The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M

Total Page:16

File Type:pdf, Size:1020Kb

The Freshwater Algal Flora of the British Isles: an Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M Cambridge University Press 978-0-521-19375-7 - The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M. John, Brian A. Whitton, and Alan J. Brook Table of Contents More information CONTENTS Contents of DVD vii PHYLUM CRYPTOPHYTA (Cryptomonads) G. NOVARINO 240 List of Contributors viii Foreword J.W.G. LUND x PHYLUM DINOPHYTA (Dinoflagellates) J.M. LEWIS and J.D. DODGE 250 Preface xiii Order Gymnodiniales 252 Acknowledgements xv Order Gonyaulacales 261 Order Peridiniales 262 Introduction 1 Order Phytodiniales 271 Scope of Flora 2 PHYLUM RAPHIDOPHYTA Distribution and Ecology 6 A. PENTECOST 275 History of Freshwater Algal Studies in the British Isles 9 PHYLUM HAPTOPHYTA (Prymnesiophyta) Field Methods 14 H.R. PREISIG 277 Order Pavlovales 277 Laboratory Methods 19 Order Prymnesiales 279 Water Framework Directive J. KROKOWSKI 24 PHYLUM CHRYSOPHYTA (Golden Algae) Cultures of British Freshwater Algae J.G. DAY 25 J. KRISTIANSEN and H.R. PREISIG 281 Class Chrysophyceae 281 Classification 27 Order Chromulinales 282 Key to phyla 29 Order Hibberdiales 306 Order Hydrurales 308 Colour plate section between pages 30 and 31 Class Dictyochophyceae 310 Order Pedinellales 310 Class Synurophyceae 310 CYANOBACTERIA (Cyanophyta) Order Synurales 310 B.A. WHITTON 31 Order Chroococcales 39 PHYLUM XANTHOPHYTA (Tribophyta) (Yellow-Green Algae) Order Oscillatoriales 78 L.R. JOHNSON 318 Order Nostocales 118 Order Botrydiales 319 Order Stigonematales 152 Order Mischococcales 321 Order Rhizochloridales 333 PHYLUM RHODOPHYTA (Red Algae) Order Tribonematales 333 R.G. SHEATH and A.R. SHERWOOD 159 Order Vaucheriales L.R. JOHNSON and R. MERRITT 336 Order Porphyridiales 163 Order Compsopogonales 163 PHYLUM EUSTIGMATOPHYTA Class Bangiophyceae 165 D.M. JOHN 346 Order Bangiales 165 Class Florideophyceae 165 PHYLUM BACILLARIOPHYTA (Diatoms) Order Acrochaetiales 165 M.G. KELLY and E.Y. HAWORTH 348 Order Balbianiales 167 Order Batrachospermales 167 (Brown Algae) Order Hildenbrandiales 180 PHYLUM PHAEOPHYTA J.D. WEHR 354 Order Ectocarpales 355 PHYLUM EUGLENOPHYTA (Euglenoids) K. WOŁOWSKI 181 Order Euglenales 183 PRIMITIVE GREEN ALGAE (‘PRASINOPHYTA’) Order Eutreptiales 232 Ø. MOESTRUP 358 Class Pedinophyceae 358 Order Rhabdomonadales 233 Order Sphenomonadales 234 Order Pedinomonadales 358 Order Heteronematales 236 Order Scourfieldiales 360 Order Euglenamorphales 239 Class Prasinophyceae 360 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19375-7 - The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M. John, Brian A. Whitton, and Alan J. Brook Table of Contents More information vi CONTENTS Order Mamiellales 360 Suborder Zygnematiinae 576 Order Nephroselmidiales 360 Family Zygnemataceae L.R. JOHNSON 576 Order Chlorodendrales 361 Introduction to Desmid Entries D.M. JOHN and Order Pyramimonadales 362 D.B. WILLIAMSON 608 Class Charophyceae 363 Family Mesotaeniaceae (saccoderm desmids) A.J. BROOK, Order Mesostigmatales 363 D.B. WILLIAMSON and D.M. JOHN 609 Suborder Closteriineae A.J. BROOK, D.B. WILLIAMSON and PHYLUM CHLOROPHYTA (Green Algae) D.M. JOHN 616 Key to Genera D.M. JOHN 364 Suborder Desmidiineae A.J. BROOK, D.B. WILLIAMSON and Order Tetrasporales A. PENTECOST 376 D.M. JOHN 636 Order Volvocales A. PENTECOST 381 Order Charales J.A. BRYANT and N.F. STEWART 742 Order Chlorococcales D.M. JOHN and P.M. TSARENKO 410 Order Chlorellales P.M. TSARENKO and D.M. JOHN 410 PHYLUM GLAUCOPHYTA Order Sphaeropleales P.M. TSARENKO and D.M. JOHN 419 B.A. WHITTON 766 Order Trebouxiales P.M. TSARENKO and D.M. JOHN 499 Order Oedogoniales J. HUXLEY and A. PENTECOST 500 Glossary 768 Orders Chaetophorales, Microsporales, Ulotrichales D.M. JOHN 524 Standard Form of Authors of Algal Names J.F. JOHN 777 Order Klebsormidiales F. RINDI 554 Sources of Illustrations or Material 783 Order Cladophorales D.M. JOHN 557 Order Coleochaetales D.M. JOHN 564 References 789 Order Prasiolales F. RINDI 567 Taxonomic Index 832 Order Trentepohliales F. RINDI 570 Order Ulvales I. TITTLEY 575 Subject Index 870 Order Zygnematales A.J. BROOK and L.R. JOHNSON 576 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19375-7 - The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae: Second Edition Edited by David M. John, Brian A. Whitton, and Alan J. Brook Table of Contents More information CONTENTS OF DVD Photo-catalogue: Database and Virtual Collection of 6. Some Freshwater Cryptomonads found in the British Isles Freshwater Algal Images and Habitats of the British Isles. G. NOVARINO Version 2. 7. A Photographic Guide to some British Vaucheria species P.V. YORK, D.M. JOHN and C. F. CARTER R. MERRITT and C.F. CARTER 1. Coded Checklist of British Freshwater Algae 8. Desmids in Three Dimensions – an Aid to Identification B.A. WHITTON and D.M. JOHN C.F. CARTER 2. Bibliography 9. A Pictorial Stonewort Glossary THE EDITORS C.F. CARTER 3. List of Cultures of British Freshwater Algae 10. The Algae of Yardley Chase, Northamptonshire J.G. DAY C.F. CARTER 4. William and George West: a Review of their Publications, 11. Video Recording as a Tool for Algal Identification Collections and Freshwater Algae described from the C.F. CARTER British Isles D.M. JOHN, R. HUXLEY and D.B. WILLIAMSON 5. Organisms likely to be Confused with Algae C.F. CARTER © in this web service Cambridge University Press www.cambridge.org.
Recommended publications
  • RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
    RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages.
    [Show full text]
  • APPENDIX C-3 Periphyton Taxonomical and Density Data, 2010
    KITSAULT MINE PROJECT ENVIRONMENTAL ASSESSMENT APPENDICES APPENDIX C-3 Periphyton Taxonomical and Density Data, 2010 VE51988 – Appendices Table C-3-1: Periphyton Taxonomic Composition And Density (#cells/ml) Data In Lakes, Kitsault Mine Project, 2010 FES Sample # 100534 100535 100536 100537 100538 100539 100540 100541 100542 100543 100544 100545 100546 100547 100548 Date 31-Aug- 31-Aug- 31-Aug- 31-Aug- 31-Aug- Units: # cells/ml 5-Sep-10 5-Sep-10 5-Sep-10 5-Sep-10 5-Sep-10 4-Sep-10 4-Sep-10 4-Sep-10 4-Sep-10 4-Sep-10 10 10 10 10 10 Area Sampled (cm2) 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 19.635 Location LC3-10 LC3-10 LC3-10 LC3-10 LC3-10 PC PC PC PC PC L901-O L901-O L901-O L901-O L901-O Taxonomy Order Sample 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Phylum Genera and Species Chrysophyta Centrales Melosira sp. <45.5 Bacillariophycae Pennales Achnanthes flexella (diatoms) Achnanthes lanceolata <18.4 <15.9 <20.2 Achnanthes minutissima 4,147.0 4,442.4 1,237.6 5,014.4 <25.8 8,590.0 6,516.8 1,221.6 1,684.0 23,059.8 48.7 Achnanthes spp. 858.0 370.2 309.4 470.1 111.6 407.3 39.4 <21.7 332.9 97.4 Amphipleura pellucida Anomoeoneis spp.
    [Show full text]
  • Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
    Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage).
    [Show full text]
  • Perspectives in Phycology Vol
    Perspectives in Phycology Vol. 3 (2016), Issue 3, p. 141–154 Article Published online June 2016 Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences Margot Tragin1, Adriana Lopes dos Santos1, Richard Christen2,3 and Daniel Vaulot1* 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680 Roscoff, France 2 CNRS, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France 3 Université de Nice-Sophia Antipolis, UMR 7138, Systématique Adaptation Evolution, Parc Valrose, BP71. F06108 Nice cedex 02, France * Corresponding author: [email protected] With 5 figures in the text and an electronic supplement Abstract: Green algae (Chlorophyta) are an important group of microalgae whose diversity and ecological importance in marine systems has been little studied. In this review, we first present an overview of Chlorophyta taxonomy and detail the most important groups from the marine environment. Then, using public 18S rRNA Chlorophyta sequences from culture and natural samples retrieved from the annotated Protist Ribosomal Reference (PR²) database, we illustrate the distribution of different green algal lineages in the oceans. The largest group of sequences belongs to the class Mamiellophyceae and in particular to the three genera Micromonas, Bathycoccus and Ostreococcus. These sequences originate mostly from coastal regions. Other groups with a large number of sequences include the Trebouxiophyceae, Chlorophyceae, Chlorodendrophyceae and Pyramimonadales. Some groups, such as the undescribed prasinophytes clades VII and IX, are mostly composed of environmental sequences. The 18S rRNA sequence database we assembled and validated should be useful for the analysis of metabarcode datasets acquired using next generation sequencing.
    [Show full text]
  • Xylans of Red and Green Algae: What Is Known About Their Structures and How They Are Synthesised?
    polymers Review Xylans of Red and Green Algae: What Is Known about Their Structures and How They Are Synthesised? Yves S.Y. Hsieh 1,* and Philip J. Harris 2,* 1 Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, SE-106 91 Stockholm, Sweden 2 School of Biological Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand * Correspondence: [email protected] (Y.S.Y.H.); [email protected] (P.J.H.); Tel.: +46-8-790-9937 (Y.S.Y.H.); +64-9-923-8366 (P.J.H.) Received: 30 January 2019; Accepted: 17 February 2019; Published: 18 February 2019 Abstract: Xylans with a variety of structures have been characterised in green algae, including chlorophytes (Chlorophyta) and charophytes (in the Streptophyta), and red algae (Rhodophyta). Substituted 1,4-β-D-xylans, similar to those in land plants (embryophytes), occur in the cell wall matrix of advanced orders of charophyte green algae. Small proportions of 1,4-β-D-xylans have also been found in the cell walls of some chlorophyte green algae and red algae but have not been well characterised. 1,3-β-D-Xylans occur as triple helices in microfibrils in the cell walls of chlorophyte algae in the order Bryopsidales and of red algae in the order Bangiales. 1,3;1,4-β-D-Xylans occur in the cell wall matrix of red algae in the orders Palmariales and Nemaliales. In the angiosperm Arabidopsis thaliana, the gene IRX10 encodes a xylan 1,4-β-D-xylosyltranferase (xylan synthase), and, when heterologously expressed, this protein catalysed the production of the backbone of 1,4-β-D-xylans.
    [Show full text]
  • WO 2016/096923 Al 23 June 2016 (23.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/096923 Al 23 June 2016 (23.06.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/82 (2006.01) C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/113 (2010.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 15/079893 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 15 December 2015 (15. 12.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 14307040.7 15 December 2014 (15. 12.2014) EP kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicants: PARIS SCIENCES ET LETTRES - TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, QUARTIER LATIN [FR/FR]; 62bis, rue Gay-Lussac, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 75005 Paris (FR).
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • The Phytoplankton of an Enriched, Soft-Water Lake Subject to Intermittent Hydraulic Flushing
    The phytoplankton of an enriched, soft- water lakel subject to intermittent hydraulic flushing (Grasmere, English Lake District) Item Type monograph Authors Reynolds, C.S.; Lund, J.W.G. Publisher Freshwater Biological Association Download date 01/10/2021 05:29:43 Link to Item http://hdl.handle.net/1834/22651 The Phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing. (Grasmere, English Lake District) by C.S. Reynolds and J.W.G. Lund Project Leader : C.S. Reynolds Report Date : November 1987 Report to : North West Water FBA Report Ref No. Wl/207/5 FBA Project No. 207 The phytoplankton of an enriched, soft-water lake subject to intermittent hydraulic flushing (Grasmere, English Lake District). C.S. REYNOLDS and J.W.G. LUND, Freshwater Biological Association, Windermere Laboratory, Ambleside, Cumbria LA22 OLP, U.K. Running Head : Phytoplankton of Grasmere Correspondence : C.S. Reynolds, Freshwater Biological Association, Windermere Laboratory, Ambleside, Cumbria, LA22 OLP 2 SUMMARY 1. The abundance and species composition of the phytoplankton of Grasmere were monitored over a 12-year period following the commissioning of a small sewage treatment works, upstream of the lake. 2. Although Grasmere has been subject to increased phosphorus-loading and has quickly developed many features associated with eutrophication, the composition of its plankton has retained the characteristics of a mesotrophic, soft-water lake: a vernal diatom maximum, generally dominated by Asterionella, is followed by summer growths of nanoplanktonic species, of various colonial Chlorophyceae, before a substantial return to Asterionella-dominance in the autumn. In cooler summers, there have been episodes of renewed diatom growth, followed by truncated recapitulations of the essential summer sequence.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • WO 2019/034354 Al 21 February 2019 (21.02.2019) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/034354 Al 21 February 2019 (21.02.2019) W !P O PCT (51) International Patent Classification: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, C12P 7/64 (2006.01) KM, ML, MR, NE, SN, TD, TG). (21) International Application Number: Published: PCT/EP20 18/069454 — with international search report (Art. 21(3)) (22) International Filing Date: 18 July 2018 (18.07.2018) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/546,808 17 August 2017 (17.08.2017) US 17192347.7 2 1 September 2017 (21 .09.2017) EP (71) Applicants: EVONIK DEGUSSA GMBH [DE/DE]; Rellinghauser StraBe 1-1 1, 45128 Essen (DE). DSM IP ASSETS B.V. [NL/NL]; Het Overloon 1, 641 1 TE Heerlen (NL). (72) Inventors: BURJA, Adam; 11904 Tallwood Court, Po tomac, Maryland 20854 (US). CORONA, Jim; 215 Fel- ton Road, Lutherville, Maryland 21093 (US). GAR¬ CIA, Jose R.; 8232 Red Carnation Court, Lorton, Vir ginia 22079 (US). MAIA, Goncalo Oliveira; 9442 Ma- comber Lane, Columbia, Maryland 21045 (US). PRIE- FERT, Horst; Hanfgarten 33, 48346 Ostbevern (DE). WINDAU, Joachim; Sticking 24b, 4823 1Warendorf (DE). ZAVODSKY, Gabriel; Svermova 22, 97404 Banska Bystrica (SK). (74) Agent: IOANNIDIS, Johannes; Evonik Industries AG, LIC-IP Management, Postcode 84/339, Rodenbacher Chaussee 4, Hanau 63457 (DE). (81) Designated States (unless
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]