Invasive Bark Beetles Forest Insect & Disease Leaflet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS ROMANIA January 2007 Forest Resources Development Service Working Paper FBS/28E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Romania. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Romania TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases................................................................................................................ -
Bark Beetles
Bark Beetles O & T Guide [O-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Although New Mexico bark beetle adults are In monogamous species such as the Douglas small, rarely exceeding 1/3 inch in length, they fir beetle, Dendroctonus pseudotsugae, the are very capable of killing even the largest female bores the initial gallery into the host host trees with a mass assault, girdling them or tree, releases pheromones attractive to her inoculating them with certain lethal pathogens. species and accepts one male as her mate. Some species routinely attack the trunks and major limbs of their host trees, other bark beetle species mine the twigs of their hosts, pruning and weakening trees and facilitating the attack of other tree pests. While many devastating species of bark beetles are associated with New Mexico conifers, other species favor broadleaf trees and can be equally damaging. Scientifically: Bark beetles belong to the insect order Coleoptera and the family Scolytidae. Adult “engraver beetle” in the genus Ips. The head is on the left; note the “scooped out” area Metamorphosis: Complete rimmed by short spines on the rear of the Mouth Parts: Chewing (larvae and adults) beetle, a common feature for members of this Pest Stages: Larvae and adults. genus. Photo: USDA Forest Service Archives, USDA Forest Service, www.forestryimages.org Typical Life Cycle: Adult bark beetles are strong fliers and are highly receptive to scents In polygamous species such as the pinyon bark produced by damaged or stressed host trees as beetle, Ips confusus, the male bores a short well as communication pheromones produced nuptial chamber into the host’s bark, releases by other members of their species. -
Dutch Elm Disease Pathogen Transmission by the Banded Elm Bark Beetle Scolytus Schevyrewi
For. Path. 43 (2013) 232–237 doi: 10.1111/efp.12023 © 2013 Blackwell Verlag GmbH Dutch elm disease pathogen transmission by the banded elm bark beetle Scolytus schevyrewi By W. R. Jacobi1,3, R. D. Koski1 and J. F. Negron2 1Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; 2U.S.D.A. Forest Service, Rocky Mountain Forest Research Station, Fort Collins, CO USA; 3E-mail: [email protected] (for correspondence) Summary Dutch Elm Disease (DED) is a vascular wilt disease of Ulmus species (elms) incited in North America primarily by the exotic fungus Ophios- toma novo-ulmi. The pathogen is transmitted via root grafts and elm bark beetle vectors, including the native North American elm bark beetle, Hylurgopinus rufipes and the exotic smaller European elm bark beetle, Scolytus multistriatus. The banded elm bark beetle, Scolytus schevyrewi, is an exotic Asian bark beetle that is now apparently the dominant elm bark beetle in the Rocky Mountain region of the USA. It is not known if S. schevyrewi will have an equivalent vector competence or if management recommendations need to be updated. Thus the study objectives were to: (i) determine the type and size of wounds made by adult S. schevyrewi on branches of Ulmus americana and (ii) determine if adult S. schevyrewi can transfer the pathogen to American elms during maturation feeding. To determine the DED vectoring capability of S. schevyrewi, newly emerged adults were infested with spores of Ophiostoma novo-ulmi and then placed with either in-vivo or in-vitro branches of American elm trees. -
Spruce Beetle
QUICK GUIDE SERIES FM 2014-1 Spruce Beetle An Agent of Subalpine Change The spruce beetle is a native species in Colorado’s spruce forest ecosystem. Endemic populations are always present, and epidemics are a natural part of the changing forest. There usually are long intervals between such events as insect and disease epidemics and wildfires, giving spruce forests time to regenerate. Prior to their occurrence, the potential impacts of these natural disturbances can be reduced through proactive forest management. The spruce beetle (Dendroctonus rufipennis) is responsible for the death of more spruce trees in North America than any other natural agent. Spruce beetle populations range from Alaska and Newfoundland to as far south as Arizona and New Mexico. The subalpine Engelmann spruce is the primary host tree, but the beetles will infest any Figure 1. Engelmann spruce trees infested spruce tree species within their geographical range, including blue spruce. In with spruce beetles on Spring Creek Pass. Colorado, the beetles are most commonly observed in high-elevation spruce Photo: William M. Ciesla forests above 9,000 feet. At endemic or low population levels, spruce beetles generally infest only downed trees. However, as spruce beetle population levels in downed trees increase, usually following an avalanche or windthrow event – a high-wind event that topples trees over a large area – the beetles also will infest live standing trees. Spruce beetles prefer large (16 inches in diameter or greater), mature and over- mature spruce trees in slow-growing, spruce-dominated stands. However, at epidemic levels, or when large-scale, rapid population increases occur, spruce beetles may attack trees as small as 3 inches in diameter. -
Ips Sexdentatus
Canadian Journal of Arthropod Identification No. 38 (June, 2019) Douglas et al. Ips sexdentatus Scientific Name Ips sexdentatus (Boerner, 1767) Synonyms Bostrichus pinastri Bechstein, 1818 Bostrichus stenographus Duftschmid, 1825 Ips junnanicus Sokanovskiy, 1959 Common names: six-toothed bark beetle (English); stenographe (French); grosser 12-zähniger iefernborkenkäfer (German); tolvtannet barkbille (Norwegian) Diagnostic notes Ips sexdentatus, male frons -Has six spines on the elytral declivity. -Differs from all other Ips spp. by having the largest spine in the fourth position. -Is unlike North American six-spined species I. calligraphus and I. apache, which have the largest spine in the third position. Morphological Summary females Body. (5.0-)7.0-8.0 mm long, 2.6-2.8 times longer than wide; pronotum 1.1- 1.2 times longer than wide. Head. Epistomal margin with uniseriate row of tubercles uninterrupted Ips sexdentatus, male frons medially, with elongate mesal tubercle or with gap at midline. Frons outline convex in lateral view; vestiture fine (not hiding part of integument); surface sculpture near epistoma densely tuberculate-punctate; central carina present or absent; central tubercle absent or present and single, separated from base of epistomal setae by 2-4(-5) tubercle diameters, without pair of circular tubercles on either side of midline; transverse carina present, impunctate; frons central fovea present; circular tubercles above top of eyes present - up to, or more than one third of all tubercles. Vertex and pronotum with stridulatory apparatus (pars stridens). Antennal club sutures bisinuate. Prothorax. Protibiae with four or five socketed teeth on apical half (does not include apical spine). Ips sexdentatus, female frons Elytra. -
Ophiostomatoid Fungi Transported by Ips Sexdentatus (Coleoptera; Scolytidae) in Pinus Pinaster in NW Spain
Silva Fennica 44(3) research articles SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Ophiostomatoid Fungi Transported by Ips sexdentatus (Coleoptera; Scolytidae) in Pinus pinaster in NW Spain Alberto Bueno, Julio J. Diez and Mercedes M. Fernández Bueno, A., Diez, J.J. & Fernández, M.M. 2010. Ophiostomatoid fungi transported by Ips sexdentatus (Coleoptera; Scolytidae) in Pinus pinaster in NW Spain. Silva Fennica 44(3): 387–397. Ips sexdentatus (Coleoptera; Scolytidae) is one of the main vectors of ophiostomatoid blue stain fungi that can cause mortality of healthy conifers. For this reason, our objective was to identify the fungal species carried by this bark beetle in Maritime pine (Pinus pinaster) in north-western Spain. We collected insects from naturally infected pines placed them on malt extract agar (MEA) and left to walk freely on culture plates. Plant tissues (phloem and xylem) from adult pines were cultivated in moist chambers and also on MEA. At the same time, we inoculated pine logs with living insects in the laboratory. Four ophiostomatoid fungi appeared: Ophiostoma ips, Ophiostoma brunneo-ciliatum, Ceratocystiopsis minuta and Ophiostoma sp., as well as Graphium and Sporothrix imperfect stages. Moreover there were seven saprophytic species: Penicillium sp., Trichoderma sp., Verticillium sp., Mucor sp., Aspergillus niger, Gliocladium viride and Scopulariopsis brevicaulis, and the pathogenic Ophiostoma ips. The fructification percentage of -
Newsletter Alaska Entomological Society
Newsletter of the Alaska Entomological Society Volume 12, Issue 1, March 2019 In this issue: Some food items of introduced Alaska blackfish (Dallia pectoralis T. H. Bean, 1880) in Kenai, Alaska8 Announcements . .1 Two new records of mayflies (Ephemeroptera) Arthropods potentially associated with spruce from Alaska . 11 (Picea spp.) in Interior Alaska . .2 Changes in soil fungal communities in response to A second Alaska record for Polix coloradella (Wals- invasion by Lumbricus terrestris Linnaeus, 1758 ingham, 1888) (Lepidoptera: Gelechioidea: Oe- at Stormy Lake, Nikiski, Alaska . 12 cophoridae), the “Skunk Moth” . .5 Review of the twelfth annual meeting . 19 Announcements New research to assess the risk of ticks tat suitability and probabilistic establishment model to dis- cover the climatic limits and probability of tick survival and tick-borne pathogens in Alaska in Alaska. For more information on ticks in Alaska and to learn how you can Submit-A-Tick, please visit: https: The geographic range of many tick species has expanded //dec.alaska.gov/eh/vet/ticks (website is in develop- substantially due to changes in climate, land use, and an- ment) or contact Dr. Micah Hahn ([email protected]). imal and human movement. With Alaska trending to- wards longer summers and milder winters, there is grow- ing concern about ticks surviving further north. Recent th passive surveillance efforts in Alaska have revealed that 69 Western Forest Insect Work Confer- non-native ticks—some with significant medical and vet- ence erinary importance—are present in the state. There is a new collaborative effort between the University of Alaska, The 69th Western Forest Insect Work Conference will the Alaska Department of Fish and Game, and the Of- be held April 22–25 2019 in Anchorage, Alaska at fice of the State Veterinarian to understand the risk of the Anchorage Marriott Downtown. -
ANNUAL REPORT 2020 Plant Protection & Conservation Programs
Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County . -
Coleópteros Saproxílicos De Los Bosques De Montaña En El Norte De La Comunidad De Madrid
Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Coleópteros Saproxílicos de los Bosques de Montaña en el Norte de la Comunidad de Madrid T e s i s D o c t o r a l Juan Jesús de la Rosa Maldonado Licenciado en Ciencias Ambientales 2014 Departamento de Producción Vegetal: Botánica y Protección Vegetal Escuela Técnica Superior de Ingenieros Agrónomos Coleópteros Saproxílicos de los Bosques de Montaña en el Norte de la Comunidad de Madrid Juan Jesús de la Rosa Maldonado Licenciado en Ciencias Ambientales Directores: D. Pedro del Estal Padillo, Doctor Ingeniero Agrónomo D. Marcos Méndez Iglesias, Doctor en Biología 2014 Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid el día de de 2014. Presidente D. Vocal D. Vocal D. Vocal D. Secretario D. Suplente D. Suplente D. Realizada la lectura y defensa de la Tesis el día de de 2014 en Madrid, en la Escuela Técnica Superior de Ingenieros Agrónomos. Calificación: El Presidente Los Vocales El Secretario AGRADECIMIENTOS A Ángel Quirós, Diego Marín Armijos, Isabel López, Marga López, José Luis Gómez Grande, María José Morales, Alba López, Jorge Martínez Huelves, Miguel Corra, Adriana García, Natalia Rojas, Rafa Castro, Ana Busto, Enrique Gorroño y resto de amigos que puntualmente colaboraron en los trabajos de campo o de gabinete. A la Guardería Forestal de la comarca de Buitrago de Lozoya, por su permanente apoyo logístico. A los especialistas en taxonomía que participaron en la identificación del material recolectado, pues sin su asistencia hubiera sido mucho más difícil finalizar este trabajo. -
Coleoptera: Curculionidae: Scolytinae) from Russia and Adjacent Countries
Russian Entomol. J. 28(4): 389–399 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2019 A key to species of the tribe Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) from Russia and adjacent countries Îïðåäåëèòåëüíûå òàáëèöû âèäîâ òðèáû Hylastini LeConte, 1876 (Coleoptera: Curculionidae: Scolytinae) Ðîññèè è ñîïðåäåëüíûõ ñòðàí M.Yu. Mandelshtam1, A.V. Petrov2 Ì.Þ. Ìàíäåëüøòàì1, À.Â. Ïåòðîâ2 1 St. Petersburg State Forest Technical University named after S.M. Kirov, Institutskii per. 5, St. Petersburg 194021, Russia. E-mail: [email protected] 1 Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, 194021 Санкт- Петербург, Россия. 2 Institute of Forest Science RAS, Sovetskaya st. 21, Uspenskoe, Moscow Region 143030, Russia. E-mail: [email protected] 2 Институт лесоведения Российской академии наук, с. Успенское, ул. Советская, д. 21, 143030 Московская обл., Россия. KEY WORDS: Coleoptera, Curculionidae, Scolytinae, Hylastini, Hylastes, Hylurgops, bark beetles, taxonomy, Russia, endemics, countries of the former USSR. КЛЮЧЕВЫЕ СЛОВА: Coleoptera, Curculionidae, Scolytinae, Hylastini, Hylastes, Hylurgops, короеды, систематика, Россия, эндемики, страны бывшего СССР. ABSTRACT. Species of the tribe Hylastini Erichson, The tribe Hylastini LeConte, 1876 includes four 1836 from Russia and adjacent countries are reviewed genera of Scolytinae: Hylastes Erichson, 1836, Hylur- and keys to genera and species of the tribe are provided. gops LeConte, 1876, Scierus LeConte, 1876 and Pach- Data on synonymy, geographic distribution and host- ysquamus Mercado-Vélez et Negrón, 2014 [Wood, plants of all Hylastini species of Russia and neighboring 1986; Wood, Bright, 1992; Mercado-Vélez, Negrón, states are given in an annotated list of species. Special 2014] of which two are recorded from Russia and attention is given to a poorly known subendemic species adjacent countries. -
First Record of Hylastes Opacus Erichson and Crypturgus Hispidulus Thomson, C
Kumbaşli et al.: First records of Scolytinae species for the Turkish fauna - 4585 - FIRST RECORD OF HYLASTES OPACUS ERICHSON AND CRYPTURGUS HISPIDULUS THOMSON, C. G. (COLEOPTERA; CURCULIONIDAE; SCOLYTINAE) FOR THE TURKISH FAUNA KUMBAŞLI, M.1 – HIZAL, E.2 – ACER, S.2 – ARSLANGÜNDOĞDU, Z.2* – ADAY KAYA, A. G.3 1Department of Wildlife Ecology and Management, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Bolu, Turkey 2Department of Forest Entomology and Protection, Faculty of Forestry, Istanbul University- Cerrahpaşa, Istanbul, Turkey 3Yenişarbademli Vocational School, Applied Sciences University of Isparta, Isparta, Turkey *Corresponding author e-mail: [email protected]; phone:+90-212-338-2400/ext. 25256; fax: +90-212-338-2424 (Received 21st May 2018; accepted 11th Jul 2018) Abstract. Scolytinae subfamily (Coleoptera: Curculionidae) is represented by 135 species in Turkey including 8 species of the genus Hylastes Ericson and 7 species of the genus Crypturgus Ericson. A total of 79 adult individuals of Hylastes opacus Erichson and 6 adult individuals of Crypturgus hispidulus Thomson, C. G. were obtained from log and pheromone traps in pine stands at twelve localities during 2014. H. opacus and C. hispidulus were recorded for the first time in Turkey. H. opacus were obtained from trap logs of Pinus brutia and Pinus nigra and also pheromone traps in P. brutia stands. Adult individuals of C. hispidulus were observed in association with Orthotomicus erosus and Pityogenes pennidens on P. brutia and P. nigra log traps. Keywords: Hylastes opacus, European bark beetle, Crypturgus hispidulus, Pinus brutia, Pinus nigra, Marmara, Turkey Introduction The Scolytinae subfamily (Coleoptera: Curculionidae) is one of the largest groups of Coleoptera and it is represented by 135 species in Turkey (Wood and Bright, 1992a, b; Knížek, 1998; Selmi, 1998; Sarıkaya and Avcı, 2011; Sarıkaya 2013; Sarıkaya and Knížek, 2013; Cognato, 2015; Lieutier et al., 2016). -
(Coleoptera) from European Eocene Ambers
geosciences Review A Review of the Curculionoidea (Coleoptera) from European Eocene Ambers Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street 11, 630091 Novosibirsk, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenina Prospekt 36, 634050 Tomsk, Russia Received: 16 October 2019; Accepted: 23 December 2019; Published: 30 December 2019 Abstract: All 142 known species of Curculionoidea in Eocene amber are documented, including one species of Nemonychidae, 16 species of Anthribidae, six species of Belidae, 10 species of Rhynchitidae, 13 species of Brentidae, 70 species of Curcuionidae, two species of Platypodidae, and 24 species of Scolytidae. Oise amber has eight species, Baltic amber has 118 species, and Rovno amber has 16 species. Nine new genera and 18 new species are described from Baltic amber. Four new synonyms are noted: Palaeometrioxena Legalov, 2012, syn. nov. is synonymous with Archimetrioxena Voss, 1953; Paleopissodes weigangae Ulke, 1947, syn. nov. is synonymous with Electrotribus theryi Hustache, 1942; Electrotribus erectosquamata Rheinheimer, 2007, syn. nov. is synonymous with Succinostyphlus mroczkowskii Kuska, 1996; Protonaupactus Zherikhin, 1971, syn. nov. is synonymous with Paonaupactus Voss, 1953. Keys for Eocene amber Curculionoidea are given. There are the first records of Aedemonini and Camarotini, and genera Limalophus and Cenocephalus in Baltic amber. Keywords: Coleoptera; Curculionoidea; fossil weevil; new taxa; keys; Palaeogene 1. Introduction The Curculionoidea are one of the largest and most diverse groups of beetles, including more than 62,000 species [1] comprising 11 families [2,3]. They have a complex morphological structure [2–7], ecological confinement, and diverse trophic links [1], which makes them a convenient group for characterizing modern and fossil biocenoses.