Characterisation and Phylogenetic Relationships of Anisogramma Virgultorum and A

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation and Phylogenetic Relationships of Anisogramma Virgultorum and A mycological research 113 (2009) 73–81 journal homepage: www.elsevier.com/locate/mycres Characterisation and phylogenetic relationships of Anisogramma virgultorum and A. anomala in the Diaporthales (Ascomycota) Heike DE SILVAa, Lisa A. CASTLEBURYb,*, Sarah GREENa, Jeffrey K. STONEc aForest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, Scotland, United Kingdom bSystematic Mycology and Microbiology Laboratory, USDA ARS, Beltsville, MD 20705, USA cDepartment of Botany and Plant Pathology, Oregon State University, Corvallis OR 97331-2902, USA article info abstract Article history: The two diaporthalean fungi Anisogramma virgultorum and A. anomala are biotrophic Received 28 November 2007 parasites. A. virgultorum causes stromatal cankers on young shoots of birch whereas Received in revised form A. anomala infects young branches of Corylus avellana. Although previous classifications 1 July 2008 based on morphological characteristics placed both species in the Gnomoniaceae, Diapor- Accepted 12 August 2008 thales, their taxonomic position within the order and their relationship to each other re- Corresponding Editor: quired further clarification. We determined the nucleotide sequences of the ITS and Brenda Wingfield partial LSU nu-rDNA regions of both species. A putative second teleomorph form of A. vir- gultorum, described in the literature as the ‘single perithecial form’, was also included in Keywords: the analysis. Based on phylogenetic analyses of LSU sequences, the stromatal forms of Betula A. virgultorum and A. anomala were part of a well-supported monophyletic sister clade to Corylus the Gnomoniaceae. The single perithecial form was placed within a clade containing repre- Eastern filbert blight sentative members of the Gnomoniaceae, separate from species of Anisogramma. These re- Gnomoniaceae sults indicate that the single perithecial form of A. virgultorum actually represents an unrelated and as yet unidentified species of Gnomoniaceae. A morphological description of asci and ascospores of the three species is given. A Wilcoxon two sample test revealed that asci of the stromatal form of A. virgultorum were significantly shorter than those of the single perithecial species. Ascospores of the stromatal form of A. virgultorum were signifi- cantly shorter and wider than those of the single perithecial species. Published by Elsevier Ltd on behalf of The British Mycological Society. Introduction eastern filbert blight on commercially grown European hazel- nut (Corylus avellana) in the eastern United States and more The genus Anisogramma comprises two well-known species: recently in Oregon and Washington, and British Columbia A. virgultorum and A. anomala. A. virgultorum produces dark (Johnson et al. 1996). A third species, originally described as brown to black erumpent stromatal cankers on young shoots Diaporthe apiospora has been placed in Anisogramma as A. apio- of Betula pendula and B. pubescens and has been observed to spora, but Barr (1978) did not include it in Anisogramma and cause shoot dieback on young trees in Scotland (H.D.S. & later placed it in the genus Apioporthella (Barr 1991). A. apio- S.G. unpubl.). A. anomala causes the devastating disease spora has a valsoid arrangement of perithecia that does not * Corresponding author. E-mail address: [email protected] 0953-7562/$ – see front matter Published by Elsevier Ltd on behalf of The British Mycological Society. doi:10.1016/j.mycres.2008.08.008 74 H. De Silva et al. suggest a relationship with Anisogramma, and therefore, is not branches in severely infected trees leading to branch dieback considered in this paper. within a few years (Gottwald & Cameron 1979; Gottwald & A. virgultorum has been reported from birch in Germany, Cameron 1980a; Johnson et al. 1994). Disease incidence may Italy, Finland, Switzerland, UK, Sweden (Massee 1914; Thei- be as high as 100 % at some sites and in some cases entire or- ßen & Sydow 1916; Vleugel 1917; Froidevaux & Mu¨ ller 1972; chards have been killed by the disease (Gottwald & Cameron Witzell & Karlsson 2002) and New Hampshire (Barr 1978). Al- 1980b; Johnson et al. 1996). though widely distributed, it has been considered a minor Historically, morphological characteristics of the stromata, pathogen of birch in the UK because of its rare occurrence perithecia, and ascospores have been used to distinguish gen- (Dennis 1968; Ellis & Ellis 1985). However, in a recent survey, era within the Diaporthales (Barr 1978; Monod 1983). However, this species was found abundantly at nine planted birch emphasis on different morphological characters by different stands across Scotland and was associated with crown die- authors and the great variation in phenotypic features has back of affected trees (De Silva et al. 2008). Ascospores formed lead to much confusion in the determination of families and within flask-shaped perithecia are released in spring from genera. For example, A. virgultorum was listed in the family stromatal cankers on infected birch shoots of the previous Valsaceae by Eriksson (1992) while Dennis (1968) and Froide- season’s growth. Spore release studied over a two-year period vaux & Mu¨ ller (1972) included this species in the Diaporthaceae. coincided with shoot elongation of birch seedlings, a period More recently, A. virgultorum was placed in the Gnomoniaceae when the host appears to be most susceptible to infection (Barr 1978) while in The Dictionary of the Fungi, the genus Ani- (H.D.S. & S.G. unpubl.). Ascospores are released in spring to in- sogramma is listed in the Valsaceae (Hawksworth et al. 1995). fect young expanding shoots, and the first symptoms, such as The aim of this present study is to determine whether the dark brown staining of the phloem and splitting of the epider- two forms of A. virgultorum are actually conspecific, to charac- mis, are observed on infected current season shoots during terise both forms in comparison with A. anomala, and to infer mid to late July, approximately eight to ten weeks after infec- the phylogenetic relationships of these species to other taxa in tion. Ascostromata then develop on infected birch shoots by the Diaporthales using nucleotide sequences of the complete mid-August (H.D.S. & S.G. unpubl.). ITS region and LSU nu-rDNA gene. A species with similar ascospores that has been identified as a second teleomorph form of A. virgultorum was found in Switzerland and described by Froidevaux & Mu¨ ller (1972) as Materials and methods having small individual fruiting bodies, each containing a sin- gle perithecium, that are scattered around the infected birch Fungal material shoot. In the more common stromatal form numerous peri- thecia occur densely packed in rows within each stroma. Eighteen isolates of Anisogramma virgultorum, one isolate of Whereas the stromatal form was commonly found on birch the single perithecial species and one isolate of A. anomala trees infected with A. virgultorum across Scotland (De Silva were included in this study. Isolates of both birch pathogens et al. 2008), the rare single perithecial species has, to date, were collected from planted and site-natural birch stands only been observed on two B. pubescens trees at one site in across Scotland and A. anomala on infected shoots of Corylus avellana were obtained from one location in Oregon (Table 1). the north of Scotland. Froidevaux & Mu¨ ller (1972) do not men- tion how frequently the single perithecial form was encoun- All infected birch shoots were stored at À20 C until use. Cul- tered, but note that it was not as common as the stromatal turing of A. virgultorum and the single perithecial species was form. attempted by streaking ascospores onto malt agar (2 % malt In North America, A. anomala is indigenous on native hazel agar, 2 % sucrose, 2 % bacteriological agar and 0.2 % yeast ex- (C. americana) and causes a disease of the commercial crop tract) amended with 0.5 % activated charcoal following auto- species, C. avellana, known as eastern filbert blight that pre- claving. While ascospores of all isolates of A. virgultorum vents establishment of this crop in the northeastern USA germinated, their germ tubes lysed after a few days on this (Barss 1930). In 1970 this disease was first discovered on com- medium. Monoascospore cultures could only be isolated for mercially grown European hazelnut trees in the state of the single perithecial species. These were maintained in an Washington (Davison & Davidson 1973) and has since spread incubator at 20/15 C day/night temperatures with a 12 h to Oregon. In Oregon and Washington, ascospores mature photoperiod. Light was supplied as cool white fluorescent and are released from cankers during periods of rain from and near-UV light. Colonies were subcultured to obtain actively early winter to late spring. However, new infections by asco- growing mycelium for DNA extraction. As A. virgultorum could spores occur only on young, developing shoots over a period not be cultured, molecular analyses were conducted by DNA of several weeks in spring. Infection occurs on succulent, extraction using perithecial contents taken directly from newly emerged leaves and shoots soon after breaking of the a freshly cut stroma or by direct PCR methods. Similarly, vegetative buds. The disease cycle requires one or more years, DNA of A. anomala was extracted from perithecial contents including a 12–24 month latent period from the time of infec- taken from infected C. avellana shoots. tion to expression of first symptoms on affected branches (Stone et al. 1992; Johnson et al. 1994). The disease spreads by Voucher material new infections from ascospores and by perennial expansion of existing cankers along and around infected branches. Pe- Herbarium specimens of Anisogramma virgultorum and rennial cankers can measure from a few centimetres to over A. anomala are stored at the USDA ARS Systematic Mycology 2 m in length. Larger cankers often girdle the scaffolding Laboratory, in Beltsville MD, USA. Shoot material infected Phylogenetics of Anisogramma 75 Table 1 – Fungal isolates used for ITS and LSU analyses Isolate Fungal species Host species Origin Collection date Source AV01 Anisogramma virgultorum Betula pubescens Carroch, Scotland 06.09.2006 H.
Recommended publications
  • <I>Stilbosporaceae</I>
    Persoonia 33, 2014: 61–82 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684212 Stilbosporaceae resurrected: generic reclassification and speciation H. Voglmayr1, W.M. Jaklitsch1 Key words Abstract Following the abolishment of dual nomenclature, Stilbospora is recognised as having priority over Prosthecium. The type species of Stilbospora, S. macrosperma, is the correct name for P. ellipsosporum, the type Alnecium species of Prosthecium. The closely related genus Stegonsporium is maintained as distinct from Stilbospora based Calospora on molecular phylogeny, morphology and host range. Stilbospora longicornuta and S. orientalis are described as Calosporella new species from Carpinus betulus and C. orientalis, respectively. They differ from the closely related Stilbospora ITS macrosperma, which also occurs on Carpinus, by longer, tapering gelatinous ascospore appendages and by dis- LSU tinct LSU, ITS rDNA, rpb2 and tef1 sequences. The asexual morphs of Stilbospora macrosperma, S. longicornuta molecular phylogeny and S. orientalis are morphologically indistinguishable; the connection to their sexual morphs is demonstrated by Phaeodiaporthe morphology and DNA sequences of single spore cultures derived from both ascospores and conidia. Both morphs rpb2 of the three Stilbospora species on Carpinus are described and illustrated. Other species previously recognised in systematics Prosthecium, specifically P. acerophilum, P. galeatum and P. opalus, are determined to belong to and are formally tef1 transferred to Stegonsporium. Isolates previously recognised as Stegonsporium pyriforme (syn. Prosthecium pyri­ forme) are determined to consist of three phylogenetically distinct lineages by rpb2 and tef1 sequence data, two of which are described as new species (S. protopyriforme, S. pseudopyriforme). Stegonsporium pyriforme is lectotypified and this species and Stilbospora macrosperma are epitypified.
    [Show full text]
  • A Novel Family of Diaporthales (Ascomycota)
    Phytotaxa 305 (3): 191–200 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.305.3.6 Melansporellaceae: a novel family of Diaporthales (Ascomycota) ZHUO DU1, KEVIN D. HYDE2, QIN YANG1, YING-MEI LIANG3 & CHENG-MING TIAN1* 1The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, PR China 2International Fungal Research & Development Centre, The Research Institute of Resource Insects, Chinese Academy of Forestry, Bail- ongsi, Kunming 650224, PR China 3Museum of Beijing Forestry University, Beijing 100083, PR China *Correspondence author email: [email protected] Abstract Melansporellaceae fam. nov. is introduced to accommodate a genus of diaporthalean fungi that is a phytopathogen caus- ing walnut canker disease in China. The family is typified by Melansporella gen. nov. It can be distinguished from other diaporthalean families based on its irregularly uniseriate ascospores, and ovoid, brown conidia with a hyaline sheath and surface structures. Phylogenetic analysis shows that Melansporella juglandium sp. nov. forms a monophyletic group within Diaporthales (MP/ML/BI=100/96/1) and is a new diaporthalean clade, based on molecular data of ITS and LSU gene re- gions. Thus, a new family is proposed to accommodate this taxon. Key words: diaporthalean fungi, fungal diversity, new taxon, Sordariomycetes, systematics, taxonomy Introduction The ascomycetous order Diaporthales (Sordariomycetes) are well-known fungal plant pathogens, endophytes and saprobes, with wide distributions and broad host ranges (Castlebury et al. 2002, Rossman et al. 2007, Maharachchikumbura et al. 2016).
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Anisogramma Anomala
    EPPO quarantine pest Data Sheets on Quarantine Pests Anisogramma anomala IDENTITY Name: Anisogramma anomala (Peck) E. Müller Synonyms: Apioporthe anomala (Peck) Höhn Cryptosporella anomala (Peck) Saccardo Taxonomic position: Fungi: Ascomycetes: Diaporthales Common names: Eastern filbert blight (English) Bayer computer code: CRYPAN EPPO A1 list: No. 201 HOSTS Anisogramma anomala is a biotrophic parasite of Corylus spp., which is grown in culture only with difficulty (Stone et al., 1994). It is indigenous on Corylus americana, a common understorey shrub of forests in eastern USA. It causes the severe disease eastern filbert blight on cultivated hazelnut, Corylus avellana. It has also been reported on other Corylus spp. GEOGRAPHICAL DISTRIBUTION Occurring naturally on wild Corylus spp. in eastern USA (Barss, 1930), A. anomala spread to Washington in 1973 (Cameron & Gottwald, 1978), to Oregon in 1986, and from those states to British Columbia (Canada). EPPO region: Absent. North America: Canada (British Columbia, Nova Scotia). USA (Connecticut, Delaware, Illinois, Iowa, Maine, Maryland, Massachusetts, New Jersey, New York, North Carolina, Oregon, Washington, Wisconsin). EU: Absent. BIOLOGY Ascospores are the only known spore type; they are discharged from perithecia on diseased branches from autumn to late spring (Pinkerton et al., 1990). Wetting of the stromata causes perithecial ostioles to open. Ascospores are then transported by rain water and splash droplets. Short periods of rainfall are sufficient to release spores and inoculate trees. The ascospores infect young vegetative tissue in spring (Gottwald & Cameron, 1980a), after budburst, through leaf emergence and shoot elongation (Stone et al., 1992; Johnson et al., 1994). Once established, A. anomala colonizes the cambial tissue.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Coryneum Heveanum Sp. Nov. (Coryneaceae, Diaporthales) on Twigs of Para Rubber in Thailand
    A peer-reviewed open-access journal MycoKeys 43: 75–90Coryneum (2018) heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of... 75 doi: 10.3897/mycokeys.43.29365 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Coryneum heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of Para rubber in Thailand Chanokned Senwanna1,2, Kevin D. Hyde2,3,4, Rungtiwa Phookamsak2,3,4,5, E. B. Gareth Jones1, Ratchadawan Cheewangkoon1 1 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People’s Republic of China 4 World Agroforestry Cen- tre, East and Central Asia, Heilongtan, Kunming 650201, Yunnan, People’s Republic of China 5 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand Corresponding author: Ratchadawan Cheewangkoon ([email protected]) Academic editor: Andrew Miller | Received 28 August 2018 | Accepted 14 November 2018 | Published 6 December 2018 Citation: Senwanna C, Hyde KD, Phookamsak R, Jones EBG, Cheewangkoon R (2018) Coryneum heveanum sp. nov. (Coryneaceae, Diaporthales) on twigs of Para rubber in Thailand. MycoKeys 43: 75–90. https://doi.org/10.3897/ mycokeys.43.29365 Abstract During studies of microfungi on para rubber in Thailand, we collected a newCoryneum species on twigs which we introduce herein as C. heveanum with support from phylogenetic analyses of LSU, ITS and TEF1 sequence data and morphological characters.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Gen. Nov. on <I> Juglandaceae</I>, and the New Family
    Persoonia 38, 2017: 136–155 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/003158517X694768 Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales) H. Voglmayr1, L.A. Castlebury2, W.M. Jaklitsch1,3 Key words Abstract Molecular phylogenetic analyses of ITS-LSU rDNA sequence data demonstrate that Melanconis species occurring on Juglandaceae are phylogenetically distinct from Melanconis s.str., and therefore the new genus Juglan- Ascomycota conis is described. Morphologically, the genus Juglanconis differs from Melanconis by light to dark brown conidia with Diaporthales irregular verrucae on the inner surface of the conidial wall, while in Melanconis s.str. they are smooth. Juglanconis molecular phylogeny forms a separate clade not affiliated with a described family of Diaporthales, and the family Juglanconidaceae is new species introduced to accommodate it. Data of macro- and microscopic morphology and phylogenetic multilocus analyses pathogen of partial nuSSU-ITS-LSU rDNA, cal, his, ms204, rpb1, rpb2, tef1 and tub2 sequences revealed four distinct species systematics of Juglanconis. Comparison of the markers revealed that tef1 introns are the best performing markers for species delimitation, followed by cal, ms204 and tub2. The ITS, which is the primary barcoding locus for fungi, is amongst the poorest performing markers analysed, due to the comparatively low number of informative characters. Melanconium juglandinum (= Melanconis carthusiana), M. oblongum (= Melanconis juglandis) and M. pterocaryae are formally combined into Juglanconis, and J. appendiculata is described as a new species. Melanconium juglandinum and Melanconis carthusiana are neotypified and M. oblongum and Diaporthe juglandis are lectotypified. A short descrip- tion and illustrations of the holotype of Melanconium ershadii from Pterocarya fraxinifolia are given, but based on morphology it is not considered to belong to Juglanconis.
    [Show full text]
  • Diaporthales)
    Persoonia 38, 2017: 136–155 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/003158517X694768 Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales) H. Voglmayr1, L.A. Castlebury2, W.M. Jaklitsch1,3 Key words Abstract Molecular phylogenetic analyses of ITS-LSU rDNA sequence data demonstrate that Melanconis species occurring on Juglandaceae are phylogenetically distinct from Melanconis s.str., and therefore the new genus Juglan- Ascomycota conis is described. Morphologically, the genus Juglanconis differs from Melanconis by light to dark brown conidia with Diaporthales irregular verrucae on the inner surface of the conidial wall, while in Melanconis s.str. they are smooth. Juglanconis molecular phylogeny forms a separate clade not affiliated with a described family of Diaporthales, and the family Juglanconidaceae is new species introduced to accommodate it. Data of macro- and microscopic morphology and phylogenetic multilocus analyses pathogen of partial nuSSU-ITS-LSU rDNA, cal, his, ms204, rpb1, rpb2, tef1 and tub2 sequences revealed four distinct species systematics of Juglanconis. Comparison of the markers revealed that tef1 introns are the best performing markers for species delimitation, followed by cal, ms204 and tub2. The ITS, which is the primary barcoding locus for fungi, is amongst the poorest performing markers analysed, due to the comparatively low number of informative characters. Melanconium juglandinum (= Melanconis carthusiana), M. oblongum (= Melanconis juglandis) and M. pterocaryae are formally combined into Juglanconis, and J. appendiculata is described as a new species. Melanconium juglandinum and Melanconis carthusiana are neotypified and M. oblongum and Diaporthe juglandis are lectotypified. A short descrip- tion and illustrations of the holotype of Melanconium ershadii from Pterocarya fraxinifolia are given, but based on morphology it is not considered to belong to Juglanconis.
    [Show full text]
  • Complete Thesis
    Phylogeography and population biology of Chrysoporthe austroafricana and allied species by NICOLAAS ALBERTUS VAN DER MERWE A thesis submitted in partial fulfilment of the degree Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences Department of Genetics Forestry and Agricultural Biotechnology Institute University of Pretoria South Africa 2012 © University of Pretoria Declaration I, the undersigned, hereby declare that the thesis submitted herewith for the degree Philosophiae Doctor to the University of Pretoria, contains my own independent work and has not been submitted for any degree at any other University. ______________________________ Nicolaas A. van der Merwe © University of Pretoria Table of Contents Acknowledgements .......................................................................................................... 7 Preface ................................................................................................................................. 9 CHAPTER 1 What is a fungal species?................................................................................................ 12 Introduction............................................................................................................................................................................... 13 A unified species concept................................................................................................................................................. 15 Species recognition criteria in the Ascomycota..................................................................................................
    [Show full text]
  • Identity and Pathogenicity of Some Fungi Associated with Hazelnut (Corylus Avellana L.) Trunk Cankers in Oregon
    RESEARCH ARTICLE Identity and pathogenicity of some fungi associated with hazelnut (Corylus avellana L.) trunk cankers in Oregon 1 2 3 2 Nik G. WimanID *, John Bryan Webber III , Michele Wiseman , Lea Merlet 1 Oregon State University, Department of Horticulture, North Willamette Research and Extension Center, Aurora, Oregon, United States of America, 2 Oregon State University, Department of Horticulture, Corvallis, Oregon, United States of America, 3 Oregon State University, Department of Botany and Plant Pathology, Corvallis, Oregon, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Four fungi isolated from trunks and branches of European hazelnut (Corylus avellana L.) from commercial orchards in the Willamette Valley, Oregon were characterized and patho- genicity was tested on potted hazelnut trees. The acreage of hazelnuts in Oregon has OPEN ACCESS expanded greatly in recent years in response to the availability of Eastern filbert blight resis- Citation: Wiman NG, Webber III JB, Wiseman M, tant cultivars. Fungi were characterized using the BLASTn algorithm and the GenBank data- Merlet L (2019) Identity and pathogenicity of some fungi associated with hazelnut (Corylus avellana L.) base with multiple partial gene sequence(s). If BLASTn and GenBank were not sufficient for trunk cankers in Oregon. PLoS ONE 14(10): species-level identification, then a multilocus sequence analysis (MLSA) was performed. e0223500. https://doi.org/10.1371/journal. The four pathogens were identified as Diplodia mutilla (Fr.) Mont., Dothiorella omnivora B.T. pone.0223500 Linaldeddu, A. Deidda & B. Scanu, Valsa cf. eucalypti Cooke & Harkn., and Diaporthe eres Editor: Andrea Luvisi, Universita del Salento, ITALY Nitschke.
    [Show full text]
  • Towards a Natural Classification of Annulatascaceae-Like Taxa Ⅱ: Introducing Five New Genera and Eighteen New Species from Freshwater
    Mycosphere 12(1): 1–88 (2021) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/12/1/1 Towards a natural classification of annulatascaceae-like taxa Ⅱ: introducing five new genera and eighteen new species from freshwater Dong W1,2,3,4,5, Hyde KD4,5,6,7, Jeewon R8, Doilom M5,7,9,10, Yu XD1,11, Wang GN12, Liu NG4, Hu DM13, Nalumpang S2,3, Zhang H1,14,15* 1Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming 650500, China 2Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 3Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 4Center of Excellence for Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China 6Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 7Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Sciences, Chiang Mai University, Chiang Mai 50200, Thailand 8Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius 9CAS, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China 10Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 11School of Life Science
    [Show full text]