Differing Effects of Size and Lifestyle on Bone Structure in Mammals Eli Amson1,2* and Faysal Bibi1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Mammals 61
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful. -
Small Mammal Mail
Small Mammal Mail Newsletter celebrating the most useful yet most neglected Mammals for CCINSA & RISCINSA -- Chiroptera, Rodent, Insectivore, & Scandens Conservation and Information Networks of South Asia Volume 2 Number 2 ISSN 2230-7087 January 2011 Contents First report of Hipposideros lankadiva (Chiroptera: Second Record of Hipposideros fulvus in Nepal, Hipposideridae) from Hyderabad, Andhra Pradesh, Narayan Lamichhane and Rameshwor Ghimire, India, Harpreet Kaur, P. Venkateshwarlu, C. Srinivasulu Pp. 27-28 and Bhargavi Srinivasulu, Pp. 2-3 Published! Bats of Nepal- A Field Guide, Compiled and First report of Taphozous nudiventris (Chiroptera: edited by: Pushpa R. Acharya, Hari Adhikari, Sagar Emballonuridae) from Hyderabad, Andhra Pradesh, Dahal, Arjun Thapa and Sanjan Thapa, P. 29 India, P. Venkateshwarlu, C. Srinivasulu, Bhargavi Srinivasulu, and Harpreet Kaur, Pp. 4-5 The diet of Indian flying-foxes (Pteropus giganteus) in urban habitats of Pakistan, Muhammad Mahmood-ul- Skull cum Baculum Morphology and PCR Approach in Hassan, Tayiba L. Gulraiz, Shahnaz A. Rana and Arshad Identification of Pipistrellus (Chiroptera: Javid, Pp. 30-36 Vespertilionidae) from Koshi Tappu Wildlife Reserve, Sunsari, Nepal, Sanjan Thapa and Nanda Bahadur First phase study of Bats in Far-western Development Singh, P. 5 Region Nepal, Prasant Chaudhary and Rameshwor Ghimire, Pp. 37-39 Additional site records of Indian Giant Squirrel Ratufa indica (Erxleben, 1777) (Mammalia: Rodentia) in Announcement: Bat CAMP 2011, January 22-30, Godavari River Basin, Andhra Pradesh, India, M. Monfort Conservation Park (MCPARK) Seetharamaraju, C. Srinivasulu and Bhargavi Island Garden City of Samal, Pp. 40-42 Srinivasulu, Pp. 6-7 A note on road killing of Indian Pangolin Manis crassicaudata Gray at Kambalakonda Wildlife Sanctuary of Eastern Ghat ranges, Murthy K.L.N. -
Fascinating World of Animals and Insects
FASCINATING WORLD OF ANIMALS AND INSECTS PADMA RAJAGOPAL Introduction As the human population on earth keeps increasing every second there is greater and greater pressure on all the resources. More and more land is grabbed by man for cultivation or habitation, and in the name of progress and development there is a large scale destruction of forests, mountains, low-lands, lakes, rivers and even the shore lines. It is no wonder that a large number of animal and plant species have disappeared and more and more species continue to disappear every day. In the race for his own survival and well being and to a great extent due to his selfishness and greed Man has totally forgotten that the millions of species of plants and animals inhabiting the earth and which were there millions of years before man came on the scene, have an equal if not greater right to survive. By this ruthless destruction of nature and natural life and the ever increasing pollution of air, water and land, man may ultimately end up destroying even mankind! Only recently there have been some serious attempts to conserve nature and natural life. There is a great need to develop interest among the younger generation in particular, to know something about the animals and plants and to create an awareness to treat them as co- inhabitants of our planet and to protect them. Children invariably show keen interest in anything strange and fascinating. Very few of us are aware of the enormous diversity of the plant and animals life around us, the innumerable fascinating facts about -
The Largest Fossil Rodent Andre´S Rinderknecht1 and R
Proc. R. Soc. B doi:10.1098/rspb.2007.1645 Published online The largest fossil rodent Andre´s Rinderknecht1 and R. Ernesto Blanco2,* 1Museo Nacional de Historia Natural y Antropologı´a, Montevideo 11300, Uruguay 2Facultad de Ingenierı´a, Instituto de Fı´sica, Julio Herrera y Reissig 565, Montevideo 11300, Uruguay The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San Jose´ Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenviron- ment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. Keywords: giant rodents; Dinomyidae; megamammals 1. INTRODUCTION 3. HOLOTYPE The order Rodentia is the most abundant group of living MNHN 921 (figures 1 and 2; Museo Nacional de Historia mammals with nearly 40% of the total number of Natural y Antropologı´a, Montevideo, Uruguay): almost mammalian species recorded (McKenna & Bell 1997; complete skull without left zygomatic arch, right incisor, Wilson & Reeder 2005). In general, rodents have left M2 and right P4-M1. body masses smaller than 1 kg with few exceptions. The largest living rodent, the carpincho or capybara 4. AGE AND LOCALITY (Hydrochoerus hydrochaeris), which lives in the Neotro- Uruguay, Departament of San Jose´, coast of Rı´odeLa pical region of South America, has a body mass of Plata, ‘Kiyu´’ beach (348440 S–568500 W). -
Fossil Calibration Schemes the Soft Explosive Model Of
Supplemental File 2: Fossil calibration schemes The soft explosive model of placental mammal evolution Matthew J. Phillips*,1 and Carmelo Fruciano1 1School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Australia *Corresponding author: E-mail: [email protected] Contents Fossil Calibration schemes ......................................................................................................... 1 Table S2 .................................................................................................................................. 1 New calibrations ..................................................................................................................... 3 Figure S2 ................................................................................................................................ 7 References ............................................................................................................................ 10 Calibration schemes Table S2. Soft-bound calibrations employed for the MCMCtree analyses of the 122-taxon, 128- taxon, and 57-taxon empirical datasets. Calibrations among placental mammals are largely based on dos Reis et al. [1], hence the designations dR32 and dR40 (numbers indicating the number of calibrations). Several new calibrations, including some inspired by Springer et al. [2], are described below the table. Also note that the 122-taxon dR40, 128-taxon and 57-taxon analyses employ bounds as listed below, whereas the dR32 analyses, -
Animal Health Requirements for Importation of Rodents, Hedgehogs, Gymnures and Tenrecs Into Denmark
INTERNATIONAL TRADE DIVISION ANIMAL HEALTH REQUIREMENTS FOR IMPORTATION OF RODENTS, HEDGEHOGS, GYMNURES AND TENRECS INTO DENMARK. La 23,0-2111 These animal health requirements concern veterinary import requirements and certification re- quirements alone and shall apply without prejudice to other Danish and EU legislation. Rodents, hedgehogs, gymnures and tenrecs meaning animals of the Genera/Species listed below: Order Family Rodentia Sciuridae (Squirrels) (except Petaurista spp., Biswamoyopterus spp., Aeromys spp., Eupetaurus spp., Pteromys spp., Glaucomys spp., Eoglaucomys spp., Hylopetes spp., Petinomys spp., Aeretes spp., Trogopterus spp., Belomys, Pteromyscus spp., Petaurillus spp., Iomys spp.), Gliridae (Dormous’), Heteromyidae (Kangaroo rats, kangaroo mice and rock pocket mice), Geomyidae (Gophers), Spalaci- dae (Blind mole rats, bamboo rats, root rats, and zokors), Calomyscidae (Mouse-like hamsters), Ne- somyidae (Malagasy rats and mice, climbing mice, African rock mice, swamp mice, pouched rats, and the white-tailed rat), Cricetidae (Hamsters, voles, lemmings, and New World rats and mice), Muridae (mice and rats and gerbils), Dipodidae (jerboas, jumping mice, and birch mice), Pedetidae (Spring- hare), Ctenodactylidae (Gundis), Diatomyidae (Laotian rock rat), Petromuridae (Dassie Rat), Thryon- omyidae (Cane rats), Bathyergidae (Blesmols), Dasyproctidae (Agoutis and acouchis), Agoutidae (Pacas), Dinomyidae (Pacarana), Caviidae (Domestic guinea pig, wild cavies, mara and capybara), Octodontidae (Rock rats, degus, coruros, and viscacha rats), Ctenomyidae (Tuco-tucos), Echimyidae (Spiny rats), Myocastoridae (Coypu ), Capromyidae (Hutias), Chinchillidae (Chinchillas and visca- chas), Abrocomidae (Chinchilla rats). Erinaceomorpha Erinaceidae (Hedgehogs and gymnures) Afrosoricida Tenrecidae (Tenrecs) The importation of rodents, hedgehogs, gymnures and tenrecs to Denmark (excluding import to ap- proved bodies, institutes and centres as defined in Art. 2, 1, (c) of Directive 92/65/EEC) must comply with the requirements of Danish order no. -
How Many Species of Mammals Are There?
Journal of Mammalogy, 99(1):1–14, 2018 DOI:10.1093/jmammal/gyx147 INVITED PAPER How many species of mammals are there? CONNOR J. BURGIN,1 JOCELYN P. COLELLA,1 PHILIP L. KAHN, AND NATHAN S. UPHAM* Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA (CJB) Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA (JPC) Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA (PLK) Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA (NSU) Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA (NSU) 1Co-first authors. * Correspondent: [email protected] Accurate taxonomy is central to the study of biological diversity, as it provides the needed evolutionary framework for taxon sampling and interpreting results. While the number of recognized species in the class Mammalia has increased through time, tabulation of those increases has relied on the sporadic release of revisionary compendia like the Mammal Species of the World (MSW) series. Here, we present the Mammal Diversity Database (MDD), a digital, publically accessible, and updateable list of all mammalian species, now available online: https://mammaldiversity.org. The MDD will continue to be updated as manuscripts describing new species and higher taxonomic changes are released. Starting from the baseline of the 3rd edition of MSW (MSW3), we performed a review of taxonomic changes published since 2004 and digitally linked species names to their original descriptions and subsequent revisionary articles in an interactive, hierarchical database. We found 6,495 species of currently recognized mammals (96 recently extinct, 6,399 extant), compared to 5,416 in MSW3 (75 extinct, 5,341 extant)—an increase of 1,079 species in about 13 years, including 11 species newly described as having gone extinct in the last 500 years. -
Museum Quarterly Newsletter February 2014
Museum Quarterly LSU Museum of Natural Science February 2014 Volume 32, Issue 1 Letter from the Director... Museum of Time is moving quickly, with another Mardi Gras and spring Natural Science migration approaching rapidly. The winter here in Baton Director and Rouge has been unusually cold, but I’ve managed to keep Curators several winter hummingbirds in my yard content by bringing out warm feeders on the coldest of mornings. For those of Robb T. Brumfield you up North who are dealing with actual cold, I apologize. Director, Roy Paul Daniels At our recent Holiday Party, we crowned Dr. Andrés Cuervo Professor and Curator of Genetic Resources as 2013’s Outstanding Graduate Student. This is always a difficult choice for the Curators because the Museum Frederick H. Sheldon George H. graduate students are all ‘outstanding.’ Andrés, who is now a postdoctoral fellow at Lowery, Jr., Professor and Tulane University, distinguished himself by having an outstanding record of publications Curator of Genetic Resources (28 peer-reviewed papers), grantsmanship (a prestigious NSF DDIG, an LSU Graduate School Dissertation Fellowship, and an LSU Huel Perkins Diversity Fellowship, plus Christopher C. Austin Curator of many others), and service to the Museum. To collect samples for his dissertation, Herpetology Andrés spent several months in the field conducting logistically challenging fieldwork Prosanta Chakrabarty in the Andes mountains of Colombia and in Venezuela. Through his dissertation work, Curator of Fishes Andrés amassed the largest genetic data set of Andean birds ever assembled, with Jacob A. Esselstyn DNA sequences from over 2000 individuals. Andrés’ dissertation represents the largest Curator of scale comparative study of any Andean organism, and I expect the papers coming out Mammals of his work to be widely cited. -
The Bite Force of the Largest Fossil Rodent (Hystricognathi, Caviomorpha, Dinomyidae)
The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae) R. ERNESTO BLANCO, ANDRE´ S RINDERKNECHT AND GUSTAVO LECUONA Blanco R.E., Rinderknecht, A. & Lecuona, G. 2012: The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae). Lethaia, Vol. 45, pp. 157–163. An exceptionally well-preserved skull of the largest fossil rodent Josephoartigasia monesi allows the first analysis of the bite mechanics of this group of South American giant rodents. In this study, we reconstructed the main anatomical features of the skull of this Pliocene rodent, relating them to the bite force at incisors. Bite force was estimated using three different techniques. Two methods suggest that bite forces at incisors of around 1000 N were possible for these mammals. However, the incisors seem to be stronger than expected for this bite force implying that the bite forces may have been greater than 3000 N. We consider three hypotheses: allometric effects, teeth digging or defence against preda- tors, to explain our results. h Bite force, Dinomyidae, incisors, largest rodent, Pliocene. R. Ernesto Blanco [ernesto@fisica.edu.uy], Facultad de Ciencias, Instituto de Fı´sica, Igua´ 4225, Montevideo 11400, Uruguay; Andre´s Rinderknecht [[email protected]] and Gustavo Lecuona [[email protected]], Museo Nacional de Historia Natural, CC. 399, 11000, Montevideo, Uruguay; manuscript received on 14 ⁄ 10 ⁄ 2010; manuscript accepted on 04 ⁄ 02 ⁄ 2011. Dinomyids make up a family of caviomorph rodents some species (Christiansen & Wroe 2007; Meers 2002; that includes the largest rodents ever known (Bonde- Therrien 2005a,b; Vizcaı´no & De Iuliis 2003; Wroe sio 1978 and literature therein). -
Evolution of the Hominoid Vertebral Column by Scott
EVOLUTION OF THE HOMINOID VERTEBRAL COLUMN BY SCOTT A. WILLIAMS DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Anthropology in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Doctoral Committee: Associate Professor John D. Polk, Co-Chair Assistant Professor Charles C. Roseman, Co-Chair Assistant Professor Laura L. Shackelford Professor Steven R. Leigh Professor Lyle W. Konigsberg ABSTRACT This is a study of the numerical composition of the vertebral column, the central structure of the vertebrate body plan and one that plays an instrumental role in locomotion and posture. Recent models of hominoid vertebral evolution invoke very different roles for homology and homoplasy in the evolution of vertebral formulae in living and extinct hominoids. These processes are fundamental to the emergence of morphological structures and reflect similarity by common descent (homology) or similarity by independent evolution (homoplasy). Although the "short backs," reflecting reduced lumbar regions, of living hominoids have traditionally been interpreted as homologies and shared derived characters (synapomorphies) of the ape and human clade, recent studies of variation in extant hominoid vertebral formulae have challenged this hypothesis. Instead, a "long-back" model, in which primitive, long lumbar regions are retained throughout hominoid evolution and are reduced independently in six lineages of modern hominoids, is proposed. The recently described skeleton of Ardipithecus ramidus is interpreted to support the long-back model. Here, larger samples are collected and placed in a larger phylogenetic context than previous studies. Analyses of over 8,000 mammal specimens, representing all major groups and focusing on anthropoid primates, allow for the reconstruction of ancestral vertebral formulae throughout mammalian evolution and a determination of the uniqueness of hominoid vertebral formulae. -
OLD SYSTEM NEW SYSTEM (2007) SUBCLASS PROTOTHERIA Order Monotremata SAME Family Tachyglossidae Family Ornithorhynchidae SUBLASS THERIA ------Infraclass Metatheria
MAMMAL ORDERS OF THE WORLD: REVISION (2005 – WILSON AND REEDER) ~ 5,413 species in ~ 30 Orders [149 families; 23 families are monospecific] OLD SYSTEM NEW SYSTEM (2007) SUBCLASS PROTOTHERIA Order Monotremata SAME Family Tachyglossidae Family Ornithorhynchidae SUBLASS THERIA ------------------------- ------------------------------------------------- Infraclass Metatheria Order Didelphimorphia SAME Family Didelphidae Order Paucituberculata SAME Family Caenolestidae Order Microbiotheria SAME Family Microbiotheriidae Order Notoryctemorphia SAME Family Notoryctidae Order Dasyuromorphia SAME Family Thylacinidae Family Myrmecobiidae Family Dasyuridae Order Paramelemorphia Order Paramelemorphia Family Peramelidae Family Thylacomyidae Family Peroryctidae Family Chaeropodidae Family Peramelidae Order Diprotodontia Order Diprotodontia Family Pseudocheiridae Suborder Vombatiformes Family Phalangeridae Family Phascolarctidae Family Burramyidae Family Vombatidae Family Petauridae Suborder Phalangeriformes Family Potoroidae Superfamily Phalangeroidea Family Macropodidae Family Burramyidae Family Phascolarctidae Family Phalangeridae Family Vombatidae Superfamily Petauroidea Family Tarsipedidae Family Pseudocheiridae Family Acrobatidae Family Acrobatidae Family Tarsipedidae Family Petauridae Suborder Macropodiformes Family Potoroidae Family Hypsiprymnodontidae Infraclass Euther ----------------------------- -------------------------------------------------- Order Insectivora Order Afrosoricida Family Solenodontidae Suborder Tenrecomorpha Family Tenrecidae -
Some Mammals Have Unusual Backbones
Dr. Alison Trew, PSTT I BET YOU Area Mentor and Website Resources Developer, DIDN’T KNOW... links cutting edge research with the principles of Some mammals have primary science unusual backbones [email protected] Morphology, in biology, is the study of the size, Figure 1. The human spinal column has 33 small bones (vertebrae). shape, and structure of animals, plants, and microorganisms and of the relationships of their constituent parts. Comparing the structure of animal bones with their function and motion helps scientists to understand how animals are adapted to their environment and how they might adapt to changes in their environment. We know that different shaped bones in our bodies have different functions: the skull protects our brain, our ribs protect our heart and lungs, large bones in our legs and arms can carry heavy loads, smaller bones in our hands and feet allow us to manipulate tools. Questions for children to consider: If both our skull and ribs protect important internal organs, why are they so different? Why are there so many bones in our backbone (Figure 1)? Can you think of examples of how the size and shape of an animal’s bones are suited to its behaviour or to its habitat? https://en.wikipedia.org/wiki/File:Segments_of_Vertebrae.svg Sometimes scientists find structures (morphologies) CC BY-SA 4.0 in living organisms that they cannot explain. The hero DrJanaOfficial shrew is a large shrew (12-15 cm) that lives in the forest column (Figure 3). Scientists already know from previous undergrowth in the centre of Africa and is rarely seen studies that the bottom of the spine behaves as a single by humans (Figure 2).