for itself a task to make a statement on p-values. They note that it is all too easy to set a test, create a test statistic and compute a p-value. Proper statistical practice is much more than this and includes • appropriately chosen techniques based on a thorough understanding of the phenomena under study, • adequate visual and numerical summaries of the data, • properly conducted analyses whose logic and quantitative approaches are clearly explained, • correct interpretation of statistical results in context, and • reproducibility of results via a thorough reporting. Expressing a p-value is one of many approaches to summarize the results of a statistical investigation. 3 / 20 The p-value Familywise Error Rate Fisher's Method False Discovery Rate The p-value The statement's six principles, many of which address misconceptions and misuse of the p-value, are the following: 1. P-values can indicate how incompatible the data are with a specified statistical model. 2. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone. 3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
    [Show full text]
  • Discussion: on Methods Controlling the False Discovery Rate
    Sankhy¯a: The Indian Journal of Statistics 2008, Volume 70, Part 2, pp. 169-176 c 2008, Indian Statistical Institute Discussion: On Methods Controlling the False Discovery Rate Joseph P. Romano Stanford University, USA Azeem M. Shaikh University of Chicago, USA Michael Wolf University of Zurich, Switzerland 1 Introduction It is a pleasure to acknowledge another insightful article by Sarkar. By developing clever expressions for the FDP, FDR, and FNR, he manages to prove fundamental properties of stepdown and stepup methods. It is particularly important that the theory is sufficiently developed so as to apply to what Sarkar calls adaptive BH methods. Here, the goal is to improve upon the Benjamini Hochberg procedure by incorporating a data-dependent estimate of the number of true null hypotheses. Theoretical justification of such methods is vital and Sarkar’s analysis is useful for this purpose. A perhaps more ambitious task is to develop methods which implicitly or explicitly estimate the joint dependence structure of the test statistics (or p-values). The focus of our discussion is to show how resampling methods can be used to construct stepdown procedures which control the FDR or other general measures of error control. The main benefit of using the boot- strap or subsampling is the ability to estimate the joint distribution of the test statistics, and thereby offer the potential of improving upon methods based on the marginal distributions of test statistics. The procedure below is a generalization of one we developed for FDR control, and the utility of the bootstrap is that it can apply to essentially arbitrary measures of error control, such as the pairwise FDR of Sarkar, the k-FWER, or the tail prob- abilities of the false discovery proportion.
    [Show full text]
  • Inference on the Limiting False Discovery Rate and the P-Value Threshold Parameter Assuming Weak Dependence Between Gene Expression Levels Within Subject
    Inference on the limiting false discovery rate and the p-value threshold parameter assuming weak dependence between gene expression levels within subject Glenn Heller1 and Jing Qin2 1Department of Epidemiology and Biostatistics Memorial Sloan-Kettering Cancer Center New York, NY 10021, USA 2Biostatistics Research Branch National Institute of Allergy and Infectious Diseases Bethesda, Maryland 20892, USA Corresponding author: Glenn Heller email: [email protected] phone: 646 735 8112 fax: 646 735 0010 Running Head: FDR analysis with dependent data 1 Summary. An objective of microarray data analysis is to identify gene expressions that are associated with a disease related outcome. For each gene, a test statistic is computed to determine if an association exists, and this statistic generates a marginal p-value. In an effort to pool this information across genes, a p-value density function is derived. The p-value density is modeled as a mixture of a uniform (0,1) density and a scaled ratio of normal densities derived from the asymptotic normality of the test statistic. The p-values are assumed to be weakly dependent and a quasi-likelihood is used to estimate the parameters in the mixture density. The quasi-likelihood and the weak dependence assumption enables estimation and asymptotic inference on the false discovery rate for a given rejection region, and its inverse, the p-value threshold parameter for a fixed false discovery rate. A false discovery rate analysis on a local- ized prostate cancer data set is used to illustrate the methodology. Simulations are performed to assess the performance of this methodology. Keywords: Asymptotic normal test statistic, confidence interval, microarray, p-value mixture model, quasi-likelihood, weak dependence.
    [Show full text]
  • Heterocedasticity-Adjusted Ranking and Thresholding for Large-Scale Multiple Testing
    Heterocedasticity-Adjusted Ranking and Thresholding for Large-Scale Multiple Testing Luella Fu1, Bowen Gang2, Gareth M. James3, and Wenguang Sun3 Abstract Standardization has been a widely adopted practice in multiple testing, for it takes into account the variability in sampling and makes the test statistics comparable across different study units. However, despite conventional wisdom to the contrary, we show that there can be a significant loss in information from basing hypothesis tests on stan- dardized statistics rather than the full data. We develop a new class of heteroscedasticity{ adjusted ranking and thresholding (HART) rules that aim to improve existing methods by simultaneously exploiting commonalities and adjusting heterogeneities among the study units. The main idea of HART is to bypass standardization by directly incor- porating both the summary statistic and its variance into the testing procedure. A key message is that the variance structure of the alternative distribution, which is subsumed under standardized statistics, is highly informative and can be exploited to achieve higher power. The proposed HART procedure is shown to be asymptotically valid and optimal for false discovery rate (FDR) control. Our simulation results demon- strate that HART achieves substantial power gain over existing methods at the same FDR level. We illustrate the implementation through a microarray analysis of myeloma. Keywords: covariate-assisted inference; data processing and information loss; false dis- covery rate; heteroscedasticity; multiple testing with side information; structured multiple testing 1Department of Mathematics, San Francisco State University. 2Department of Statistics, Fudan University. 3Department of Data Sciences and Operations, University of Southern California. The research of Wen- guang Sun was supported in part by NSF grant DMS-1712983.
    [Show full text]
  • Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods
    H OH metabolites OH Article Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods Shin June Kim, Youngjae Oh and Jaesik Jeong * Department of Mathematics and Statistics, Chonnam National University, Gwangju 61186, Korea; [email protected] (S.J.K.); [email protected] (Y.O.) * Correspondence: [email protected]; Tel.: +82-062-530-3442 Abstract: Due to the advance in technology, the type of data is getting more complicated and large-scale. To analyze such complex data, more advanced technique is required. In case of omics data from two different groups, it is interesting to find significant biomarkers between two groups while controlling error rate such as false discovery rate (FDR). Over the last few decades, a lot of methods that control local false discovery rate have been developed, ranging from one-dimensional to k-dimensional FDR procedure. For comparison study, we select three of them, which have unique and significant properties: Efron’s approach, Ploner’s approach, and Kim’s approach in chronological order. The first approach is one-dimensional approach while the other two are two-dimensional ones. Furthermore, we consider two more variants of Ploner’s approach. We compare the performance of those methods on both simulated and real data. Keywords: biomarker; familywise error rate; false discovery rate; large scale inference 1. Introduction Due to the advent of advanced high-throughput technologies, a large amount of raw data have been produced and various methods that can appropriately preprocess Citation: Kim, S.J.; Oh, Y.; Jeong, J. such data have been developed. After various preprocessing steps, statistical methods Comprehensive Comparative are applied to the preprocessed, yet large-scale data.
    [Show full text]
  • Asymptotic Results on Adaptive False Discovery Rate Controlling Procedures Based on Kernel Estimators
    JournalofMachineLearningResearch14(2013)1423-1459 Submitted 4/08; Revised 8/12; Published 5/13 Asymptotic Results on Adaptive False Discovery Rate Controlling Procedures Based on Kernel Estimators Pierre Neuvial∗ [email protected] Laboratoire Statistique et Génome Université d’Évry Val d’Essonne UMR CNRS 8071 – USC INRA 23 boulevard de France 91 037 Évry, France Editor: Olivier Teytaud Abstract The False Discovery Rate (FDR) is a commonly used type I error rate in multiple testing problems. It is defined as the expected False Discovery Proportion (FDP), that is, the expected fraction of false positives among rejected hypotheses. When the hypotheses are independent, the Benjamini- Hochberg procedure achieves FDR control at any pre-specified level. By construction, FDR control offers no guarantee in terms of power, or type II error. A number of alternative procedures have been developed, including plug-in procedures that aim at gaining power by incorporating an estimate of the proportion of true null hypotheses. In this paper, we study the asymptotic behavior of a class of plug-in procedures based on kernel estimators of the density of the p-values, as the number m of tested hypotheses grows to infinity. In a setting where the hypotheses tested are independent, we prove that these procedures are asymptotically more powerful in two respects: (i) a tighter asymptotic FDR control for any target FDR level and (ii) a broader range of target levels yielding positive asymptotic power. We also show that this increased asymptotic power comes at the price of slower, non-parametric convergence rates k/(2k+1) for the FDP.
    [Show full text]
  • 1 Why Is Multiple Testing a Problem? 2 the Bonferroni Correction
    Spring 2008 - Stat C141/ Bioeng C141 - Statistics for Bioinformatics Course Website: http://www.stat.berkeley.edu/users/hhuang/141C-2008.html Section Website: http://www.stat.berkeley.edu/users/mgoldman GSI Contact Info: Megan Goldman [email protected] Office Hours: 342 Evans M 10-11, Th 3-4, and by appointment 1 Why is multiple testing a problem? Say you have a set of hypotheses that you wish to test simultaneously. The first idea that might come to mind is to test each hypothesis separately, using some level of significance α. At first blush, this doesn't seem like a bad idea. However, consider a case where you have 20 hypotheses to test, and a significance level of 0.05. What's the probability of observing at least one significant result just due to chance? P(at least one significant result) = 1 − P(no significant results) = 1 − (1 − 0:05)20 ≈ 0:64 So, with 20 tests being considered, we have a 64% chance of observing at least one sig- nificant result, even if all of the tests are actually not significant. In genomics and other biology-related fields, it's not unusual for the number of simultaneous tests to be quite a bit larger than 20... and the probability of getting a significant result simply due to chance keeps going up. Methods for dealing with multiple testing frequently call for adjusting α in some way, so that the probability of observing at least one significant result due to chance remains below your desired significance level. 2 The Bonferroni correction The Bonferroni correction sets the significance cut-off at α=n.
    [Show full text]
  • False Discovery Rate 1 the Pairwise Multiple
    False Discovery Rate 1 The Pairwise Multiple Comparison Multiplicity Problem: An Alternative Approach to Familywise/Comparisonwise Type I Error Control by H. J. Keselman, Robert Cribbie University of Manitoba and Burt Holland Temple University False Discovery Rate 2 Abstract When simultaneously undertaking many tests of significance researchers are faced with the problem of how best to control the probability of committing a Type I error. The familywise approach deals directly with multiplicity problems by setting a level of significance for an entire set (family) of related hypotheses, while the comparison approach ignores the multiplicity issue by setting the rate of error on each individual contrast/test/hypothesis. A new formulation of control presented by Benjamini and Hochberg, their false discovery rate, does not provide as stringent control as the familywise rate, but concomitant with this relaxing in stringency is an increase in sensitivity to detect effects, compared to familywise control. Type I error and power rates for four relatively powerful and easy-to-compute pairwise multiple comparison procedures were compared to the Benjamni and Hochberg technique for various one-way layouts using test statistics that do not assume variance homogeneity. False Discovery Rate 3 The Pairwise Multiple Comparison Multiplicity Problem: An Alternative Approach to Familywise/Comparisonwise Type I Error Control The multiplicity problem in statistical inference refers to selecting the statistically significant findings from a large set of findings (tests) to support one's research hypotheses. Selecting the statistically significant findings from a larger pool of results that also contain nonsignificant findings is problematic since when multiple tests of significance are computed the probability that at least one will be significant by chance alone increases with the number of tests examined.
    [Show full text]
  • Size, Power and False Discovery Rates
    The Annals of Statistics 2007, Vol. 35, No. 4, 1351–1377 DOI: 10.1214/009053606000001460 c Institute of Mathematical Statistics, 2007 SIZE, POWER AND FALSE DISCOVERY RATES By Bradley Efron Stanford University Modern scientific technology has provided a new class of large- scale simultaneous inference problems, with thousands of hypothe- sis tests to consider at the same time. Microarrays epitomize this type of technology, but similar situations arise in proteomics, spec- troscopy, imaging, and social science surveys. This paper uses false discovery rate methods to carry out both size and power calculations on large-scale problems. A simple empirical Bayes approach allows the false discovery rate (fdr) analysis to proceed with a minimum of frequentist or Bayesian modeling assumptions. Closed-form accuracy formulas are derived for estimated false discovery rates, and used to compare different methodologies: local or tail-area fdr’s, theoretical, permutation, or empirical null hypothesis estimates. Two microarray data sets as well as simulations are used to evaluate the methodology, the power diagnostics showing why nonnull cases might easily fail to appear on a list of “significant” discoveries. 1. Introduction. Large-scale simultaneous hypothesis testing problems, with hundreds or thousands of cases considered together, have become a familiar feature of current-day statistical practice. Microarray methodology spearheaded the production of large-scale data sets, but other “high through- put” technologies are emerging, including time of flight spectroscopy, pro- teomic devices, flow cytometry and functional magnetic resonance imaging. Benjamini and Hochberg’s seminal paper [3] introduced false discovery rates (Fdr), a particularly useful new approach to simultaneous testing.
    [Show full text]
  • P and Q Values in RNA Seq the Q-Value Is an Adjusted P-Value, Taking in to Account the False Discovery Rate (FDR)
    P and q values in RNA Seq The q-value is an adjusted p-value, taking in to account the false discovery rate (FDR). Applying a FDR becomes necessary when we're measuring thousands of variables (e.g. gene expression levels) from a small sample set (e.g. a couple of individuals). A p-value of 0.05 implies that we are willing to accept that 5% of all tests will be false positives. An FDR-adjusted p-value (aka a q-value) of 0.05 implies that we are willing to accept that 5% of the tests found to be statistically significant (e.g. by p-value) will be false positives. Such an adjustment is necessary when we're making multiple tests on the same sample. See, for example, http://www.totallab.com/products/samespots/support/faq/pq-values.aspx. -HomeBrew- What are p-values? The object of differential 2D expression analysis is to find those spots which show expression difference between groups, thereby signifying that they may be involved in some biological process of interest to the researcher. Due to chance, there will always be some difference in expression between groups. However, it is the size of this difference in comparison to the variance (i.e. the range over which expression values fall) that will tell us if this expression difference is significant or not. Thus, if the difference is large but the variance is also large, then the difference may not be significant. On the other hand, a small difference coupled with a very small variance could be significant.
    [Show full text]
  • From P-Value to FDR
    From P-value To FDR Jie Yang, Ph.D. Associate Professor Department of Family, Population and Preventive Medicine Director Biostatistical Consulting Core In collaboration with Clinical Translational Science Center (CTSC) and the Biostatistics and Bioinformatics Shared Resource (BB-SR), Stony Brook Cancer Center (SBCC). OUTLINE P-values - What is p-value? - How important is a p-value? - Misinterpretation of p-values Multiple Testing Adjustment - Why, How, When? - Bonferroni: What and How? - FDR: What and How? STATISTICAL MODELS Statistical model is a mathematical representation of data variability, ideally catching all sources of such variability. All methods of statistical inference have assumptions about • How data were collected • How data were analyzed • How the analysis results were selected for presentation Assumptions are often simple to express mathematically, but difficult to satisfy and verify in practice. Hypothesis test is the predominant approach to statistical inference on effect sizes which describe the magnitude of a quantitative relationship between variables (such as standardized differences in means, odds ratios, correlations etc). BASIC STEPS IN HYPOTHESIS TEST 1. State null (H0) and alternative (H1) hypotheses 2. Choose a significance level, α (usually 0.05) 3. Based on the sample, calculate the test statistic and calculate p-value based on a theoretical distribution of the test statistic 4. Compare p-value with the significance level α 5. Make a decision, and state the conclusion HISTORY OF P-VALUES P-values have been in use for nearly a century. The p-value was first formally introduced by Karl Pearson, in his Pearson's chi-squared test and popularized by Ronald Fisher.
    [Show full text]
  • False Discovery Rate Control with Unknown Null Distribution: Is It Possible to Mimic the Oracle?
    False discovery rate control with unknown null distribution: is it possible to mimic the oracle? Etienne Roquain and Nicolas Verzelen Abstract: Classical multiple testing theory prescribes the null distribution, which is of- ten a too stringent assumption for nowadays large scale experiments. This paper presents theoretical foundations to understand the limitations caused by ignoring the null distri- bution, and how it can be properly learned from the (same) data-set, when possible. We explore this issue in the case where the null distributions are Gaussian with an unknown rescaling parameters (mean and variance) and the alternative distribution is let arbitrary. While an oracle procedure in that case is the Benjamini Hochberg procedure applied with the true (unknown) null distribution, we pursue the aim of building a procedure that asymptotically mimics the performance of the oracle (AMO in short). Our main result states that an AMO procedure exists if and only if the sparsity parameter k (number of false nulls) is of order less than n= log(n), where n is the total number of tests. Further sparsity boundaries are derived for general location models where the shape of the null distribution is not necessarily Gaussian. Given our impossibility results, we also pursue a weaker objective, which is to find a confidence region for the oracle. To this end, we develop a distribution-dependent confidence region for the null distribution. As practical by-products, this provides a goodness of fit test for the null distribution, as well as a visual method assessing the reliability of empirical null multiple testing methods. Our results are illustrated with numerical experiments and a companion vignette Roquain and Verzelen(2020).
    [Show full text]