Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Final Report Interreg Estonia-Latvia project No. Est-Lat62 “Joint management of groundwater dependent ecosystems in transboundary Gauja-Koiva river basin (GroundEco)” FINAL REPORT 2020 GroundEco “Joint management of groundwater dependent ecosystems in transboundary Gauja -Koiva river basin” Table of Contents ABBREVIATIONS 4 INTRODUCTION 5 1. Description of GroundEco project 6 2. Background for identification and assessment of groundwater dependent terrestrial ecosystems (GDTEs) according to the Water Framework Directive (WFD) 8 2.1. Role of groundwater dependent terrestrial ecosystems in the Water Framework Directive 8 2.2. How to determine whether a terrestrial ecosystem directly depends on groundwater body 8 2.3. How to determine whether there is a significant damage to groundwater dependent terrestrial ecosystem 9 2.3.1. Threshold values and trigger values 9 2.3.2. GDTEs that depend on concentrations of naturally occurring substances above threshold values 10 2.4. How to determine the groundwater quantity and quality needs of groundwater dependent terrestrial ecosystems 10 2.5. Characterization and risk assessment 10 2.5.1. Stepwise approach 11 2.5.2. Consideration of groundwater threshold values 12 2.5.3. Investigations 12 3. Methodologies used for assessment of groundwater dependent terrestrial ecosystems in the European Union 13 3.1. Results from joint questionnaires 13 3.2. Methodology for identification and assessment of groundwater dependent terrestrial ecosystems in Estonia 14 3.2.1. Identification of terrestrial ecosystems depending on groundwater bodies 15 3.2.2. Indicators and criteria for the evaluation of quantitative and qualitative effects of groundwater bodies (GWBs) on groundwater dependent terrestrial ecosystems (GDTEs) 16 3.2.3. Evaluation schemes of quantitative and qualitative effects of groundwater bodies on groundwater dependent terrestrial ecosystems 18 3.2.4. Application of the evaluation schemes and conceptual models of groundwater dependent terrestrial ecosystems 21 3.2.5. Monitoring scheme for groundwater dependent terrestrial ecosystems 21 3.2.6. Conclusions 23 3.3. Delineation of threshold values for groundwater dependent terrestrial ecosystems in United Kingdom 23 3.3.1. Nutrients as a risk for GDTEs damage 24 3.3.2. Nutrient related wetland categories 24 3.3.3. Factors affecting the relationship between nutrient and wetland conditions 25 3.3.4. Development of threshold values for groundwater dependent terrestrial ecosystems 25 4. Development of joint methodology for identification and assessment of groundwater dependent terrestrial ecosystems in Gauja-Koiva river basin 27 4.1. Groundwater monitoring in Estonia and Latvia 27 4.1.1. Groundwater monitoring in Estonia 27 4.1.2. Groundwater monitoring in Latvia 30 4.1.3. Comparison of groundwater chemical monitoring in Estonia and Latvia 31 4.2. Groundwater assessment in Estonia and Latvia 32 4.2.1. Groundwater body delineation approaches in Estonia 33 4.2.2. Groundwater body delineation approaches in Latvia 37 4.3. Habitat assessment in Estonia and Latvia 39 4.3.1. Availability and quality of habitat data in Estonia 39 2 GroundEco “Joint management of groundwater dependent ecosystems in transboundary Gauja -Koiva river basin” 4.3.2. Availability and quality of habitat data in Latvia 41 4.4. Joint methodology 43 4.4.1. GDTE identification methodology for Estonia and Latvia 43 4.4.2. Results of the identification of significant GDTEs in Estonia and Latvia in Gauja-Koiva basin 48 4.4.3. Assessment schemes of groundwater dependent terrestrial ecosystems 51 4.4.4. Monitoring of GDTEs in Estonia and Latvia 57 5. Methodology validation and testing of best tools and parameters 61 5.1. Matsi spring fen pilot site in Estonia 61 5.1.1. Study site description 61 5.1.2. Methods 62 5.1.3. Results and discussion 65 5.2. Kazu leja valley pilot site in Latvia 79 5.2.1. Introduction 79 5.2.2. Identification of ecosystems and impacts using vegetation as a proxy 85 5.2.3. Geology and hydrogeology 94 5.2.4. Conclusions 115 5.2.5. Assessment of Kazu leja GDTE according to the schemes of quantitative and qualitative effect 116 5.2.6. 3D geological model of the Kazu leja site 119 5.3. Development of low-cost do it yourself sensors 123 5.3.1. Introduction 123 5.3.2. Low-cost sensor setup 123 5.3.3. Results of the low-cost sensor units 125 6. Conclusions and recommendations 129 6.1. GDTE identification, monitoring and assessment 129 6.2. Recommendations for GDTE assessment according to the quantitative and qualitative assessment schemes application 131 6.3. Future prospects 133 REFERENCES 134 ANNEXES 141 Characteristics of groundwater bodies delineated in Latvia (in Gauja river basin) 142 Characteristics of groundwater bodies delineated in Estonia (inside Koiva river basin) 152 Groundwater monitoring points in Gauja-Koiva river basin 162 Map of groundwater monitoring points in Gauja-Koiva river basin 163 3 GroundEco “Joint management of groundwater dependent ecosystems in transboundary Gauja -Koiva river basin” ABBREVIATIONS EC – European Commission EU – European Union GDTE – groundwater dependent terrestrial ecosystems GWB – groundwater body GWD – Groundwater directive TVs – threshold values WFD – Water Framework Directive 4 GroundEco “Joint management of groundwater dependent ecosystems in transboundary Gauja -Koiva river basin” INTRODUCTION Groundwater dependent terrestrial ecosystems (GDTE) are ecosystems that rely upon groundwater, e.g. fens, spring flushes, swamp forests. Significant changes in groundwater chemical composition (quality) and/or groundwater levels (quantity) can damage the quality of GDTE or even destroy it. GDTEs provide important ecosystem services such as regulation of water cycle, drinking water and other resources, pollution filtering, peat and carbon accumulation, unique biodiversity, interconnection with other ecosystems (landscape functioning), recreational and scenic value, and cultural heritage. According to the EU Water Framework Directive (2000/60/EC), the whole groundwater body (GWB, a management unit set by each Member State) is considered in poor status if anthropogenic pressure on groundwater causes significant damage to GDTE. Then, specific actions (in WFD – programmes of measures) must be planned and carried out to improve the status of GWB and thereby, restore the quality of damaged GDTE. Groundwater is a dynamic system which cannot be divided by human drawn boundaries such as country borders, and many valuable GDTEs depend on the quality of these water resources. From a hydrological viewpoint, the transboundary Gauja-Koiva river basin has a joint water cycle. It means that human induced activities (e.g. water extraction or pollution) on one side of the border can affect groundwater and associated ecosystems on the other side. Thus, without joint activities and cooperation it is impossible to sustainably manage transboundary natural resources in the long term. A theoretical approach on how to identify, assess, and monitor GDTEs has been previously developed in Estonia. Similar climatic and hydrogeological conditions allowed us to adapt the methodology to Latvia and jointly update it to fit the needs of both neighboring countries – Estonia and Latvia. During Interreg Estonia- Latvia project Est-Lat62 “Joint management of groundwater dependent ecosystems in transboundary Gauja-Koiva river basin” or GroundEco project, joint methodology for identification and assessment of GDTEs was developed which was used to identify GDTEs in transboundary Gauja-Koiva river basin. The methodology and best GDTEs assessment techniques were tested in two pilot areas – Matsi spring fen in Estonia and Kazu leja valley in Latvia. Finally, recommendations for better GDTEs monitoring and future works were developed. All results will be used to support the development of 3rd cycle River Basin management Plans (2021–2027) for Estonia and Latvia. We hope that this report will be useful for many habitat and hydro(geo)experts working with assessment of GDTEs in line with European Water Framework Directive as well as serves as a good starting point for better understanding of GDTEs functioning and linkage with groundwater resources. Authors: Retike, I.(1,3), Kalvāns, A.(3), Priede, A.(5), Tarros, S.(7), Terasmaa, J.(2), Türk, K.(4), Bikše, J.(3), Demidko, J.(1), Koit, O.(2), Küttim, M.(2), Lode, E.(2), Pärn, J.(2), Popovs, K.(3), Vainu, M.(2), Valters, K.(1), Abreldaal, P.(2), Babre, A.(3), Bīviņa, I.(6), Caune, K.(1), Marandi, A.(7), Polikarpus, M.(7), Raidla, V.(7), Rieksta, M.(6), Sisask, K.(2) 1. Latvian Environment, Geology and Meteorology Center (Latvijas Vides, ģeoloģijas un meteoroloģijas centrs) 2. Tallinn University, Institute of Ecology (Tallinna Ülikool) 3. University of Latvia, Faculty of Geography and Earth Science (Latvijas Universitāte, Ģeogrāfijas un Zemes zinātņu fakultāte) (Latvia) 4. Ministry of Environment (Keskkonnaministeerium) (Estonia) 5. Nature Conservation Agency (Dabas aizsardzības pārvalde) (Latvia) 6. Vidzeme Planning region (Vidzemes plānošanas regions) (Latvia) 7. Geological Survey of Estonia (Eesti Geoloogiateenistus) (Estonia) This document reflects the views of the authors. The managing authority of the programme is not liable for how this information may be used. 5 GroundEco “Joint management of groundwater dependent ecosystems in transboundary Gauja -Koiva river basin” 1. Description of GroundEco project Project “Joint management of groundwater dependent ecosystems in transboundary Gauja-Koiva river basin (GroundEco)” is being implemented
Recommended publications
  • Rõuge Valla Üldplaneering on Dokument, Mille Eesmärgiks On
    RÕUGE VALLA ÜLDPLANEERING 2013 SISUKORD SISUKORD.......................................................................................................................................... 2 SISSEJUHATUS ................................................................................................................................. 4 1. ÜLDPLANEERINGU KOOSTAMISE METOODIKA JA PÕHIMÕTTED ................................. 6 1.1. Üldplaneeringu koostamise metoodika ..................................................................................... 6 1.2. Keskkonnamõjude hindamine ................................................................................................... 6 1.3. Üldplaneeringu lähteseisukohad ............................................................................................... 6 2. RÕUGE VALLA ÜLDINE ISELOOMUSTUS .............................................................................. 9 3. TÄHTSAMAD MÕISTED ............................................................................................................ 11 4. RÕUGE VALLA ARENGUT MÕJUTAVAD TEGURID ........................................................... 13 4.1. Rahvastik................................................................................................................................. 13 4.2. Tähtsamad ruumilise arengu dokumendid .............................................................................. 14 5. RÕUGE VALLA RUUMILISE ARENGU SUUNDUMUSED ................................................... 19 5.1. Rõuge valla
    [Show full text]
  • A New Approach to an Old Conundrumdna Barcoding Sheds
    Molecular Ecology Resources (2010) doi: 10.1111/j.1755-0998.2010.02937.x DNA BARCODING A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae) ALEXANDER M. WEIGAND,* ADRIENNE JOCHUM,* MARKUS PFENNINGER,† DIRK STEINKE‡ and ANNETTE KLUSSMANN-KOLB*,† *Institute for Ecology, Evolution and Diversity, Siesmayerstrasse 70, Goethe-University, 60323 Frankfurt am Main, Germany, †Research Centre Biodiversity and Climate, Siesmayerstrasse 70, 60323 Frankfurt am Main, Germany, ‡Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road West, Guelph, ON N1G 2V7, Canada Abstract The identification of microsnail taxa based on morphological characters is often a time-consuming and inconclusive process. Aspects such as morphological stasis and phenotypic plasticity further complicate their taxonomic designation. In this study, we demonstrate that the application of DNA barcoding can alleviate these problems within the Carychiidae (Gastro- poda, Pulmonata). These microsnails are a taxon of the pulmonate lineage and most likely migrated onto land indepen- dently of the Stylommatophora clade. Their taxonomical classification is currently based on conchological and anatomical characters only. Despite much confusion about historic species assignments, the Carychiidae can be unambiguously subdi- vided into two taxa: (i) Zospeum species, which are restricted to karst caves, and (ii) Carychium species, which occur in a broad range of environmental conditions. The implementation of discrete molecular data (COI marker) enabled us to cor- rectly designate 90% of the carychiid microsnails. The remaining cases were probably cryptic Zospeum and Carychium taxa and incipient species, which require further investigation into their species status. Because conventional reliance upon mostly continuous (i.e.
    [Show full text]
  • ED45E Rare and Scarce Species Hierarchy.Pdf
    104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233
    [Show full text]
  • Volume of Abstracts
    INQUA–SEQS 2002 Conference INQUA–SEQS ‘02 UPPER PLIOCENE AND PLEISTOCENE OF THE SOUTHERN URALS REGION AND ITS SIGNIFICANCE FOR CORRELATION OF THE EASTERN AND WESTERN PARTS OF EUROPE Volume of Abstracts Ufa – 2002 INTERNATIONAL UNION FOR QUATERNARY RESEARCH INQUA COMMISSION ON STRATIGRAPHY INQUA SUBCOMISSION ON EUROPEAN QUATERNARY STRATIGRAPHY RUSSIAN ACADEMY OF SCIENCES UFIMIAN SCIENTIFIC CENTRE INSTITUTE OF GEOLOGY STATE GEOLOGICAL DEPARTMENT OF THE BASHKORTOSTAN REPUBLIC RUSSIAN SCIENCE FOUNDATION FOR BASIC RESEARCH ACADEMY OF SCIENCES OF THE BASHKORTOSTAN REPUBLIC OIL COMPANY “BASHNEFT” BASHKIR STATE UNIVERSITY INQUA–SEQS 2002 Conference 30 June – 7 July, 2002, Ufa (Russia) UPPER PLIOCENE AND PLEISTOCENE OF THE SOUTHERN URALS REGION AND ITS SIGNIFICANCE FOR CORRELATION OF THE EASTERN AND WESTERN PARTS OF EUROPE Volume Of Abstracts Ufa–2002 ББК УДК 551.79+550.384 Volume of Abstracts of the INQUA SEQS – 2002 conference, 30 June – 7 July, 2002, Ufa (Russia). Ufa, 2002. 95 pp. ISBN The information on The Upper Pliocene – Pleistocene different geological aspects of the Europe and adjacent areas presented in the Volume of abstracts of the INQUA SEQS – 2002 conference, 30 June – 7 July, 2002, Ufa (Russia). Abstracts have been published after the insignificant correcting. ISBN © Institute of Geology Ufimian Scientific Centre RAS, 2002 Organisers: Institute of Geology – Ufimian Scientific Centre – Russian Academy of Sciences INQUA, International Union for Quaternary Research INQUA – Commission on Stratigraphy INQUA – Subcommission on European Quaternary Stratigraphy (SEQS) SEQS – EuroMam and EuroMal Academy of Sciences of the Bashkortostan Republic State Geological Department of the Bashkortostan Republic Oil Company “Bashneft” Russian Science Foundation for Basic Research Bashkir State University Scientific Committee: Dr.
    [Show full text]
  • Malaco Le Journal Électronique De La Malacologie Continentale Française
    MalaCo Le journal électronique de la malacologie continentale française www.journal-malaco.fr MalaCo (ISSN 1778-3941) est un journal électronique gratuit, annuel ou bisannuel pour la promotion et la connaissance des mollusques continentaux de la faune de France. Equipe éditoriale Jean-Michel BICHAIN / Paris / [email protected] Xavier CUCHERAT / Audinghen / [email protected] Benoît FONTAINE / Paris / [email protected] Olivier GARGOMINY / Paris / [email protected] Vincent PRIE / Montpellier / [email protected] Les manuscrits sont à envoyer à : Journal MalaCo Muséum national d’Histoire naturelle Equipe de Malacologie Case Postale 051 55, rue Buffon 75005 Paris Ou par Email à [email protected] MalaCo est téléchargeable gratuitement sur le site : http://www.journal-malaco.fr MalaCo (ISSN 1778-3941) est une publication de l’association Caracol Association Caracol Route de Lodève 34700 Saint-Etienne-de-Gourgas JO Association n° 0034 DE 2003 Déclaration en date du 17 juillet 2003 sous le n° 2569 Journal électronique de la malacologie continentale française MalaCo Septembre 2006 ▪ numéro 3 Au total, 119 espèces et sous-espèces de mollusques, dont quatre strictement endémiques, sont recensées dans les différents habitats du Parc naturel du Mercantour (photos Olivier Gargominy, se reporter aux figures 5, 10 et 17 de l’article d’O. Gargominy & Th. Ripken). Sommaire Page 100 Éditorial Page 101 Actualités Page 102 Librairie Page 103 Brèves & News ▪ Endémisme et extinctions : systématique des Endodontidae (Mollusca, Pulmonata) de Rurutu (Iles Australes, Polynésie française) Gabrielle ZIMMERMANN ▪ The first annual meeting of Task-Force-Limax, Bünder Naturmuseum, Chur, Switzerland, 8-10 September, 2006: presentation, outcomes and abstracts Isabel HYMAN ▪ Collecting and transporting living slugs (Pulmonata: Limacidae) Isabel HYMAN ▪ A List of type specimens of land and freshwater molluscs from France present in the national molluscs collection of the Hebrew University of Jerusalem Henk K.
    [Show full text]
  • Tartu, 26.-27. September 2003 Elga Mark-Kurik Ja Jйri Nemliher Tallinna
    Eesti geoloogia uue sajandi kiinnisel 38 Tartu, 26.-27. september 2003 VEEL KORD КESK-DEVONI АВА V А КIНТIDEST Elga Mark-Kurik ja Jйri Nemliher Tallinna Tehnikatilikooli Geoloogia Instituut, Estonia pst. 7, 10143 Tallinn ([email protected]; [email protected]) Abava kihid on kauaaegse asendi tottu Kesk- ja Ulem-Devoni piiril pohjustanud rohkem vaidlusi kui mбni teine stratigraafiline tiksus Baltikumi Нibiloigetes. Selle asendiga seoses on neid kihte kasitletud kord iseseisva tiksusena (Liepins 1960, Mark-Kurik 1991), marksa sagedamini aga lasuva, Gauja lademe osana (Kurss et al. 1981, Mark-Kurik 1981) vбi lamava, Burtnieki lademe osana (Kleesment 1995, Kleesment & Mark-Kurik 1997, Vingisaar 1997). Abava kihtide kui Uksuse liitmist selle vбi teise kбrgemat jarku Uksusega on pбhjustanud antud Uksuse piiride, eriti Ulemise piiri ebamaarasus ning halb jalgitavus geoloogilisel kaш·distamisel (Kurik et al. 1989). Viimatimainitud asjaolu tottu loobus Kurss hiljem ( 1992) Abava kui iseseisva stratigraafilise tiksuse kasutamisest. Siiski ei saa mainimata jatta Abava kihtidele spetsiifilist kalafaunat, samuti selle tiksikelementide.laia levikut Ida­ Euroopa platvormil ning naaberaladel ja kaugemalgi ning nimetatud kihtide tllhtsust regioonidevahelise korrelatsiooni aspektist (Mark-Kurik 1991, Ahlberg et al. 1999, Mark-Kurik et al. 1999). Eestis kuuluvad Abava kihid Givet' ladejargu Burtnieki lademesse, moodustades selle kolmanda ehk Ulemise kihikompleksi. Кihtide paksus on 15,1-32 m. Need koosnevad heledavarvilisest peeneteralisest pбimjaskihilisest liivakivist, ka peeneteralisest hallist, rohekas- voi lillakashallist aleuroliidist. Aleuroliiti on antud Uksuses enam kui 25 %. Samuti esineb selles halli voi punakaspruuni savi. Kagu-Eesti puurstidamikes on Abava tasemelt leitud dolokivi ning domeriiti. Mineraloogiliselt on meie Vбhandu jбе aarsed paljandid ning Latis paiknev Lejeji paljand sarnased (Kleesment 1995). Eelpool mainitud paljand (stratottiiip) asub Kuramaal Venta jбgikonnas Abava jбе vasakul kaldal (suudmest 4 km Ulesvoolu) Lejeji talu vastas.
    [Show full text]
  • Võru Maakonna Omavalitsuste Ühine Jäätmekava 2020-2025
    Võru maakonna omavalitsuste ühine jäätmekava 2020-2025 Võru maakond 2020 Sisukord Sissejuhatus ............................................................................................................................................. 4 1. Võru maakonna üldine iseloomustus................................................................................................... 7 1.1. Asustus ja rahvastik ...................................................................................................................... 7 1.2. Omavalitsuste üldine iseloomustus .............................................................................................. 9 2. Jäätmehoolduse õiguslikud ning keskkonnapoliitilised alused ......................................................... 13 2.1. Riigi õigusaktid .......................................................................................................................... 13 2.1.1. Jäätmeseadus ....................................................................................................................... 13 2.1.2. Muud seadused .................................................................................................................... 16 2.1.3. Vabariigi Valitsuse määrused .............................................................................................. 18 2.1.4. Keskkonnaministri määrused .............................................................................................. 19 2.2. Riiklikud strateegilised dokumendid .........................................................................................
    [Show full text]
  • VÕRU MAAKONNA ARENGUSTRATEEGIA 2035+ Lisa 1 Maakonna Hetkeolukorra Ülevaade
    VÕRU MAAKONNA ARENGUSTRATEEGIA 2035+ Lisa 1 Maakonna hetkeolukorra ülevaade Võru maakond Jaanuar 2019 SISUKORD LÜHIKOKKUVÕTE 4 MAAKONNA HETKEOLUKORRA ÜLEVAADE 9 1. RAHVASTIK 9 1.1. Senised arengud 9 1.2 Peamised rahvastiku analüüsist tulenevad järeldused 12 2. MAJANDUSVALDKOND 13 2.1. Maakonna majanduse üldiseloomustus 13 2.2. Ettevõtluse tugistruktuurid 19 2.3. Ettevõtlusalad maakonnas 21 2.4. Turism 21 2.5. Kaugtöö 30 2.6. Omavalitsuste finantsid 30 2.7. Peamised majandusvaldkonna analüüsist tulenevad järeldused 32 3. HARIDUSVALDKOND 33 3.1. Alusharidus 33 3.2. Üldharidus 35 3.3. Huviharidus 40 3.4. Kutseharidus 41 3.5. Noorsootöö 43 3.6. Peamised haridusvaldkonna analüüsist tulenevad järeldused 45 4. SOTSIAAL-JA TERVISHOIUVALDKOND 46 4.1. Sotsiaal- ja tervishoiuteenuste kättesaadavus 46 4.2. Peamised sotsiaal- ja tervishoiu valdkonna analüüsist tulenevad järeldused 53 5. KODANIKUÜHISKOND, KULTUUR, SPORT JA ERIPÄRA. 53 5.1. Kodanikuühiskonna areng 53 5.2. Sport 57 5.3. Kultuur ja omapära 58 5.4. Peamised kodanikuühiskonna, eripära-, kultuuri- ja spordivaldkonna analüüsist tulenevad järeldused 63 6. TARISTU JA KESKKOND 64 6.1. Ühendused 64 6.2. Keskkond 66 7. HALDUSKORRALDUS JA MAINE 72 2 7.1. Halduskorraldus 72 7.2. Maine 74 7.3. Riiklikud struktuurid 76 KASUTATUD MATERJALID 78 3 LÜHIKOKKUVÕTE Rahvastik Võru maakond asub Kagu-Eestis, piirnedes lõunas Läti Vabariigi, idas Vene Föderatsiooni, põhjas, kirdes Põlva maakonnaga ning läänes Valga maakonnaga. Maakonna administratiivseks keskuseks on Võru linn. Kokku on maakonnas haldusreformi järgselt 5 omavalitsust: Antsla, Rõuge, Setomaa ja Võru vallad ning Võru linn (vt joonis 1). Võru maakonna kogupindala on 2 773 km2, moodustades 6,1% Eesti Vabariigi pindalast.
    [Show full text]
  • Haanjamaa Leidub Kahepaiksetest
    VEEKOGUD TAIMESTIK 2012 ©Keskkonnaamet Haanjamaad on õigustatult nimetatud järvede maaks – ainuüksi Haanjamaa salumetsadele on iseloomulik omapärane rohttaim – AS Aktaprint Trükk: Küljendus: Akriibia OÜ Akriibia Küljendus: kõrgustiku keskosas koos Rõuge ürgoru ja Kütioruga asub enam tähkjas rapuntsel. Mujal Eestis on see liik haruldane. Haruldustest Michelson L. maastik, Haanja kui kuuskümmend järve. Kunagi oli nende hulk suuremgi, kuid esinevad veel võsu-liivsibul, ahtalehine jõgitakjas ja Brauni astel- foto: Esikaane paljud on nüüdseks kinni kasvanud ja nende kohti tähistavad sood. sõnajalg, mis on selle liigi ainus teadaolev kasvukoht Eestis. Niis- Kivistik M. Pungar, D. koostaja: Trükise Haanjamaa järvede seas leiame nii Eesti sügavaima, Rõuge Suur- ketes küngastevahelistes nõgudes kasvab kümmekond liiki käpalisi Keskus www.rmk.ee SA Keskkonnainvesteeringute Keskkonnainvesteeringute SA järve (sügavus 38 m) kui ka Eesti järvedest kõige kõrgemal asuva – ehk orhideesid. Ka järvedes on oma haruldused: vaid Kagu-Eestis [email protected] Trükise väljaandmist toetas: väljaandmist Trükise Tuuljärve (257 m ü.m.p). leiduvat, harvaesinevat vahelduvaõielist vesikuuske on siinkandis 9090 782 tel Haanjamaa järved on omapärase tekkelooga. Jääaja lõpus jäid leitud seitsmest järvest. teabepunkt Haanja RMK Lõuna-Eesti piirkond Lõuna-Eesti üksikud hiiglaslikud mandrijääst eraldunud pangad kauaks sula- loodushoiuosakond RMK mata, sest olid kaetud paksu moreenikihiga. Kliima soojenemisel ILMASTIK KORRALDAJA KÜLASTUSE KAITSEALA jääpangad sulasid ja järgi jäid sügavad veesilmad. Moreenkiht vajus Haanjamaa suur kõrgus, liigestatud reljeef ja asend loovad tingi- www.keskkonnaamet.ee Foto: Vorstimägi, M. Muts järve põhja, seetõttu on Haanjamaa veekogude põhi enamasti kõva mused sademeterohke ja samas suurte temperatuurierinevustega [email protected] ja kruusane. Kunagiste mattunud orgude kohale tekkinud järvi ise- Foto: Haki männid, R. Reiman ilmastiku tekkeks.
    [Show full text]
  • EGT Aastaraamat 2020 ENG.Indd
    YEARBOOK GEOLOGICAL SURVEY OF ESTONIA F. R. Kreutzwaldi 5 44314 Rakvere Telephone: (+372) 630 2333 E-mail: [email protected] ISSN 2733-3337 © Eesti Geoloogiateenistus 2021 2 Foreword . 3 About GSE . 5 Cooperation . 6 Human resource development . 9 Fieldwork areas 2020 . 12 GEOLOGICAL MAPPING AND GEOLOGICAL DATA Coring – a major milestone in subsurface investigations in Estonia . 13 Coring projects for geological investigations at the GSE in 2020 . 15 Distribution, extraction, and exploitation of construction minerals in Pärnu county . 17 Mineral resources, geophysical anomalies, and Kärdla Crater in Hiiumaa . .22 Geological mapping in Pärnu County . .26 Opening year of the digital Geological Archive . .29 HYDROGEOLOGY AND ENVIRONMENTAL GEOLOGY Status of Estonian groundwater bodies in 2014–2019 . 31 Salinisation of groundwater in Ida-Viru County . .35 Groundwater survey of Kukruse waste rock heap . .37 The quality of groundwater and surface water in areas with a high proportion of agricultural land . .39 Transient 3D modelling of 18O concentrations with the MODFLOW-2005 and MT3DMS codes in a regional-scale aquifer system: an example from the Estonian Artesian Basin . .42 Radon research in insuffi ciently studied municipalities: Keila and Võru towns, Rõuge, Setomaa, Võru, and Ruhnu rural municipalities . .46 GroundEco – joint management of groundwater dependent ecosystems in transboundary Gauja–Koiva river basin . .50 MARINE GEOLOGY Coastal monitoring in 2019-2020 . .53 Geophysical surveys of fairways . .56 Environmental status of seabed sediments in the Baltic Sea . .58 The strait of Suur väin between the Estonian mainland and the Muhu Island overlies a complex bedrock valley . 60 Foreword 2020 has been an unusual year that none of us is likely to soon forget.
    [Show full text]
  • Impact of Past and Present Management Practices on the Land Snail Community of Nutrient-Poor Calcareous Grasslands
    Impact of past and present management practices on the land snail community of nutrient-poor calcareous grasslands Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von Cristina Boschi aus Melide TI Basel, 2007 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Bruno Baur und Prof. Dr. Andreas Erhardt Basel, den 24. April 2007 Prof. Dr. Hans-Peter Hauri Dekan Table of contents General introduction 3 Chapter 1 11 The effect of horse, cattle and sheep grazing on the diversity and abundance of land snails in nutrient-poor calcareous grasslands Chapter 2 23 Effects of management intensity on land snails in Swiss nutrient-poor pastures Chapter 3 31 Past pasture management affects the land snail diversity in nutrient-poor calcareous grasslands Chapter 4 57 The effect of different types of forest edge on the land snail communities of adjacent, nutrient-poor calcareous grasslands General discussion 77 Summary 84 Dank 87 Curriculum vitae 90 2 General introduction 3 General introduction Biodiversity in semi-natural grasslands Nutrient-poor, dry calcareous grasslands in Central Europe harbour an extraordinary high diversity of plants and invertebrates (Ellenberg, 1996; Kirby, 2001; WallisDeVries et al., 2002). These semi-natural grasslands have been cultivated for hundreds of years in an extensive way, mainly by grazing and harvesting hay (Poschlod and WallisDeVries, 2002). Since the beginning of the twentieth century, increasing pressure for higher production at low cost has led to either an intensification of grassland use (increased stocking rate and/or increased use of fertilizer) or to abandonment (Hodgson et al., 2005; Strijker, 2005).
    [Show full text]
  • Dynamical, Biological, and Anthropic Consequences of Equal Lunar and Solar Angular Radii Rspa.Royalsocietypublishing.Org Steven A
    Dynamical, biological, and anthropic consequences of equal lunar and solar angular radii rspa.royalsocietypublishing.org Steven A. Balbus 1Astrophysics, Keble Road, Denys Wilkinson Building, Research University of Oxford, Oxford OX1 3RH The nearly equal lunar and solar angular sizes Article submitted to journal as subtended at the Earth is generally regarded as a coincidence. This is, however, an incidental consequence of the tidal forces from these bodies Subject Areas: being comparable. Comparable magnitudes implies Astronomy, Astrobiology strong temporal modulation, as the forcing frequencies are nearly but not precisely equal. We suggest that on Keywords: the basis of paleogeographic reconstructions, in the Devonian period, when the first tetrapods appeared Tides, evolution, Moon on land, a large tidal range would accompany these modulated tides. This would have been conducive to Author for correspondence: the formation of a network of isolated tidal pools, Steven Balbus lending support to A.S. Romer’s classic idea that the e-mail: [email protected] evaporation of shallow pools was an evolutionary impetus for the development of chiridian limbs in aquatic tetrapodomorphs. Romer saw this as the reason for the existence of limbs, but strong selection pressure for terrestrial navigation would have been present even if the limbs were aquatic in origin. Since even a modest difference in the Moon’s angular size relative to the Sun’s would lead to a qualitatively different tidal modulation, the fact that we live on a planet with a Sun and Moon of close apparent size is not entirely coincidental: it may have an anthropic basis. arXiv:1406.0323v1 [astro-ph.EP] 2 Jun 2014 c The Author(s) Published by the Royal Society.
    [Show full text]