Temperature Regulation and Respiration in the Ostrich

Total Page:16

File Type:pdf, Size:1020Kb

Temperature Regulation and Respiration in the Ostrich TEMPERATURE REGULATION AND RESPIRATION IN THE OSTRICH KNUT SCHMIDT-NIELSEN, JOHN KANWISHER, lIepartment of Zoology Woods Hole Oceanographic Institute Duke University Woods Hole, Massachusetts 02453 Durham, North Carolina 27706 ROBERT C. LASIEWSKI, JEROME E. COHNl, Department of Zoology University of Kentucky Medical Center Universitv of California Lexinnton.y , Kentucky 40506 Los Angeles, California 90024 AND WILLIAM L. BRETZ Department of Zoology Duke University Durham, North Carolina 27706 The Ostrich (S&u&o cumelus), the largest MATERIALS AND METHODS living bird, is an inhabitant of semi-arid and Birds desert areas of Africa and, until exterminated, the Near East and the Arabian Peninsula. Twenty semi-domesticated adult Ostriches weighing 63-104 kg (12 males and 8 females) were pur- When exposed to the heat stress of a hot chased from commercial sources near Oudtshoom in desert, it must use water for evaporation in South Africa and transported by rail to Onderstepoort order to avoid overheating. While its size Veterinary Research Institute near Pretoria. They prevents it from taking advantage of micro- were permitted to graze freely in a 30-acre enclosure climates to the extent that small desert birds and were fed daily with fresh alfalfa and dry corn (maize). Water was provided at all times, except and mammals can, its large size is an ad- when it was removed as part of the experimental vantage in its water economy, as has been procedure. Handling facilities permitted the separa- discussed previously ( Schmidt-Nielsen 1964). tion of smaller or larger numbers of birds as well as the Birds have no sweat glands, and under heat isolation and/or capture of a given individual. Ostriches are very powerful birds and difficult as stress they rely upon increased evaporation well as dangerous to handle. For all experimental from the respiratory system as a major ave- procedures that required a close approach, the de- nue for heat dissipation. We were interested sired bird was driven into a chute, provided with a in the role of the respiratory system in evapora- hood, and transferred to a horizontal V-shaped re- tion, and particularly in the sites of evapora- straining device, the design of which was based on the restraining procedures used for the commercial tion. Furthermore, while in mammals an plucking of Ostrich feathers from living birds. Once increased ventilation causes alkalosis, in birds the bird was completely restrained, the hood could the presence of large air sacs connected to the be removed. respiratory system may have radically different Most experimental procedures did not require the use of tranquilizers or general anesthesia. However, effects on the gas exchange in the lung. where catheterization of blood vessels or other cutting Finally, the fact that the ventilation of the procedures were involved, local anesthesia was respiratory system can be modified by heat achieved with xylocaine. During measurements of surface temperatures in the trachea and the air sacs, stress without change in the rate of oxygen the birds were tranquilized with M 99 (etorphine consumption may provide an avenue for in- hydrochloride, Reckitt & Sons, Ltd.). vestigation of the poorly understood air-sac Weighing. Body weights of individual birds were system of birds. determined with the animal in a portable restraining device placed on a platform scale (precision about The Ostrich, although a non-flying bird, has 0.1 kg). Accurate changes in body weight used for a well developed air-sac system, and its large the determination of evaporative water loss were de- size and slow breathing rate provide an o,p- termined by suspending the bird in its restraining portunity to undertake experimental proce- device from the arm of a beam balance (designed according to Krogh and Trolle 1936, and modified dures which in smaller birds result in great with magnetic damping). This weighing did not pro- technical difficulties or seem impossible. vide the absolute weight of the animal, but gave weight changes with a precision better than 5 g. 1Deceased 7 April 1967. Since the evaporation might reach 10 g/min, the 13411 The Condor, 71:341-352, 1969 342 SCHMIDT-NIELSEN, KANWISHER, LASIEWSKI, COHN, AND BRETZ accuracy of the determinations of evaporation by of arterial and venous blood samples was also de- weighing was more than adequate. Correction for termined directly with the oxygen electrode. metabolic loss of carbon is unnecessary at such high The carbon dioxide tension of blood was determined rates of water loss and was not employed. by the Astrup method using Radiometer tonometer, Temperature-controlled room. All experiments which microelectrode, and PHM-4 pH meter. For unex- involved exposure to high temperatures were car- plained reasons the pH values of the Ostrich blood ried out in a room about 2.3 x 3.5 x 2.3 m high. did not consistently remain stable, although the same The temperature in this room was controlled to method has previously been used by us for blood of about f 1°C. The humidity in the room was not other birds without encountering this difficulty. How- under control, but high humidities were avoided by ever, by bracketing samples between suitable gas introducing outside air at a high rate. mixtures it was possible to obtain reliable determina- Temperature measwements. Cloaca1 temperatures tions of the CO, tension in the blood samples. were usually obtained by thermistor measurements Pressures in the airways. Air pressures were de- (Yellow Springs Instrument Co.) and occasionally termined by attaching a sensitive pressure transducer by mercury thermometers. During measurements of (Computer Instruments Corp., Type 6000, range tracheal temperatures the cloaca1 temperature was -0.3 to 0.3 psi) to a needle inserted into the ap- monitored with thermocouples made from 30-gauge propriate place, and the output was recorded on the copper-constantan wire. same Esterline-Angus Recorder used for thermocouples Temperatures in the respiratory system (surface as ( see above 1. Differential _nressures within the airwavs well as air) and skin temperatures were measured were recorded with the same transducer. with X-gauge copper-constantan thermocouples and Cutaneous water loss. Cutaneous water loss was recorded on an Esterline Angus Speed Servo AZAS determined by the weight increase of silica gel Recorder. The accuracy of these measurements was (Randall and McClure 1949). About 30 g silica gel about 0.5”C. Since the cloaca1 temperature was an was placed in a cylindrical aluminum container and important reference point in all these measurements, kept in place by a press-fitted piece of wire mesh. it was monitored simultaneously with the same re- The opening of the container covered a skin area corder. of 31.2 cm*. Cloaca1 temperature during exercise was measured Volumes of respiratory system. Tracheal volume with a temperature telemetering transmitter (range in was determined by filling excised tracheas with water excess of 2 km, accuracy about f. 0.2”C). and measuring the volume in a graduated cylinder. Respiration. Respiratory rates (frequency) were This method, because of expansion of the trachea determined either by counting and using a stopwatch, under pressure, will yield values somewhat too high, or by recording temperature oscillations at the nares but because of the exceptional rigidity of the Ostrich or in the trachea. trachea the error is not likely to be great. No at- Respiratory volumes were obtained by fitting a tempt was made to correct for this error. mask on the animal and collecting the expired air. Air sac volumes were determined either by weighing The mask was constructed from a plastic bottle of gelatin casts after filling the entire respiratory system suitable shape, fitted to the head, and provided with with gelatin and dissecting out the casts, or by a dilu- a sleeve of soft rubber dam which was kept closely tion technique which employed the quick injection assembled around the neck with a series of rubber into an air sac of 100 ml of oxygen (containing 2.2 bands. Pressure changes in the mask, and therefore per cent CO,). Continuous recording of the change leakage, were minimized by the use of a high flow, in oxygen concentration permitted an approximate six-element MacGregor valve. Expired air was col- determination of dilution volumes as well as the wash- lected in large meteorological balloons and the volume out time of the individual air sacs in normal respiration immediately measured with a dry gas meter ( ? 1 per at rest. During panting this approach could not be cent). When desired, air samples were withdrawn used because of the relatively slow response time from the respiratory system (air sacs and trachea) of the oxygen electrode (a few seconds). with 5-ml glass syringes provided with three-way metal valves and no. 16 needles of appropriate length. RESULTS For continuous recording of the oxygen tension in different air sacs, a no. 16 needle was inserted into BODY TEMPERATURE AND the appropriate air sac and the air drawn con- TOTAL EVAPORATION tinuously over a quick-responding oxygen electrode The Ostriches could maintain their body tem- by means of an aquarium pump. perature at a stable level during prolonged ex- Gas analysis. Air samples taken with glass syringes were analyzed on a Scholander 0.5 ml Gas Analyzer posure to a range of ambient temperatures of ( Scholander 1947 ). Continuous monitoring of oxygen 15 - 50°C (fig. 1). At the highest tempera- tension was done with an oxygen electrode according tures they became slightly hyperthermic, but to Kanwisher ( 1959), using a 12-p teflon membrane in order to obtain rapid response. The system of the many could still maintain their body tempera- oxygen electrode with the sampling needle attached ture at a stable level below 40°C for periods responded to changes in gas composition within 0.5 as long as 8 hr at 50°C ambient.
Recommended publications
  • Ostrich Production Systems Part I: a Review
    11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North
    [Show full text]
  • Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling
    Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling Karl T. Bates1*, Phillip L. Manning2,3, David Hodgetts3, William I. Sellers1 1 Adaptive Organismal Biology Research Group, Faculty of Life Sciences, University of Manchester, Jackson’s Mill, Manchester, United Kingdom, 2 The Manchester Museum, University of Manchester, Manchester, United Kingdom, 3 School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, United Kingdom Abstract Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non- avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy.
    [Show full text]
  • Postcranial Skeletal Pneumaticity in Sauropods and Its
    Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel B.S. (University of Oklahoma) 1997 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Professor Marvalee Wake Professor David Wake Professor John Gerhart Spring 2007 1 The dissertation of Mathew John Wedel is approved: Co-chair Date Co-chair Date Date Date Date University of California, Berkeley Spring 2007 2 Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung © 2007 by Mathew John Wedel 3 Abstract Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Among extant vertebrates, postcranial skeletal pneumaticity is present only in birds. In birds, diverticula of the lungs and air sacs pneumatize specific regions of the postcranial skeleton. The relationships among pulmonary components and the regions of the skeleton that they pneumatize form the basis for inferences about the pulmonary anatomy of non-avian dinosaurs. Fossae, foramina and chambers in the postcranial skeletons of pterosaurs and saurischian dinosaurs are diagnostic for pneumaticity. In basal saurischians only the cervical skeleton is pneumatized. Pneumatization by cervical air sacs is the most consilient explanation for this pattern. In more derived sauropods and theropods pneumatization of the posterior dorsal, sacral, and caudal vertebrae indicates that abdominal air sacs were also present.
    [Show full text]
  • 'Big Al'? Quantifying the Effect of Soft
    Palaeontologia Electronica http://palaeo-electronica.org HOW BIG WAS ‘BIG AL’? QUANTIFYING THE EFFECT OF SOFT TISSUE AND OSTEOLOGICAL UNKNOWNS ON MASS PREDICTIONS FOR ALLOSAURUS (DINOSAURIA:THEROPODA) Karl T. Bates, Peter L. Falkingham, Brent H. Breithaupt, David Hodgetts, William I. Sellers, and Phillip L. Manning ABSTRACT MOR693, nicknamed ‘Big Al,’ is the most complete skeleton of the non-avian theropod Allosaurus and therefore provides the best opportunity to investigate the mass properties of this important Jurassic theropod through accurate physical or digital volumetric models. In this study, laser scanning and computer modelling software have been used to construct volumetric models of MOR693. A long-range laser scanner has been used to digitize the mounted cast of MOR693, allowing the reconstruction of body volumes and respiratory structures around and within the three-dimensional (3D) skel- etal model. The digital medium offered the facility to modify model properties non- destructively in a detailed sensitivity analysis to quantify the effects of the many unknown parameters involved in such reconstructions. In addition to varying the vol- umes of body segments and respiratory structures, we also extend the sensitivity anal- ysis to include uncertainties regarding osteological articulations in non-avian dinosaurs, including effects of inter-vertebral spacing and the orientation or ‘flare’ of the rib cage in MOR693. Results suggest body mass and inertial values are extremely uncertain and show a wide range in plausible values, whilst the CM (centre of mass) position is well constrained immediately in front and below the hip joint in MOR693, consistent with similar reconstructions of non-avian theropods. Karl T.
    [Show full text]
  • Scientific American
    JANUARY 2021 SCIENTIFICAMERICAN.COM How COVID-19 Wrecks the Immune System Ancient Galaxy Clusters Understanding Mountain Ice DINO STAR Scientists reveal the real Dilophosaurus, a Jurassic Park icon © 2020 Scientific American JANUARY 2021 VOLUME 324, NUMBER 1 0068 A S TRONOMY PALEONTOLOGY 26 Too Big for the Universe 46 The Real Dilophosaurus Ancient galaxy clusters seem to The most comprehensive study have grown so quickly that they of the iconic Jurassic Park dinosaur would have broken the laws reveals a very different animal of the cosmos. By Arianna S. Long from the one the movie portrayed. By Matthew A. Brown and IMMUNOLOGY Adam D. Marsh 34 The Immune Havoc of COVID-19 NATURAL RESOURCES The virus flourishes by under­ 54 Peak Water mining the body’s chemical Data retrieved from Earth’s highest defense system. mountains show that the water By Akiko Iwasaki and supply to two billion people Patrick Wong is changing. By Walter Immerzeel PUBLIC HEALTH MEDICINE 42 The Very Real Death Toll 62 Malignant Cheaters of COVID-19 Cells coexist by cooperating. President Trump and other When some break the rules, conspiracy fantasists touted cancers result. By Athena Aktipis ON THE COVER Jurassic Park made Dilophosaurus famous before the fake claim that COVID death SPACE SCIENCE scientists had a thorough understanding of counts are exaggerated. But 68 Dynamic Planet this dinosaur. A new analysis of Dilophosaurus three kinds of evidence point For 15 years the Mars Reconnais­ remains has provided the most detailed picture to more than 250,000 deaths, sance Orbiter has transformed yet of a dinosaur of its vintage and revealed the creature as it truly was: a large-bodied, nimble a toll that grows every day.
    [Show full text]
  • Wedel, M. J., & Taylor, M. P. (2013). Caudal Pneumaticity And
    Wedel, M. J. , & Taylor, M. P. (2013). Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLoS ONE, 8(10), [e78213]. https://doi.org/10.1371/journal.pone.0078213 Publisher's PDF, also known as Version of record Link to published version (if available): 10.1371/journal.pone.0078213 Link to publication record in Explore Bristol Research PDF-document CC By University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Caudal Pneumaticity and Pneumatic Hiatuses in the Sauropod Dinosaurs Giraffatitan and Apatosaurus Mathew J. Wedel1*, Michael P. Taylor2* 1 College of Osteopathic Medicine of the Pacific and College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, United States of America, 2 Department of Earth Sciences, University of Bristol, United Kingdom Abstract Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia.
    [Show full text]
  • Markley Cost of Ventilation.Pdf
    Comparative Biochemistry and Physiology, Part A 155 (2010) 146–153 Contents lists available at ScienceDirect Comparative Biochemistry and Physiology, Part A journal homepage: www.elsevier.com/locate/cbpa The cost of ventilation in birds measured via unidirectional artificial ventilation Jessamyn S. Markley ⁎, David R. Carrier Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT 84112, USA article info abstract Article history: The highly derived mechanism birds use to ventilate their lungs relies on dorsoventral excursions of their Received 31 August 2009 heavily muscled sternum and abdominal viscera. Our expectation of the level of mechanical work involved in Received in revised form 13 October 2009 this mechanism led us to hypothesize that the metabolic cost of breathing is higher in birds than in other Accepted 14 October 2009 tetrapods. To test this theory, we used unidirectional artificial ventilation (UDV) to stop normal ventilatory Available online 24 October 2009 movements in guinea fowl (Numida meleagris L.) at rest and during treadmill locomotion at three speeds. Oxygen consumption was measured during normal breathing and UDV, and the difference was used to Keywords: Numida meleagris approximate the cost of ventilation. Contrary to our prediction, metabolism increased when ventilatory Metabolism movements ceased during UDV at rest. Although we do not understand why this occurred we suspect that UDV Ventilation induced a homeostatic mechanism to counteract the loss of carbon dioxide. Nevertheless, across all running Running speeds, metabolism decreased significantly with UDV, indicating a minimum cost of ventilation during running Unidirectional artificial ventilation −1 of 1.43±0.62% of total running metabolism or 0.48±0.21 mL O2 (L ventilated) .
    [Show full text]
  • Dinosaur Lung Structure and Ventilation of the Abdominal Air Sacs in Birds
    AN ABSTRACT OF THE THESIS OF Methea Sapp for the degree of Masters of Science in Zoology presented on Defense Date. August 24th1, 2004 Title: Dinosaur Lung Structure and Ventilalion of the Abdominal Air Sacs in Birds. Redacted for Privacy Abstract approved: The purpose of this study was to identify any ostelogical features which might prevent paradoxical movement (=lateral collapse) of the abdominal air sacs in birds during inhalation. A combination of 26 fresh and frozen adult bird carcasses representing 0 avian orders were procured from local sources. Dissections of each specimen first entailed the inflation of the respiratory system via a tracheal tube. The trachea was then sealed off to prevent deflation of the air sacs.Next, the abdominal and thoracic cavities were carefully dissected to expose the inflated air sacs. Using a set of Whitworth electronic digital calipers, a series of two measurements were taken on each carcass:I. from the posterior sternal tip to the posterior end of the abdominal air sacs, and 2. from the posterior sternal tip to the tip of the pubic bone. Results indicated a strong correlation between the post-sternal length and position of the abdominal air sacs and the post-sternal extension of the pubic bones, such that lateral support of the abdominal air sacs was provided by the pubic bones. These data suggest that during inhalation the pubic bones probably serve to prevent the lateral collapse of these air sacs. The pubic bones of theropod dinosaurs, and evenArchaeopteryx,were vertically orientated and distally fused. Therefore, it is unlikely that these taxa ventilated a set of abdominal air sacs and where unlikely to have possessed an avian lung-air sac system.
    [Show full text]
  • Pneumaticity in Vertebrae of Sauropods and Other Saurischians
    Pneumaticity in Vertebrae of Sauropods and other Saurischians by W. Janensch with 19 illustrations in the text Palaeontographica Supplement VII, Erste Reihe, Teil III, Erste Lieferung, 1947, p. 1-25. [3] The question of whether the vertebrae of sauropods have a pneumatic character is answered in various ways; it mainly concerns the significance of the pleurocentral cavities (pleurocoels) which penetrate the bodies of the presacral vertebrae. Seeley (1870), who repeatedly occupied himself with the question of pneumaticity in fossil reptiles, already advocated the interpretation that these openings formed the inlet to air-filled cavities. Baron Nopcsa, in one of his papers on dinosaurs (1917), speaks of large pneumatic lacunae in the vertebral column of the sauropods, which occasionally extend to the dorsal rib ends. However, he later (1924) apparently altered his view, and saw no evidence for pneumaticity in the presence of pleurocoel cavities in the vertebrae of sauropods, because the stegosaur Omosaurus and Baluchitherium also had them in their cervical vertebrae, which were certainly not pneumatic. Nevertheless he reckons with the possibility that Diplodocus could inflate itself ... chameleon-like; "the lack of- small air sacs does not - allow this to be confirmed". "Intertestinal" [interstitial] air sacs in sauropods seemed plausible to him to a degree. On the other hand, C. Wiman (1929) states that in the Chinese Helopus the pleurocoels in the anterior dorsal section lead to small air cavities. Most recently, A. S. Romer (1933) again articulated Seeley's interpretation, and W. E. Swinton (1934) also expressed the same opinion. Ill. 1. 8th cervical vertebra of Brachiosaurus brancai Jan.
    [Show full text]
  • Cranial Anatomy of Tyrannosaurid Dinosaurs from the Late Cretaceous of Alberta, Canada
    Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada PHILIP J. CURRIE Currie, P.J. 2003. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. Acta Palaeontologica Polonica 48 (2): 191–226. Beautifully preserved, nearly complete theropod skeletons from Alberta (Canada) allow re−evaluation of the taxonomic status of North American tyrannosaurids. It is concluded that the most parsimonious interpretation of relationships leads to the separation of the two species of Albertosaurus (sensu Russell 1970) into Gorgosaurus libratus from the Campanian Dinosaur Park Formation and Albertosaurus sarcophagus from the upper Campanian/lower Maastrichtian Horseshoe Canyon Formation. Albertosaurus and Gorgosaurus are closely related, but can be distinguished from each other by more characters than are known to justify generic distinction within another tyrannosaurid clade that includes Daspletosaurus, Tarbosaurus and Tyrannosaurus. Daspletosaurus is known from multiple species that cover extensive geographic, eco− logical and temporal ranges, and it is sensible to maintain its generic distinction from Tyrannosaurus. All tyrannosaurid species have consistent ontogenetic trends. However, one needs to be cautious in assessing ontogenetic stage because many characters are size−dependent rather than age−dependent. There are relatively few osteological differences that can distinguish tyrannosaurid species at any age. For example, Nanotyrannus lancensis is probably a distinct species from Tyrannosaurus rex because there is no evidence of ontogenetic reduction of tooth counts in any other tyrannosaurid spe− cies. Some characters that are good for separating mature tyrannosaurids, such as differences in the sizes and shapes of maxillary fenestrae, are not useful for identifying the species of juveniles.
    [Show full text]
  • Were the Respiratory Complexes of Theropods Likes Those Of
    Were the respiratory complexes of predatory dinosaurs like crocodilians or birds? Gregory S. Paul 3109 N. Calvert Street, Baltimore, MD 21218 U.S.A. E-mail: [email protected] ABSTRACT The majority opinion that theropod dinosaurs evolved a lung complex dominated by air sac ventilation has been challenged by arguments that soft tissues preserve the presence of a crocodilian system dominated by a pelvovisceral pump operated by pelvis-based diaphrag- matic muscles. A reanalysis of the soft tissue evidence shows that it is at best ambiguous, and is in some cases based on postmortem damage rather than real anatomy. The osteological data strongly support the presence of a preavian respiratory tract in the archosaurs ancestral to birds. The most bird-like theropod dinosaurs may have had a better developed lung-air sac system than the urvogel. KEYWORDS Air sacs, birds, crocodilians, dinosaurs, evolution, lungs, respiration, theropods. Introduction Recent years have seen broad agreement that theropod dinosaurs probably evolved a preavian lung complex that was ventilated at least in part by air sacs (Perry 1983, 1989, 1992; Paul 1988, in press; Reid 1996, 1997; Britt 1997; Currie 1997; Britt et a1. 1998; Claessens and Perry 1998; Burnham et a1.2000). This largely osteology-based conclusion supports the majority view that birds descended from derived predatory dinosaurs. Ruben and co-workers (Ruben, Jones et a1. 1997; Ruben, Leitch et a1. 1997; Ruben et a1. 1999) have proposed that theropod dinosaurs in- stead possessed a crocodilian-like pelvovisceralpump (piston) lung ventilation system, based largely on their interpretations of the preserved soft tissues of Sinosauropteryx and Scipionyx.
    [Show full text]
  • Cardio-Pulmonary Anatomy in Theropod Dinosaurs: Implications from Extant Archosaurs
    JOURNAL OF MORPHOLOGY 270:1232–1246 (2009) Cardio-Pulmonary Anatomy in Theropod Dinosaurs: Implications From Extant Archosaurs Devon E. Quick* and John A. Ruben Department of Zoology, Oregon State University, Corvallis, Oregon 97331 ABSTRACT Although crocodilian lung and cardiovas- increased pulmonary surface area, more efficient cular organs are markedly less specialized than the gas diffusion at the lungs, greatly expanded oxy- avian heart and lung air-sac system, all living archo- gen carrying capacity of the blood, and increased saurs possess four-chambered hearts and heterogene- maximal cardiac output (Bennett, 1991; Ruben, ously vascularized, faveolar lungs. In birds, normal lung 1995). Furthermore, in birds and mammals there function requires extensive, dorsally situated nonvascu- larized abdominal air-sacs ventilated by an expansive is no mixing of deoxygenated systemic venous (pul- sternum and specially hinged costal ribs. The thin monary arterial) blood with oxygenated systemic walled and voluminous abdominal air-sacs are supported arterial (pulmonary venous) blood (see Fig. 1). laterally and caudally to prevent inward (paradoxical) Complete separation of pulmonary and systemic collapse during generation of negative (inhalatory) pres- circulations is achieved initially where interatrial sure: the synsacrum, posteriorly directed, laterally open and interventricular septa divide the heart into pubes and specialized femoral-thigh complex provide four chambers. This separation is maintained by requisite support and largely prevent inhalatory col- two distinct great vessels which emerge from the lapse. In comparison, theropod dinosaurs probably heart: the pulmonary artery (trunk) from the right lacked similarly enlarged abdominal air-sacs, and skel- ventricle and the single, systemic aortic arch from eto-muscular modifications consistent with their ventila- tion.
    [Show full text]