New Species of the Diaporthales from Eastern Asia and Eastern North America

Total Page:16

File Type:pdf, Size:1020Kb

New Species of the Diaporthales from Eastern Asia and Eastern North America MR Mtcologw, 99(6), 2007, pp. 916-923. 2007 by The Mycological Society of America, Lawrence, KS 66044-8897 New species of the Diaporthales from eastern Asia and eastern North America Larissa N. Vasilyeva MATERIALS AND METHODS Institute of Biology and Soil Science, Far Fast Branch of the Russian Academy oJ Sciences, Vladivostok 690022, Collect i ng trips were made during 2000-2006 in eastern Russia Asia (China, Republic of Korea, Russia) and eastern North America (USA: Maryland, Tennessee, West Virginia). The Amy Y. Rossma& samples were air-dried. Morphological observations include David F. Farr inacrosci pic :ippearai ice of fruiting bodies on the sub- Systematic Botany and Mtcology i.aboiatory, ( TS/)i- stiatiiiii as viewed wit Ii a stereonlicroscope and microscopic A RS, Beltsville, Maryland 20705 characters such as sue, shape, color and arrangement of asdi , ascospoies, petit hecial wall and pen thecial ostiolar tissues. Specimens were observed with a Zeiss Axiophot Abstract: Seven previously un(lescribed diapoitlia- ill icrosci pe and photographed in the Fan Eastern Center of lean species were found in eastern Asia and eastern Election Microscopy (Institute of Marine Biology, Viaclivos- t k) with :1 North America. Three of these new species and one (ligIl :tl video camera Leica DF( 300FX and microscopes I.eica MZ75 and I,eica DM 4500B. Specimens previously known species are assigned to a new genus were sectioned witl iafie cling micnotorne for detailed Leucodiaporthe. Descriptions and illustrations are observation of penithecial structures. Cultures derived from provided for the new taxa including Allanioporihe these collections were obtained by means of single leucothöes sp. nov., J)iaporllieiia coryl,na sp. nov., 5d( )Sj )Oit isolation on cornmeal agar (Sigma ®, Sigma Leucodiaporthe acerina sp. nov., L. jugiandis sp. nov.. Chemical Co., St Louis, Missouri) phis 0.2% dextrose L. maucki comb. nov., L. robiniae sp. nov., Leucosloma (CMI)) supplemented with antibiotics (1% solution 0.2% p5ev don i Veil ill Sp. 1) Ov., J.eu cosloma exciJ.iten da comb. streptonmvcui sulfate and 0.2% neomycin). Cultures are nov., and P/iragrinodiaporthe padi sp. nov. described oil Potato-dextrose agar (PDA, Sigma ®, Sigma Key words: Ascornycota, Sordariomycetes, Chemical Co.. St Louis, Missouri) made according to the systematics, taxonom y, wood-inhabiting fungi manufacturers ins( ruction after 7 ci at room temperature tinder equal davlight-d:srk conditions and occasionalh after it longer period time. Sonic coltines also are described on INTRODUCTION CMI). Colon y colors are described based on Raruer (1970). The Diaporthales are a distinct order within the Sordariomycetes, the class including ascomycetous I,\XONOMY fungi that produce asci primarily in perithecial Allantoporthe leucothoes Lar.N. Vassiljeva sp. nov. fruiting bodies (Zhang and Blackwell 2001, Zhang Ftcs. 1-5 et al 2006). The Diaporthales include fungi having Mycobank number 510558 perithecia either solitary or aggregated in a stroma, Penitheciis cortice irnmersis,300-350 pm diam, ostiolis often with long necks, unitunicate asci that float free papillatis discrete erumpeiitihus, singulis vel aggregatis at maturity with a conspicuous refractive ring, linea mligra irregulariter eircumscriptis. Ascis clavatis, 8- ascospores that vary from short, nonseptate to sporis, 35-45 X 8-10 pm, apparatus apicalis refractis. elongate, multiseptate and pycnidial asexual states. Sponidiis distichis, fusoideis, 14-16 X 3-3.5 pm, 1-septatis, Most species are inconspicuous, often immersed in medio vix constnictis, hyalinis, non appencliculatis. the substratum and occur on hardwood trees and Holotvpe specimen: UNITED STATES. Tennessee: other plant hosts in temperate regions. At present six Cocke County, Great Smoky Mountains National families are recognized in the Diaporthales (Castle- Park, Cosby, on dead stems of Leucothhefontanesiana bury et al 2002, Rossman et al 2007) although some (Steud.) Sleumer (Ericaceae), 8 May 2006, coil. species cannot be placed in any family. The new taxa Larissa N. Vasilyeva (HOLOTYPE-VIA). described below belong primarily to the Diaportha- Etymology: referring to the host plant. ceae and Valsaceae, although for some species their Perithecia immersed in bark tissue, 300- familiar placement is unknown. Following are de- 350 .tm diarn, erumpent with short papillate beaks, scriptions and illustrations of new taxa encountered groups of l-3(-5) perithecia immediately surrounded while collecting in eastern Asia and eastern North by an indistinct, thickened black line composing America. a perithecial cluster, each perithecial cluster sur- rounded by dull yellow epidermis, then with a distinct, Accepted for publication 13 August 2007. narrow black line enclosing a single perithecial Corresponding author. E-mail: [email protected] cluster or two or more clusters, sometimes large with 916 VASILYEVA Fr Al, NEW DIAPORTHAIES 917 up to 20 perithecial clusters, black line enclosing compressed, 300-350 pm diam, perithecial beaks circular to smooth rounded area, 0.5-3 cm diam. Asci black, elongated up to 1.5 mm, projecting well clavate, 8-spored, 35-45 X 8-10 pm, apical annulus beyond disk, erlimpent singly, numerous, crowded. refractive. Ascospores hiseriate, fusoid, 14-16 X 3.3- Asci oblong-fusoid, eight-spored, 42-50 X 9-11 pm, 3.5 pm, two-celled, slightly constricted at septum, apical annulus refractive. Ascospores hiseriate, fusoid hyaline, without appendages. or ellipsoid, 12-16 X 3.5-4 pm, 2-celled, slightly Culture on PDA after 7 d: colony 5.5 cm diam, constricted at septum, hyaline, without appendages. mycelium diffuse, low tufted, white to pale mouse Culture on Pl)A after 7 rI: colony 4.7 cm cliam, gray, sparse at margin, denser toward center, dense mycelium diffuse to dense, white to salmon, broadly mycelium salmon, with margin irregularly scalloped, tufted at regular margin, even toward center, reverse reverse intensely pigmented, hay to blood color, without pigments, pale peach beneath dense myceli- darker toward center. tim, white at margin. Additional specimen examined: UNITED STATES. Ten- Additional specimen exasn,ncd: CHINA. Heilongjiang nessee: Cocke County, Great Smoky Mountains National Province: Fuyt tan, oil (lying stems of Corins sp. , 4 Aug Park, Big Creek Trail, on dead stems of Leucoilioc 2004, coll. l,arissa N. Vasileva, c(ilt. Amy Rossman AR 4131 fontanesiana, 6 May 2002, coll. Larissa N. Vas,/eva, cult. = CBS 121124 (l1Il 871218). Arn Rossman AR 3807 = CBS 121122 (BPI 843486). The genus L)iaporihella Petr. is based on the type This new species is placed in the genus Alianlo- species 1). arcclala (Fr.) Petr. oil spp. L)iaporthelia porthePetr. in the Diaporthaceae. Allantoporthediffcrs corlmna is similar to D. (ristata in ascospore size; from Diaporthe in having stromata that consist of however the stromata of 1). corlwa are circular with several perithecia singly immersed in bark tissue and it disk while the stromata of 1). aristata are surrounded by a black line, whereas species of black, erumpent and well developed. A third species in Diaporthe usually form clusters of perithecia that Diaporl/icila, I). pialasca (Peck) Well on Betulaspp., collectively are erumpent from the hark. The type of has larger ascospoles (16-23 >( 3-5 pin) than those of the genus Allantoporthe, A. tessella (Pers. : Fr.) Petr., 1). corylinit (Vasilyeva 2004, Wehmeyer 1933) occurs on Salix spp. and has larger ascospores, 40-60 The genus Diaporihella is similar to Anisogramma in X 7-9(-11) p.m (FI(;s. 6-9), than those of A. having a well developed stroma in which the lencothäes. The third species of the genus, Allanlo- perithecia are aggregated. Unlike Anisogramma hav- porthe decedens (Fr.) M.E. Barr, does not have the ing unequally, l-septate ascospores, Diaporthella has characteristic appearance of the two other species; A. median, 1-septate ascospores. Diaporthella corylina is Coiyius stems. decedens lacks the black line around groups of strongly parasitic and causes dieback of perithecia and has ascospores 15-22 X 4-6 J.inl, Stromata are found at the base of host stems near the slightly larger than those of A. leucothöes. Allan to- ground and appear superficially similar to those of porthe decedens might be better placed in Diaporthe as Sillia ferruginea (Pers. : Fr.) P. Karst. The latter species suggested by Wehmeyer (1933). occupies the same ecological niche, occurring at the bases of Corylus stems but differs in having elongated, rnultiseptate ascospores. Anisogramma anomala Diaporthella corylina Lar.N. Vassiljeva sp. nov. (Peck) E. Mull, on Coiylus spp. occurs in North Flcs. 10-12 America and eastern Asia and causes witches brooms Mvcobank number 510559 on branches. Of interest living plants of Coiylus spp. Stromatibus orbicularis, erumpentibus, 1.5-4 mm diam, are now known to support species of three diaportha- linea nigra nullis, disco fuscescentis; peritheciis sphaeroi- lean genera, namely Anisogramma, Diaporthella and deis vel compressis, 300-350 pm diam; ostiolis nigris, Sillia, that differ in ascospore shape. These genera elongatis ad 1.5 mm, disko excedis. Ascis oblongo-fusoideis, were placed in tribe Endothieae of family Gnomonia- 8-sporis, 42-50 X 9-11 pm, apparatus apicalis refractis. ceae (Barr 1978) or tribe Pseudovalseae of family Sporidiis distichis, fusoideis vel ellipsoideis, 12-16 X 3.5- Valsaceae (Vasilveva 1994). Anisogramrna based on A. 4 pm, 1-septatis, medio vix constrictis, hyalinis, non appen- virgultorum (Fr) Theiss. & Syd. is known to
Recommended publications
  • Studies on Cytospora Canker Disease of Apple Trees in Semirom Region of Iran
    Journal of Agricultural Technology 2011 Vol. 7(4): 967-982 Available online http://www.ijat-aatsea.com Journal of Agricultural Technology 2011, VISSNol. 7 (16864): 967-9141-982 Studies on Cytospora canker disease of apple trees in Semirom region of Iran Mehrabi, M.1, Mohammadi Goltapeh, E.1* and Fotouhifar, K.B.2 1Department of Plant Pathology, College of Agriculture, Tarbeiat Modares University,P.O.Box: 14115-336, Tehran, Iran, 2Department of Plant Protection, College of Horticulture Science & Plant Protection, University of Tehran, Iran Mehrabi, M., Mohammadi Goltapeh, E. and Fotouhifar, K.B. (2011) Studies on Cytospora canker disease of apple trees in Semirom region of Iran. Journal of Agricultural Technology 7(4):967-982. Identification of the fungal species associated with Cytospora cankers of apple trees in the Semirom region of Isfahan Province, Iran, was established. One-hundred and fourteen isolates belonging to different species of this group of fungi were isolated and identified. Identification was based on morphological characteristics including; size of stromata, the color, shape and size of discs, the number of ostioles per disc, the presence or absence of a conceptacle, number and arrangement type of locules, size and shape of conidiophores, size of conidia, The teleomorphs including; the size of ascomata, the number and size of perithecia, the size of asci and ascospores were all considered. Six species belonging to three genera were associated with cytospora canker disease of apple trees in Semirom region, Iran which comprised of Cytospora cincta, C. schulzeri, C. leucostoma, C. chrysosperma, Valsa malicola and Leucostoma cinctum. Key words: Valsa, Leucostoma, Semirom region, disease.
    [Show full text]
  • Pathogenicity and Distribution of Two Species of Cytospora on Populus Tremuloides in Portions of the Rocky Mountains and Midwest in the United T States ⁎ M.M
    Forest Ecology and Management 468 (2020) 118168 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Pathogenicity and distribution of two species of Cytospora on Populus tremuloides in portions of the Rocky Mountains and midwest in the United T States ⁎ M.M. Dudleya, , N.A. Tisseratb, W.R. Jacobib, J. Negrónc, J.E. Stewartd a Biology Department, Adams State University, Alamosa, CO, United States b Department of Agricultural Biology (Emeritus), Colorado State University, Fort Collins, CO, United States c USFS Rocky Mountain Research Station, Fort Collins, CO, United States d Department of Agricultural Biology, Colorado State University, Fort Collins, CO, United States ABSTRACT Historically, Cytospora canker of quaking aspen was thought to be caused primarily by Cytospora chrysosperma. However, a new and widely distributed Cytospora species on quaking aspen was recently described (Cytospora notastroma Kepley & F.B. Reeves). Here, we show the relative pathogenicity, abundance, and frequency of both species on quaking aspen in portions of the Rocky Mountain region, and constructed species-level phylogenies to examine possible hybridization among species. We inoculated small-diameter aspen trees with one or two isolates each of C. chrysosperma and C. notastroma in a greenhouse and in environmental growth chambers. Results indicate that both Cytospora species are pathogenic to drought-stressed aspen, and that C. chrysosperma is more aggressive (i.e., caused larger cankers) than C. notastroma, particularly at cool temperatures. Neither species cause significant canker growth on trees that were not drought-stressed. Both C. chrysosperma and C. notastroma are common on quaking aspen, in addition to a third, previously described species, Cytospora nivea.
    [Show full text]
  • Downloaded the Homologous Hits That Have Coverage Tion for This Species Was Also Available (Tanaka 1919) Scores of > 97% and Identity Scores of 98.5%
    Wang et al. Phytopathology Research (2020) 2:35 https://doi.org/10.1186/s42483-020-00076-5 Phytopathology Research REVIEW Open Access Fungal species associated with apple Valsa canker in East Asia Xuli Wang1,2, Cheng-Min Shi3, Mark L. Gleason4 and Lili Huang1* Abstract Since its discovery more than 110 years ago, Valsa canker has emerged as a devastating disease of apple in East Asia. However, our understanding of this disease, particularly the identity of the causative agents, has been in a state of confusion. Here we provide a synopsis for the current understanding of Valsa canker and the taxonomy of its causal agents. We highlight the major changes concerning the identity of pathogens and the conflicting viewpoints in moving to “One Fungus = One Name” system for this group of fungal species. We compiled a list of 21 Cytospora species associated with Malus hosts worldwide and curated 12 of them with rDNA-ITS sequences. The inadequacy of rDNA-ITS in discriminating Cytospora species suggests that additional molecular markers, more intraspecific samples and robust methods are required to achieve reliable species recognition. Keywords: Perennial canker, Cytospora, Species recognition, Nomenclature, Malus Background Valsa canker has emerged as a global threat to apple Apple (Malus domestica Borkh) is one of the most industry (CABI and EPPO 2005; EPPO 2020), and is widely planted and nutritionally important fruit crops in particularly destructive in East Asia (Togashi 1925; Uhm the world (Cornille et al. 2014; Duan et al. 2017). At one and Sohn 1995; Abe et al. 2007; Wang et al. 2011). Its time nearly each area had its own local apple cultivars causative fungus, Valsa mali (Ideta 1909; Tanaka 1919; (Janick et al.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Anisogramma Anomala
    EPPO quarantine pest Data Sheets on Quarantine Pests Anisogramma anomala IDENTITY Name: Anisogramma anomala (Peck) E. Müller Synonyms: Apioporthe anomala (Peck) Höhn Cryptosporella anomala (Peck) Saccardo Taxonomic position: Fungi: Ascomycetes: Diaporthales Common names: Eastern filbert blight (English) Bayer computer code: CRYPAN EPPO A1 list: No. 201 HOSTS Anisogramma anomala is a biotrophic parasite of Corylus spp., which is grown in culture only with difficulty (Stone et al., 1994). It is indigenous on Corylus americana, a common understorey shrub of forests in eastern USA. It causes the severe disease eastern filbert blight on cultivated hazelnut, Corylus avellana. It has also been reported on other Corylus spp. GEOGRAPHICAL DISTRIBUTION Occurring naturally on wild Corylus spp. in eastern USA (Barss, 1930), A. anomala spread to Washington in 1973 (Cameron & Gottwald, 1978), to Oregon in 1986, and from those states to British Columbia (Canada). EPPO region: Absent. North America: Canada (British Columbia, Nova Scotia). USA (Connecticut, Delaware, Illinois, Iowa, Maine, Maryland, Massachusetts, New Jersey, New York, North Carolina, Oregon, Washington, Wisconsin). EU: Absent. BIOLOGY Ascospores are the only known spore type; they are discharged from perithecia on diseased branches from autumn to late spring (Pinkerton et al., 1990). Wetting of the stromata causes perithecial ostioles to open. Ascospores are then transported by rain water and splash droplets. Short periods of rainfall are sufficient to release spores and inoculate trees. The ascospores infect young vegetative tissue in spring (Gottwald & Cameron, 1980a), after budburst, through leaf emergence and shoot elongation (Stone et al., 1992; Johnson et al., 1994). Once established, A. anomala colonizes the cambial tissue.
    [Show full text]
  • Leaf-Inhabiting Genera of the Gnomoniaceae, Diaporthales
    Studies in Mycology 62 (2008) Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales M.V. Sogonov, L.A. Castlebury, A.Y. Rossman, L.C. Mejía and J.F. White CBS Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales STUDIE S IN MYCOLOGY 62, 2008 Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. EXECUTIVE EDITOR Prof. dr Robert A. Samson, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] LAYOUT EDITOR Marianne de Boeij, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SCIENTIFIC EDITOR S Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Prof. dr Pedro W. Crous, CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Prof. dr David M. Geiser, Department of Plant Pathology, 121 Buckhout Laboratory, Pennsylvania State University, University Park, PA, U.S.A. 16802. E-mail: [email protected] Dr Lorelei L. Norvell, Pacific Northwest Mycology Service, 6720 NW Skyline Blvd, Portland, OR, U.S.A.
    [Show full text]
  • Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
    (topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota.
    [Show full text]
  • Hypocreales, Sordariomycetes) from Decaying Palm Leaves in Thailand
    Mycosphere Baipadisphaeria gen. nov., a freshwater ascomycete (Hypocreales, Sordariomycetes) from decaying palm leaves in Thailand Pinruan U1, Rungjindamai N2, Sakayaroj J2, Lumyong S1, Hyde KD3 and Jones EBG2* 1Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 2BIOTEC Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, NSTDA, 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Pinruan U, Rungjindamai N, Sakayaroj J, Lumyong S, Hyde KD, Jones EBG 2010 – Baipadisphaeria gen. nov., a freshwater ascomycete (Hypocreales, Sordariomycetes) from decaying palm leaves in Thailand. Mycosphere 1, 53–63. Baipadisphaeria spathulospora gen. et sp. nov., a freshwater ascomycete is characterized by black immersed ascomata, unbranched, septate paraphyses, unitunicate, clavate to ovoid asci, lacking an apical structure, and fusiform to almost cylindrical, straight or curved, hyaline to pale brown, unicellular, and smooth-walled ascospores. No anamorph was observed. The species is described from submerged decaying leaves of the peat swamp palm Licuala longicalycata. Phylogenetic analyses based on combined small and large subunit ribosomal DNA sequences showed that it belongs in Nectriaceae (Hypocreales, Hypocreomycetidae, Ascomycota). Baipadisphaeria spathulospora constitutes a sister taxon with weak support to Leuconectria clusiae in all analyses. Based
    [Show full text]
  • Multigene Phylogeny and Morphology Reveal Cytospora Spiraeae Sp
    Phytotaxa 338 (1): 049–062 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.4 Multigene phylogeny and morphology reveal Cytospora spiraeae sp. nov. (Diaporthales, Ascomycota) in China HAI-YAN ZHU1, CHENG-MING TIAN1 & XIN-LEI FAN1* 1 The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; * Correspondence author: [email protected] Abstract Members of Cytospora encompass important plant-associated pathogens, endophytes and saprobes, commonly isolated from a wide range of hosts with a worldwide distribution. Two specimens were collected associated with symptomatic canker and dieback disease of Spiraea salicifolia in Gansu, China. These isolates are characterized by its hyaline, biseriate, aseptate, elongate-allantoid ascospores and allantoid conidia. Cytospora spiraeae sp. nov. is introduced based on its holomorphic morphology plus support from phylogenetic analysis (ITS, LSU, ACT and RPB2), and differs from similar species in its host association. Key words: Cytosporaceae, plant pathogen, systematics, taxonomy, Valsa Introduction The genus Cytospora (Ascomycota: Diaporthales) was established by Ehrenberg (1818). It is commonly famous as the important phytopathogens that cause dieback and canker disease on a wide range of plants, causing severe commercial and ecological damage and significant losses worldwide (Adams et al. 2005, 2006). Previous Cytospora species and related sexual genera Leucostoma, Valsa, Valsella, and Valseutypella were listed by old fungal literatures without any living culture and sufficient evidence to identify (Fries 1823; Saccardo 1884; Kobayashi 1970; Barr 1978; Gvritishvili 1982; Spielman 1983, 1985).
    [Show full text]
  • Identity and Pathogenicity of Some Fungi Associated with Hazelnut (Corylus Avellana L.) Trunk Cankers in Oregon
    RESEARCH ARTICLE Identity and pathogenicity of some fungi associated with hazelnut (Corylus avellana L.) trunk cankers in Oregon 1 2 3 2 Nik G. WimanID *, John Bryan Webber III , Michele Wiseman , Lea Merlet 1 Oregon State University, Department of Horticulture, North Willamette Research and Extension Center, Aurora, Oregon, United States of America, 2 Oregon State University, Department of Horticulture, Corvallis, Oregon, United States of America, 3 Oregon State University, Department of Botany and Plant Pathology, Corvallis, Oregon, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Four fungi isolated from trunks and branches of European hazelnut (Corylus avellana L.) from commercial orchards in the Willamette Valley, Oregon were characterized and patho- genicity was tested on potted hazelnut trees. The acreage of hazelnuts in Oregon has OPEN ACCESS expanded greatly in recent years in response to the availability of Eastern filbert blight resis- Citation: Wiman NG, Webber III JB, Wiseman M, tant cultivars. Fungi were characterized using the BLASTn algorithm and the GenBank data- Merlet L (2019) Identity and pathogenicity of some fungi associated with hazelnut (Corylus avellana L.) base with multiple partial gene sequence(s). If BLASTn and GenBank were not sufficient for trunk cankers in Oregon. PLoS ONE 14(10): species-level identification, then a multilocus sequence analysis (MLSA) was performed. e0223500. https://doi.org/10.1371/journal. The four pathogens were identified as Diplodia mutilla (Fr.) Mont., Dothiorella omnivora B.T. pone.0223500 Linaldeddu, A. Deidda & B. Scanu, Valsa cf. eucalypti Cooke & Harkn., and Diaporthe eres Editor: Andrea Luvisi, Universita del Salento, ITALY Nitschke.
    [Show full text]
  • Introduced and Native Pathogens of Trees in South Africa
    CSIRO PUBLISHING www.publish.csiro.au/journals/app Australasian Plant Pathology, 2006, 35, 521–548 Cytospora species (Ascomycota, Diaporthales, Valsaceae): introduced and native pathogens of trees in South Africa G. C. AdamsA,C, J. RouxB and M. J. WingfieldB ADepartment of Plant Pathology, Michigan State University, East Lansing, MI 48824-1311, USA. BForestry and Agricultural Biotechnology Institute, University of Pretoria, Tree Protection Cooperative Programme, Pretoria 0002, South Africa. CCorresponding author. Email: [email protected] Abstract. Cytospora spp. (anamorphs of Valsa spp.) are common inhabitants of woody plants and they include important stem and branch canker pathogens. Isolates of these fungi were collected from diseased and healthy trees in South Africa. They were identified based on morphology and DNA sequence homology of the intertransgenic spacer ribosomal DNA. South African isolates were compared with isolates collected in other parts of the world, and they represented 25 genetically distinct sequences residing within the populations of 13–14 known species and three unique lineages. Several species are new records for South Africa, doubling previous reports of these fungi from the country. Similarities between South African isolates of Cytospora from non-native Eucalyptus, Malus, Pinus, Populus, Prunus and Salix species and isolates from Australia, Europe or America suggest that the fungal pathogens were imported with their hosts as endophytes. Isolates from indigenous Olea and Acacia appear to represent native populations. Host shifts were evident, including populations on Eucalyptus that also occurred on Mangifera, Populus, Sequoia, Tibouchina and Vitex. Isolates related to Valsa kunzei represent the first report of a Cytospora species on the widely cultivated timber tree, Pinus radiata.
    [Show full text]
  • Identifying and Evaluating Eastern Filbert Blight Resistant
    IDENTIFYING AND EVALUATING EASTERN FILBERT BLIGHT RESISTANT HAZELNUTS (CORYLUS SPP.) IN NEW JERSEY By JOHN MICHAEL CAPIK A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Plant Biology written under the direction of Dr. Thomas J. Molnar and approved by ________________________ ________________________ ________________________ New Brunswick, New Jersey January 2014 ABSTRACT OF THE THESIS Identifying and Evaluating Eastern Filbert Blight Resistant Hazelnuts (Corylus spp.) in New Jersey by JOHN MICHAEL CAPIK Thesis Director: Dr. Thomas J. Molnar Eastern filbert blight (EFB), caused by the fungus Anisogramma anomala (Peck) E. Müller, is a destructive disease of European hazelnut (Corylus avellana). While the wild North American hazelnut, C. americana, only experiences minor symptoms, commercially grown C. avellana is extremely susceptible. Anisogramma anomala, whose range includes much of the U.S. east of the Rocky Mountains, is considered to be the main impediment to commercial hazelnut production in the East. As such, identifying and developing resistant C. avellana germplasm is critical to establishing an industry in this region. To support this goal, several research projects were undertaken. In the first study, 193 clonal hazelnut accessions spanning multiple Corylus species and inter-specific hybrids were examined for their disease response to EFB in New Jersey. In summary, despite the fact that many of the plants were shown to be resistant in Oregon, some accessions developed EFB in New Jersey. These results support previous work that suggests different isolates of the pathogen are present in the eastern U.S., and resistance may not hold up unilaterally.
    [Show full text]