The Domain Shared by Computational and Digital Ontology: a Phenomenological Exploration and Analysis Bradley Wendell Compton

Total Page:16

File Type:pdf, Size:1020Kb

The Domain Shared by Computational and Digital Ontology: a Phenomenological Exploration and Analysis Bradley Wendell Compton Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 The Domain Shared by Computational and Digital Ontology: A Phenomenological Exploration and Analysis Bradley Wendell Compton Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF INFORMATION THE DOMAIN SHARED BY COMPUTATIONAL AND DIGITAL ONTOLOGY: A PHENOMENOLOGICAL EXPLORATION AND ANALYSIS By BRADLEY WENDELL COMPTON A Dissertation submitted to the College of Information in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2009 The members of the committee approve the dissertation of Bradley Compton defended on April 22, 2009. ______________________________ Kathleen Burnett Professor Directing Dissertation _______________________________ Russell Dancy Outside Committee Member _______________________________ Gary Burnett Committee Member ______________________________ Wayne Wiegand Committee Member Approved: ________________________________________ Larry Dennis, Dean, College of Information The Graduate School has verified and approved the above-named committee members. ii To my parents Wendell and Judy and to the God of my understanding without whom none of my achievements would be possible. iii ACKNOWLEDGEMENTS I want to thank and express gratitude to the mentors, friends, and loved ones who helped me complete this research. Kathy Burnett has been my major professor and patiently watched me struggle to develop and articulate this project from the beginning. Gary Burnett, Wayne Wiegand, and Keith Belton also served me well as committee members. Russ Dancy, my outside committee member, knew and taught me as an undergraduate philosophy major. Fred Fonseca and Rafael Capurro, with whom I met face-to-face, inspired me with their work and mentored me along the way. Also, Elizabeth Buchanan organized the conference where minds like Rafael, Fred, and mine could meet and has also provided me encouragement in my career. Most of all, I want to thank my Mom and Dad, Judy and Wendell, for supporting and encouraging me in countless ways my entire life. Likewise, I believe in and am grateful for a Power greater than myself who has guided me, restored me, and shown me opportunities to serve others and improve my life many times through the years. iv TABLE OF CONTENTS List of Tables ........................................................................................... vii List of Figures ........................................................................................... viii Abstract ................................................................................................. ix 1. INTRODUCTION ...................................................................................... 1 2. LITERATURE REVIEW ............................................................................ 4 2.1 Differing Foundations—The Analytic/Continental Divide ................ 4 2.1.1 The Analytic Tradition—Naturalism and Formal Logic ........... 4 2.1.2 Computational Ontology—Types, Approaches, and Examples . 6 2.1.3 The Continental Tradition—Existential Analytic of Dasein ...... 8 2.1.4 Digital Ontology ....................................................................... 11 2.1.5 Relevance to Library and Information Studies........................... 14 3. PHENOMENOLOGY AS METHODOLOGY ............................................ 16 3.1 Investigating Particular Phenomena .................................................. 17 3.2 Investigating General Essences ......................................................... 18 3.3 Apprehending Essential Relationships .............................................. 20 3.4 Watching Modes of Appearing ......................................................... 21 3.5 Exploring the Constitution of Phenomena in Consciousness ............. 24 3.6 Suspending Belief in Existence ......................................................... 26 3.7 Interpreting Concealed Meanings ..................................................... 27 4. ESSENCES AND THE MODES OF APPEARING .................................... 29 4.1 Modes of Appearing ......................................................................... 29 4.2 Essences ........................................................................................... 29 4.2.1 Temporality ............................................................................. 29 4.2.2 Spatiality ................................................................................. 30 4.2.3 Being and Entities .................................................................... 30 4.2.4 Relationships ........................................................................... 32 4.2.5 Human Being ........................................................................... 32 4.2.6 Digital Representation of Reality ............................................. 33 4.3 Constitution of the Phenomena in Consciousness.............................. 33 5. TEMPORALITY AND SPATIALITY ........................................................ 35 v 5.1 Temporality ...................................................................................... 35 5.1.1 Temporality in Digital Ontology .............................................. 35 5.1.2 Temporality in Computational Ontology .................................. 39 5.2 Spatiality .......................................................................................... 46 5.2.1 Spatiality in the BFO ............................................................... 46 5.2.2 Physical Space and Existential Spatiality ................................. 47 5.2.3 The Spatiality of Cyberspace ................................................... 50 5.3 Discussion ........................................................................................ 53 6. BEING, ENTITIES, AND RELATIONSHIPS ............................................ 55 6.1 Being and beings .............................................................................. 55 6.2 Entities ........................................................................................... 57 6.3 Classes and Universals ..................................................................... 61 6.4 Relationships .................................................................................... 62 6.4.1 Analytic Relationships ............................................................. 63 6.4.2 Continental Relationships ........................................................ 64 6.5 The Human Being as an Entity ......................................................... 66 6.5.1 Dasein ..................................................................................... 66 6.5.2 Social Objects and Physical-Behavioral Units .......................... 66 6.6 Digital Representation of Reality ...................................................... 69 6.6.1 Digital Being and Digital Entities ............................................ 69 7. CONCLUSION ........................................................................................... 73 7.1 Limitations ....................................................................................... 73 7.2 Future Research ................................................................................ 74 GLOSSARY ........................................................................................... 78 REFERENCES ........................................................................................... 81 BIGRAPHICAL SKETCH ............................................................................. 85 vi LIST OF FIGURES Figure 3.1: Example of the Essence of Color ................................................... 18 Figure 4.1: The Constitution of the Domain Shared by Computational and Digital Ontology to Consciousness ............ 33 Figure 5.1: Diagram Representing the SNAP Occurrent Squishy Foot 1 .......... 41 Figure 5.2: Illustration of How One Might Associate the Temporality of Computational Ontology (the BFO) and Authentic Temporality (Presumably of Digital Ontology) ....... 42-43 Figure 6.1: Illustration of the Basic Facets of SNAP Ontologies ...................... 60 Figure 6.2: Illustration of the Basic Facets of SPAN Ontologies ...................... 61 vii ABSTRACT The purpose of this dissertation is to explore and analyze a domain of research thought to be shared by two areas of philosophy: computational and digital ontology. Computational ontology is philosophy used to develop information systems also called computational ontologies. Digital ontology is philosophy dealing with our understanding of Being and human existence in terms of the digital. While computational ontology accounts for reality as that which is disclosed to us by natural science—reality independent of human experience—digital ontology always begins with and refers back to the human being in its analysis of Being. The methodology in this dissertation is phenomenology. Both computational and digital ontology are represented using instrumental case studies. The findings consist of essential components shared by computational and digital ontology, the modes in which they appear, and philosophical questions to explore in future research. Ultimately, this dissertation concludes that there is a domain shared by computational and digital ontology in spite of some fundamental differences between the two. viii 1. INTRODUCTION
Recommended publications
  • A Survey of Top-Level Ontologies to Inform the Ontological Choices for a Foundation Data Model
    A survey of Top-Level Ontologies To inform the ontological choices for a Foundation Data Model Version 1 Contents 1 Introduction and Purpose 3 F.13 FrameNet 92 2 Approach and contents 4 F.14 GFO – General Formal Ontology 94 2.1 Collect candidate top-level ontologies 4 F.15 gist 95 2.2 Develop assessment framework 4 F.16 HQDM – High Quality Data Models 97 2.3 Assessment of candidate top-level ontologies F.17 IDEAS – International Defence Enterprise against the framework 5 Architecture Specification 99 2.4 Terminological note 5 F.18 IEC 62541 100 3 Assessment framework – development basis 6 F.19 IEC 63088 100 3.1 General ontological requirements 6 F.20 ISO 12006-3 101 3.2 Overarching ontological architecture F.21 ISO 15926-2 102 framework 8 F.22 KKO: KBpedia Knowledge Ontology 103 4 Ontological commitment overview 11 F.23 KR Ontology – Knowledge Representation 4.1 General choices 11 Ontology 105 4.2 Formal structure – horizontal and vertical 14 F.24 MarineTLO: A Top-Level 4.3 Universal commitments 33 Ontology for the Marine Domain 106 5 Assessment Framework Results 37 F. 25 MIMOSA CCOM – (Common Conceptual 5.1 General choices 37 Object Model) 108 5.2 Formal structure: vertical aspects 38 F.26 OWL – Web Ontology Language 110 5.3 Formal structure: horizontal aspects 42 F.27 ProtOn – PROTo ONtology 111 5.4 Universal commitments 44 F.28 Schema.org 112 6 Summary 46 F.29 SENSUS 113 Appendix A F.30 SKOS 113 Pathway requirements for a Foundation Data F.31 SUMO 115 Model 48 F.32 TMRM/TMDM – Topic Map Reference/Data Appendix B Models 116 ISO IEC 21838-1:2019
    [Show full text]
  • Functions in Basic Formal Ontology
    Applied Ontology 11 (2016) 103–128 103 DOI 10.3233/AO-160164 IOS Press Functions in Basic Formal Ontology Andrew D. Spear a,∗, Werner Ceusters b and Barry Smith c a Philosophy Department, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA Tel.: +1 616 331 2847; Fax: +1 616 331 2601; E-mail: [email protected] b Departments of Biomedical Informatics and Psychiatry, University at Buffalo, 77 Goodell street, Buffalo, NY 14203, USA E-mail: [email protected] c Department of Philosophy, University at Buffalo, 135 Park Hall, Buffalo, NY 14260, USA E-mail: [email protected] Abstract. The notion of function is indispensable to our understanding of distinctions such as that between being broken and being in working order (for artifacts) and between being diseased and being healthy (for organisms). A clear account of the ontology of functions and functioning is thus an important desideratum for any top-level ontology intended for application to domains such as engineering or medicine. The benefit of using top-level ontologies in applied ontology can only be realized when each of the categories identified and defined by a top-level ontology is integrated with the others in a coherent fashion. Basic Formal Ontology (BFO) has from the beginning included function as one of its categories, exploiting a version of the etiological account of function that is framed at a level of generality sufficient to accommodate both biological and artifactual functions. This account has been subjected to a series of criticisms and refinements. We here articulate BFO’s account of function, provide some reasons for favoring it over competing views, and defend it against objections.
    [Show full text]
  • APA Newsletters Spring 2018 Volume 17, No. 2
    NEWSLETTERS | The American Philosophical Association APA Newsletters SPRING 2018 VOLUME 17 | NUMBER 2 ASIAN AND ASIAN-AMERICAN PHILOSOPHERS AND PHILOSOPHIES FEMINISM AND PHILOSOPHY HISPANIC/LATINO ISSUES IN PHILOSOPHY NATIVE AMERICAN AND INDIGENOUS PHILOSOPHY PHILOSOPHY AND COMPUTERS PHILOSOPHY AND THE BLACK EXPERIENCE PHILOSOPHY IN TWO-YEAR COLLEGES TEACHING PHILOSOPHY VOLUME 17 | NUMBER 2 SPRING 2018 © 2018 BY THE AMERICAN PHILOSOPHICAL ASSOCIATION ISSN 2155-9708 Table of Contents Asian and Asian-American Philosophers and The 2018 Essay Prize in Latin American Thought .... 50 Philosophies ...................................................... 1 Articles ..................................................................... 51 From the Guest Editor ............................................... 1 Surviving Social Disintegration: Jorge Portilla on Ways of Philosophy, Ways of Practice ....................... 1 the Phenomenology of Zozobra .............................. 51 Submission Guidelines and Information ................... 1 Discussion Articles ................................................... 54 “Three Sacrificial Rituals” (sanji) and the The Contradiction of Crimmigration ........................ 54 Practicability of Ruist (Confucian) Philosophy ........... 2 Under the Umbrella of Administrative Law: Traditional Chinese Body Practice and Philosophical Immigration Detention and the Challenges of Activity ........................................................................ 5 Producing Just Immigration Law ............................
    [Show full text]
  • A Definition of Ontological Category
    Two Demarcation Problems In Ontology Pawel Garbacz Department of Philosophy John Paul II Catholic University of Lublin, Poland Abstract his or her research interests. Or if not, then everything goes into the scope. In this paper I will attempt to characterise the difference be- This paper is then about the proper subject matter of ap- tween ontological and non-ontological categories for the sake of a better understanding of the subject matter of ontology. plied ontology. I will attempt to draw a demarcation line My account of ontological categories defines them as equiva- between ontological and non-ontological categories. To this lence classes of a certain family of equivalence relations that end I will search for the proper level of generality of the lat- are determined by ontological relations. As a result, the de- ter by looking at how philosophical ontology defines its sub- marcation problem for ontological categories turns out to be ject matter. I will discuss a number of attempts to capture the dependent on the demarcation problem for ontological rela- specific nature of the ontological categories, as they are used tions. in philosophy, and on the basis of this survey I outline my own proposal. The main point of my contribution is the idea Introduction that ontological categories are the most general categories that cut the reality at its joints, where cutting is provided There are a lot of ontologies out there. (Ding et al., 2005) by ontological relations. In consequence it will turn out that claim to harvest from the Internet more than 300 000 Se- this account depends on how one can draw a demarcation mantic Web documents, of which 1.5% may be unique on- line between ontological and non-ontological relations.
    [Show full text]
  • HUI What Is a Digital Object Metaphilosophy.Pdf
    bs_bs_banner © 2012 The Author Metaphilosophy © 2012 Metaphilosophy LLC and Blackwell Publishing Ltd Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK, and 350 Main Street, Malden, MA 02148, USA METAPHILOSOPHY Vol. 43, No. 4, July 2012 0026-1068 WHAT IS A DIGITAL OBJECT? YUK HUI Abstract: We find ourselves in a media-intensive milieu comprising networks, images, sounds, and text, which we generalize as data and metadata. How can we understand this digital milieu and make sense of these data, not only focusing on their functionalities but also reflecting on our everyday life and existence? How do these material constructions demand a new philosophical understand- ing? Instead of following the reductionist approaches, which understand the digital milieu as abstract entities such as information and data, this article pro- poses to approach it from an embodied perspective: objects. The article contrasts digital objects with natural objects (e.g., apples on the table) and technical objects (e.g., hammers) in phenomenological investigations, and proposes to approach digital objects from the concept of “relations,” on the one hand the material relations that are concretized in the development of mark-up languages, such as SGML, HTML, and XML, and on the other hand, Web ontologies, the temporal relations that are produced and conditioned by the artificial memories of data. Keywords: digital objects, phenomenology, metadata, Stiegler, Simondon. In this article I attempt to outline what I call digital objects, showing that a philosophical investigation is necessary by revisiting the history of philosophy and proposing that it is possible to develop a philosophy of digital objects.
    [Show full text]
  • Info-Computational Vs. Mechanistic
    A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic Gordana Dodig-Crnkovic & Vincent C. Müller Mälardalen University & Anatolia College/ACT www.idt.mdh.se/personal/gdc & www.typos.de 18th October, 2009 Abstract: The dialogue develops arguments for and against adopting a new world system – info-computationalist naturalism – that is poised to replace the traditional mechanistic world system. We try to figure out what the info-computational paradigm would mean, in particular its pancomputationalism. We make some steps towards developing the notion of computing that is necessary here, especially in relation to traditional notions. We investigate whether pancompu- tationalism can possibly provide the basic causal structure to the world, whether the overall research programme appears productive and whether it can revigorate computationalism in the philosophy of mind. 1. Introduction 1.1. Galileo, Ptolemy, Mechanicism and Systèmes du Monde In his 1632 Dialogue Concerning the Two Chief World Systems (Dialogo sopra i due massimi sistemi del mondo), Galileo contrasts two different world views: the tradi- tional Ptolemaic geocentric system where everything in the Universe circles around the Earth, vs. the emerging Copernican system, where the Earth and other planets orbit the Sun. Even though the question whether the Earth was the center of the Universe or not was important in itself, the real scientific revolution was going on in the background; the transition from qualitative Aristotelian physics to the Galileo-Newtonian quantitative mechanistic physics necessary to support the A Dialogue Concerning Two World Systems: 2/33 new worldview. The new model with equations of motion for celestial bodies fol- lowing Newton’s laws set the standard for all of physics to come.
    [Show full text]
  • GMS 6805: Introduction to Applied Ontology Location
    GMS 6805: Introduction to Applied Ontology Location: Online, TBA Class Hours: Wednesdays 1:55-3:50 pm Instructor: Mathias Brochhausen, PhD Office: 3226, Clinical and Translational Science Building Email: [email protected] Phone: 501-831-3119 Office Hours: By Appointment Course Description: Applied ontology is a sub-discipline of knowledge representation that develops resources that make the meaning of terms processable by computers to improve interoperability of data and to support reasoning with digital knowledge bases. This course introduces students to the fundamentals of applied ontology and its role in biomedical informatics. Students will learn what ontologies are, how they differ from similar resources and how they are implemented in knowledge management environments. Course Prerequisites: None, but PHI 6105: Seminar in Logic, or experience with symbolic logic, is an asset. Course Objectives: • Describe the need for semantic integration of biomedical data • Identify the components of the Semantic Web technology and the goals of Semantic Web Technologies • Describe how ontologies fit into the Semantic Web paradigm and the role of Applied Ontology within in • Understand the computational principles behind ontology development and implementation • Describe how ontological artifacts differ terminologies and other semantic resources • Articulate standards and criteria for good ontologies and evaluate ontologies in light of these criteria • Illustrate common pitfalls of ontology development • Create a domain ontology in an ontology editor such as Protégé • Construct queries that demonstrate an understanding of the logical principles of ontologies and the Semantic Web Course Texts: Required Tests: Antoniou, G. (2012). A Semantic Web Primer. Cambridge, MA: The MIT Press. Arp, R. et al.
    [Show full text]
  • Ontology, Ontologies, and Science
    Ontology, Ontologies, and Science Gary H. Merrill This is the “final accepted version” of the manuscript, made publicly available in accord with the policies of SpringerNature. The final publication in the journal Topoi (April 2011, Volume 30, Issue 1, pp 71–83) is available via http://dx.doi.org/10.1007/s11245-011-9091-x ABSTRACT Philosophers frequently struggle with the relation of metaphysics to the everyday world, with its practical value, and with its relation to empirical science. This paper distinguishes several different models of the relation between philosophical ontology and applied (scientific) ontology that have been advanced in the history of philosophy. Adoption of a strong participation model for the philosophical ontologist in science is urged, and requirements and consequences of the participation model are explored. This approach provides both a principled view and justification of the role of the philosophical ontologist in contemporary empirical science as well as guidelines for integrating philosophers and philosophical contributions into the practice of science. Introduction Metaphysicians, when explaining or justifying their calling, tend to be a mournful and defensive lot while at the same time extolling the intellectual, moral, and spiritual virtues of metaphysics and its practice. A classic example is found in Russell's The Problems of Philosophy where he argues that philosophy as a discipline is not quite as fruitless as it may appear: Philosophy, like all other studies, aims primarily at knowledge.... But it cannot be maintained that philosophy has had any very great measure of success in its attempts to provide definite answers to its questions.... It is true that this is partly accounted for by the fact that as soon as definite knowledge concerning any subject becomes possible, this subject ceases to be called philosophy, and becomes a separate science...
    [Show full text]
  • Ontology-Based Approach for Structural Design Considering Low Embodied Energy and Carbon
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/73163/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Hou, Shangjie, Li, Haijiang and Rezgui, Yacine 2015. Ontology-based approach for structural design considering low embodied energy and carbon. Energy and Buildings 102 , pp. 75-90. 10.1016/j.enbuild.2015.04.051 file Publishers page: http://dx.doi.org/10.1016/j.enbuild.2015.04.051 <http://dx.doi.org/10.1016/j.enbuild.2015.04.051> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Accepted Manuscript Title: Ontology-based approach for structural design considering low embodied energy and carbon Author: Shangjie Hou Haijiang Li Yacine Rezgui PII: S0378-7788(15)00350-3 DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2015.04.051 Reference: ENB 5843 To appear in: ENB Received date: 14-11-2014 Revised date: 21-4-2015 Accepted date: 28-4-2015 Please cite this article as: S.
    [Show full text]
  • Introduction to Applied Ontology and Ontological Analysis
    First Interdisciplinary Summer School on Ontological Analysis Introduction to Applied Ontology and Ontological Analysis Nicola Guarino National Research Council, Institute for Cognitive Science and Technologies (ISTC-CNR) Laboratory for Applied Ontology (LOA) www.loa.istc.cnr.it Applied Ontology: an emerging interdisciplinary area • Applied Ontology builds on philosophy, cognitive science, linguistics and logic with the purpose of understanding, clarifying, making explicit and communicating people's assumptions about the nature and structure of the world. • This orientation towards helping people understanding each other distinguishes applied ontology from philosophical ontology, and motivates its unavoidable interdisciplinary nature. ontological analysis: study of content (of these assumptions) as such (independently of their representation) 4 Ontological analysis and conceptual modeling Conceptual modeling is the activity of formally describing some aspects of the physical and social world around us for the purposes of understanding and communication (John Mylopoulos) Focusing on content Do we know what to REpresent? • First analysis, • THEN representation… Unfortunately, this is not the current practice… • Computer scientists have focused on the structure of representations and the nature of reasoning more than on the content of such representations Essential ontological promiscuity of AI: any agent creates its own ontology based on its usefulness for the task at hand (Genesereth and Nilsson 1987) No representation without ontological
    [Show full text]
  • Towards a Relational Materialism a Reflection on Language, Relations and the Digital
    Towards a Relational Materialism A Reflection on Language, Relations and the Digital Yuk Hui Abstract This article takes off from what Lyotard calls ‘the immaterial’, dem- onstrated in the exhibition Les Immatériaux that he curated at the Centre Pompidou in 1985. It aims at outlining a concept of ‘relational materiality’. According to Lyotard, ‘the immaterial’ is not contrary to material: instead, it is a new industrial material brought about by telecommunication technologies, exemplified by Minitel computers, and serves as basis to describe the postmodern condition. Today this materiality is often referred to as ‘the digital’. In order to enter into a dialogue with Lytoard, and to render his notion of ‘immaterial materials’ contemporary, this article con- trasts the concept of relational materiality with some current discourses on digital physics (Edward Fredkin, Gregory Chaitin) and digital textuality (Matthew Kirschenbaum). Against the con- ventional conception that relations are immaterial (neither being a res nor even having a real esse), and also contrary to a substan- tialist analysis of materiality, this article suggests that a relational materiality is made visible and explicit under digital conditions. It suggests a reconsideration of the ‘relational turn’ in the early 20th century and the concept of concretisation proposed by Gilbert Simondon. The article concludes by returning to Lyotard’s notion of materialism and his vision of a new metaphysics coming out of this ‘immaterial material’, and offers ‘relational materialism’ as a contemporary response. Introduction In 1985 the French philosopher Jean-François Lyotard curated an exhibition at the Centre Pompidou entitled “the Immaterials” [les Immatériaux]. It depicted the postmodern condition associated with the revolution in telecommunica- tion technologies, exemplified by the Minitels and automation technologies used in factories such as Peugeot.
    [Show full text]
  • Digital Me Ontology and Ethics 1. Introduction
    Digital me ontology and ethics Ljupco Kocarev (*) and Jasna Koteska (**) 21 December 2020 (*) Macedonian Academy of Sciences and Arts, Skopje, Macedonia1, [email protected] (**) Ss. Cyril and Methodius University in Skopje, Macedonia1, [email protected] and [email protected] Abstract This paper addresses ontology and ethics of an AI agent called digital me. We define digital me as autonomous, decision-making, and learning agent, representing an individual and having practically immortal own life. It is assumed that digital me is equipped with the big-five personality model, ensuring that it provides a model of some aspects of a strong AI: consciousness, free will, and intentionality. As computer-based personality judgments are more accurate than those made by humans, digital me can judge the personality of the individual represented by the digital me, other individuals’ personalities, and other digital me-s. We describe seven ontological qualities of digital me: a) double-layer status of Digital Being versus digital me, b) digital me versus real me, c) mind-digital me and body-digital me, d) digital me versus doppelganger (shadow digital me), e) non-human time concept, f) social quality, g) practical immortality. We argue that with the advancement of AI’s sciences and technologies, there exist two digital me thresholds. The first threshold defines digital me having some (rudimentarily) form of consciousness, free will, and intentionality. The second threshold assumes that digital me is equipped with moral learning capabilities, implying that, in principle, digital me could develop their own ethics which significantly differs from human’s understanding of ethics.
    [Show full text]