Ig H Chains Are Sufficient to Determine Most B Cell Clonal Relationships Julian Q

Total Page:16

File Type:pdf, Size:1020Kb

Ig H Chains Are Sufficient to Determine Most B Cell Clonal Relationships Julian Q Cutting Edge: Ig H Chains Are Sufficient to Determine Most B Cell Clonal Relationships Julian Q. Zhou and Steven H. Kleinstein This information is current as J Immunol published online 4 September 2019 of September 23, 2021. http://www.jimmunol.org/content/early/2019/09/03/jimmun ol.1900666 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2019/09/03/jimmunol.190066 Material 6.DCSupplemental Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 23, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published September 4, 2019, doi:10.4049/jimmunol.1900666 Cutting Edge: Ig H Chains Are Sufficient to Determine Most B Cell Clonal Relationships Julian Q. Zhou* and Steven H. Kleinstein*,†,‡ B cell clonal expansion is vital for adaptive immunity. largely unique, with recent estimates suggesting 1 3 1016–1018 High-throughput BCR sequencing enables investigat- unique paired Abs in the circulating repertoire (2). ing this process but requires computational inference Adaptive immune repertoire receptor sequencing allows to identify clonal relationships. This inference usually for high-throughput profiling of the diverse BCR repertoire relies on only the BCR H chain, as most current pro- via full-length V(D)J sequencing in bulk (3). An ensuing tocols do not preserve H:L chain pairing. The extent to challenge is to computationally infer B cell clonal relation- which paired L chains aids inference is unknown. Us- ships (4). This step is of great importance as the assessment ing human single-cell paired BCR datasets, we assessed of repertoire properties such as diversity (5) depends on the Downloaded from the ability of H chain–based clonal clustering to iden- proper identification of clones, as does the reconstruction of tify clones. Of the expanded clones identified, ,20% B cell clonal lineages (6) for tracing isotype switching (7) and grouped cells expressing inconsistent L chains. H chains Ag-specific (8) Abs. To infer clones, differences at the se- from these misclustered clones contained more distant quence nucleotide level, especially the high diversity in the junction sequences and shared fewer V segment muta- CDR3 region, can serve as “fingerprints” (9). Likelihood- tions than the accurate clones. This suggests that addi- based (10) and distance-based (11–14) approaches exist. For http://www.jimmunol.org/ tional H chain information could be leveraged to refine instance, cells sharing the same IGHV and IGHJ genes and clonal relationships. Conversely, L chains were in- whose H chain junctional sequences are sufficiently similar sufficient to refine H chain–based clonal clusters. based on a fixed (11–13) or adaptive (14) distance threshold Overall, the BCR H chain alone is sufficient to identify may be clustered as clones. For validation, existing methods clonal relationships with confidence. The Journal of used simulated and experimental H chain sequences (10, 13, Immunology, 2019, 203: 000–000. 14), measuring the fractions of sequences inferred to be clonally unrelated and related of being, respectively, truly un- related and related (specificity and sensitivity). Recently, Nouri by guest on September 23, 2021 cell–mediated immunity relies on Ig Abs produced and Kleinstein (14) reported both metrics at over 96% based as a result of B cell clonal expansion. A BCR is the on simulated data. B membrane-bound form of an Ab and is made up of The majority of current BCR repertoire studies utilize bulk H and L chains paired in a heterodimeric fashion. Each chain sequencing (15), during which VH:VL pairing is lost (16). contains a variable (V) region, and together, the V regions In the absence of VH:VL pairing, computational methods from the H and L chains form the Ag-binding sites. The V for identifying clones have focused on H chain BCR data. regions are formed via V(D)J recombination. In human, This is justified under the assumption that H chain junc- this shuffling process brings together one gene each from tional diversity alone should be sufficiently high such that, numerous IGHV, IGHD, and IGHJ genes for the H chain even without L chains, the likelihood of clonally unrelated V (VH) region and one gene each from either IGKV and cells being clustered together will be negligibly small (13). IGKJ genes or IGLV and IGLJ genes for, respectively, the This reasoning has yet to be rigorously tested with experimental k or the l L chain V (VL) region. Enzyme-mediated editing data. Recent breakthroughs in single-cell BCR sequencing of the V(D)J junctions and the pairing of H and L chains technology have enabled the recovery of native VH:VL pair- inject additional diversity (1). During adaptive immune re- ing (17, 18). We now have the opportunity to investigate the sponses, B cells proliferate and further diversify via somatic extent to which the inclusion of L chains impacts the ability to hypermutation (SHM), forming clones consisting of cells that accurately detect B cell clonal relationships. originated from the same V(D)J recombinant events yet whose Using single-cell VH:VL paired BCR data, we assessed the BCRs differ at the nucleotide level. As a result, each BCR is performance of H chain–based computational methods for *Interdepartmental Program in Computational Biology and Bioinformatics, Yale Address correspondence and reprint requests to Dr. Steven H. Kleinstein, Yale School University, New Haven, CT 06511; †Department of Pathology, Yale School of Medi- of Medicine, 300 George Street, Suite 505, New Haven, CT 06511. E-mail address: cine, New Haven, CT 06520; and ‡Department of Immunobiology, Yale School of [email protected] Medicine, New Haven, CT 06520 The online version of this article contains supplemental material. ORCIDs: 0000-0001-9602-2092 (J.Q.Z.); 0000-0003-4957-1544 (S.H.K.). Abbreviations used in this article: NSCLC, non–small cell lung carcinoma; SHM, Received for publication June 18, 2019. Accepted for publication August 2, 2019. somatic hypermutation; V, variable; VH, H chain V; VJL, V-J-junction-length; VL, L chain V. This work was supported in part by the National Institutes of Health under Award R01AI104739. Copyright Ó 2019 by The American Association of Immunologists, Inc. 0022-1767/19/$37.50 www.jimmunol.org/cgi/doi/10.4049/jimmunol.1900666 2 CUTTING EDGE: H CHAINS CAN DETERMINE CLONES WITH CONFIDENCE identifying clones by measuring the extent to which the in- Calculation of the number and frequency of nucleotide mutations ferred clonal members expressed consistent L chains sharing The number and frequency of nucleotide mutations were calculated based the same V and J genes and junction length. We conclude that on IGH/K/LV positions leading up to the junction region using the clonal members of the majority of the inferred clones exhibited “calcObservedMutations” function from SHazaM (v0.1.10) (22). To calculate the number of IGHV mutations shared pairwise between cells L chain consistency. For the majority of the accurately inferred from the same clone, we counted the number of positions at which mutations H chain–based clones, L chain information did not lead to involving the same nucleotide change were observed in both cells. further clonal clustering with greater granularity. At least some of the information gained from paired L chain data were Results apparent when considering the pattern of shared mutations in We performed clonal relationship inference for five single-cell, the H chain V segment, which is not considered in current VH:VL paired, human BCR datasets, using only the H chain distance–based clonal clustering methods, thus offering the sequence from each cell. The datasets included four publicly potential for further improvements in H chain–based clonal available ones from 10x Genomics and one described by (19) inference. (Materials and Methods). Of these, the B lymphoblastoid GM12878 cell line dataset served as a positive control, as Materials and Methods any cells present in a cell line culture can be expected to Single-cell immune profiling datasets comprise genetically identical clonal members. A distance- Four human datasets (Supplemental Fig. 1A) published by 10x Genomics for based spectral clustering method (14) was applied to identify public use on August 1, 2018 were accessed (https://support.10xgenomics.com/ clones for each dataset. The datasets contained between 3 and Downloaded from single-cell-vdj/datasets) on November 3, 2018. Two datasets were sorted and produced by direct Ig enrichment of, respectively, CD19+ B cells isolated from 157 nonsingleton clones (i.e., clones containing at least two PBMCs from a healthy donor, and GM12878 B lymphoblastoid cell line. They cells) (Table I). Because of the small number of clones in each contain VH:VL paired reads for individual cells. The other two datasets were of the six food-allergic individuals in the dataset from (19), we unsorted and produced by V(D)J+59 gene expression profiling of, respectively, aggregated those results for display after performing analysis PBMCs from a healthy donor and squamous non–small cell lung carcinoma (NSCLC) cells from a fresh surgical resection. These contain gene expres- on a per-subject basis.
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • Λ-Light Chain and Igg-Heavy Chain Constant Regions
    Detection of new allotypic variants of bovine antibody -light chain and IgG-heavy chain constant regions Dissertation To obtain the Ph.D. degree In the International Ph. D. Program for Agricultural Sciences in Goettingen (IPAG) At the Faculty of Agricultural Sciences, Georg-August-University Goettingen, Germany Presented by Dalia Mohamed Hemdan Aboelhassan born in Cairo, Egypt Göttingen, 2012 D7 Referent: Prof. Dr. Dr. Claus-Peter Czerny Co-referent: Prof. Dr. Sven König Date of dissertation: 03.02.2012 Contents I Contents Abbreviations 1 INTRODUCTION ................................................................................................................ 1 2 REVIEW OF LITERATURE .............................................................................................. 2 2.1 IMMUNOGLOBULIN (IG) ........................................................................................................... 2 2.2 BOVINE IMMUNOGLOBULINS ................................................................................................... 5 2.3 BOVINE IMMUNOGLOBULIN HEAVY CHAINS .......................................................................... 6 2.3.1 Bovine immunoglobulin M (IgM) ................................................................................... 6 2.3.2 Bovine immunoglobulin D (IgD) .................................................................................... 7 2.3.3 Bovine immunoglobulin E (IgE) ..................................................................................... 8 2.3.4 Bovine immunoglobulin
    [Show full text]
  • Pulmonary Extranodal Marginal Zone Lymphoma That Presented
    lin Journal of clinical and experimental hematopathology JC Vol. 58 No.3, 141-147, 2018 EH xp ematopathol Case report Pulmonary extranodal marginal zone lymphoma that presented with macroglobulinemia and marked plasmacytic cell proliferation carrying the t(14;18)(q32;q21)/MALT1- immunoglobulin heavy-chain fusion gene in pleural fluid Takashi Akasaka,1) Chiyuki Kishimori,2) Fumiyo Maekawa,2) Kayo Takeoka,2) 2) 3) 3) 1),2) Masahiko Hayashida, Hiroshi Gomyo, Tohru Murayama, and Hitoshi Ohno An 80-year-old man presented with the accumulation of pleural fluid in the right thoracic cavity. Serum electrophoresis revealed an M-component and immunofixation confirmed IgM/λ. The level of IgM was 1,526 mg/dL. Imaging studies showed an infil- trative condition of the ipsilateral lung parenchyma. The fluid contained abundant neoplastic cells with the morphological and immunophenotypic features of plasma cells, which expressed IgM/λ monoclonal immunoglobulins on the cell surface and in the cytoplasm. The karyotype was 48,XY,+3,add(9)(p13),+12,add(14)(q32),del(16)(q22),−18,+mar, and a series of fluores- cence in situ hybridization studies demonstrated that the add(14) chromosome represented der(14)t(14;18)(q32;q21), at which the MALT1-immunoglobulin heavy-chain (IGH) fusion gene was localized. A long-distance polymerase chain reaction ampli- fied the fragment encompassing the two genes, showing that the junction occurred at the J6 segment of IGH and 3.7-kb upstream of the MALT1 breakpoint cluster. We propose that this case represents an extreme form of the plasmacytic differenti- ation of extranodal marginal zone lymphoma that developed in the lung.
    [Show full text]
  • Absence of Surface Igd Does Not Impair Naive B Cell Homeostasis and Memory B Cell
    bioRxiv preprint doi: https://doi.org/10.1101/332361; this version posted May 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Absence of surface IgD does not impair naive B cell homeostasis and memory B cell formation in humans J. Nechvatalova,1,2 S.J.W. Bartol,3 Z. Chovancova,1,2 L. Boon,4 M. Vlkova,1,2 M.C. van Zelm3,5* 1Dept. Clinical Immunology and Allergology, St Anne´s University Hospital in Brno, the Czech Republic 2Faculty of Medicine, Masaryk University, Brno, the Czech Republic 3Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands 4Bioceros B.V., Utrecht, the Netherlands 5Dept. Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia One Sentence Summary: Human B cells with a genetic defect in IGHD develop normally in vivo, and do not have a competitive disadvantage to IgD-expressing B cells for developing into memory B cells. * Address correspondence to: Menno C. van Zelm, Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6 Burnet Centre, 89 Commercial Rd, Melbourne VIC 3004, Australia; Email: [email protected] Conflict of interest: The authors have declared that no conflict of interest exists. Key words: IgD; B cell; inherited gene defect; antibody; memory; immunodeficiency; auto- immunity; surface immunoglobulin 1 bioRxiv preprint doi: https://doi.org/10.1101/332361; this version posted May 28, 2018.
    [Show full text]
  • Immunoglobulin Heavy) Marie-Paule Lefranc IMGT, LIGM, IGH, UPR CNRS 1142, 141 Rue De La Cardonille, 34396 Montpellier Cedex 5, France (MPL)
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review IGH@ (Immunoglobulin Heavy) Marie-Paule Lefranc IMGT, LIGM, IGH, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France (MPL) Published in Atlas Database: September 2003 Online updated version: http://AtlasGeneticsOncology.org/Genes/IgHID40.html DOI: 10.4267/2042/38013 This article is an update of : Lefranc MP. IGH (immunoglobulin heavy). Atlas Genet Cytogenet Oncol Haematol.2000;4(3):107-110. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2003 Atlas of Genetics and Cytogenetics in Oncology and Haematology depending from the haplotypes, 27 IGHD segments Identity belonging to 7 subgroups, 9 IGHJ segments, and 11 Other names: IGH (Immunoglobulin Heavy) IGHC genes. HGNC (Hugo): IGH@ Eighty-two to 88 IGHV genes belong to 7 subgroups, whereas 41 pseudogenes, which are too divergent to be Location: 14q32.33 assigned to subgroups, have been assigned to 4 clans. Note Seven non-mapped IGHV genes have been described The human IGH locus is located on the chromo-some as insertion/deletion polymorphism but have not yet 14 at band 14q32.33, at the telomeric extremity of the been precisely located. long arm; the orientation of the locus has been The most 5' IGHV genes occupy a position very close determined by the analysis of translocations, involving to the chromosome 14q telomere whereas the IGHC the IGH locus, in leukemia and lymphoma. genes are in a more centromeric position. The potentiel genomic IGH repertoire is more limited since it comprises 38-46 functional IGHV genes belonging to 6 or 7 subgroups depending from the haplotypes 23 IGHD, 6 IGHJ, and 9 IGHC genes.
    [Show full text]
  • Ig Light Chain Precedes Heavy Chain Gene Rearrangement During Development of B Cells in Swine
    Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine This information is current as Marek Sinkora, Jana Sinkorova and Katerina Stepanova of September 27, 2021. J Immunol 2017; 198:1543-1552; Prepublished online 9 January 2017; doi: 10.4049/jimmunol.1601035 http://www.jimmunol.org/content/198/4/1543 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/01/06/jimmunol.160103 Material 5.DCSupplemental References This article cites 43 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/198/4/1543.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine Marek Sinkora, Jana Sinkorova, and Katerina Stepanova The current mammalian paradigm states that 1) rearrangements in the IgH locus precede those in IgL loci, 2) IgLl genes rearrange only when IgLk genes are consumed, and 3) the surrogate L chain is necessary for selection of productive IgH gene rearrange- ments.
    [Show full text]
  • The Diagnostic Significance of Immunoglobulin Light Chain Gene Expression Signatures by Gene Expression Profiling for B-Cell Lymphoma
    Research Article Remedy Open Access Published: 26 Jul, 2016 The Diagnostic Significance of Immunoglobulin Light Chain Gene Expression Signatures by Gene Expression Profiling for B-Cell Lymphoma James Z. Huang1*, Rita M. Braziel2, Guang Fan2, Louis M. Staudt3 and Wing C. Chan4 1Departments of Pathology and Laboratory Medicine, Oakland University William Beaumont School of Medicine, USA 2Departments of Pathology, Oregon Health & Science University, USA 3Metabolism Branch, Division of Clinical Sciences, National Institutes of Health, USA 4Departments of Pathology, City of Hope National Medical Center, USA Abstract Gene expression profiling (GEP) has been shown to have great potential to become a powerful diagnostic tool for lymphoma classification. However, it is not clear whether the expression pattern of immunoglobulin light chain genes defined by GEP can be used as a diagnostic signature to differentiate B-cell lymphoma from B-cell hyperplasia. To assess the difference in expression signatures of kappa and lambda genes among samples from reactive tonsils, normal peripheral bloods, chronic lymphocytic leukemias (CLL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), GEP data available from the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) were reanalyzed. A normal reference range of kappa and lambda light chain gene expression was defined by analysis of polyclonal B-cells from normal peripheral bloods and tonsils. Restricted light chain gene expression was detected in 100% (11/11) of CLL, in 83% (5/6) of FL, and 67% (198 of 296) of DLBCL. Our findings provide the evidence for the concept that immunoglobulin OPEN ACCESS light chain restriction can be determined at the gene transcription level by GEP microarray in most *Correspondence: of B-cell malignancies.
    [Show full text]
  • Insights Into the Function of Igd
    Developmental and Comparative Immunology 35 (2011) 1309–1316 Contents lists available at ScienceDirect Developmental and Comparative Immunology journal homepage: www.elsevier.com/locate/dci Insights into the function of IgD Eva-Stina Edholm, Eva Bengten, Melanie Wilson ∗ University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, United States article info abstract Article history: IgD, previously thought to be a recent addition to the immunoglobulin classes, has long been consid- Available online 15 March 2011 ered an enigmatic molecule. For example, it was debated if IgD had a specific function other than as an antigen receptor co-expressed with IgM on naive B cells and if it had an important role in mammalian Keywords: immunity. However, during the past decade extensive sequencing of vertebrate genomes has shown that Teleosts IgD homologs are present in all vertebrate taxa, except for birds. Moreover, recent functional studies Immunoglobulin indicate that IgD likely performs a unique role in vertebrate immune responses. The goal of this review is IgD to summarize the IgD gene organization and structural data, which demonstrate that IgD has an ancient Alternative splicing B cells origin, and discuss the findings in catfish and humans that provide insight into the possible function of this elusive immunoglobulin isotype. © 2011 Elsevier Ltd. All rights reserved. 1. Introduction (Gambon-Deza et al., 2010), and Atlantic salmon, Salmo salar (Tadiso et al., 2010). However, PCR and genomic sequencing stud- It is well
    [Show full text]
  • Genetic Diversity of IGHM and IGHE in the Leporids Revealed Different
    animals Article Genetic Diversity of IGHM and IGHE in the Leporids Revealed Different Patterns of Diversity in the Two European Rabbit Subspecies (O. cuniculus algirus and O. c. cuniculus) Ana Pinheiro 1,*, Tereza Almeida 1,2 and Pedro J. Esteves 1,2,3 1 CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; [email protected] (T.A.); [email protected] (P.J.E.) 2 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 3 CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra PRD, Portugal * Correspondence: [email protected]; Tel.: +00351-252-660-411 Received: 7 October 2019; Accepted: 8 November 2019; Published: 12 November 2019 Simple Summary: The study of European rabbit immunoglobulin genes has contributed decisively to the current knowledge on antibody structure and diversification. The European rabbit has also been increasingly used as an animal model for the study of many human diseases, such as syphilis, tuberculosis, and AIDS. As such, the study of its immune system genes is of crucial relevance, but the study of rabbit immunoglobulins has focused only on the IgG and IgA antibodies. In this study, we added to the knowledge of the rabbit immune system by investigating the genetic diversity of two antibodies, IgM and IgE, in wild and domestic rabbits as well as other rabbit close species. With the data obtained in this study, we showed a high similarity between the different rabbit close species studied and we pointed out important genetic differences in the wild and domestic rabbits.
    [Show full text]
  • University of Groningen Influenza Vaccination-Induced B Cell
    University of Groningen Influenza vaccination-induced B cell response in monoclonal gammopathy of undetermined significance (MGUS) Tete, Sarah IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tete, S. (2014). Influenza vaccination-induced B cell response in monoclonal gammopathy of undetermined significance (MGUS). [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 02-10-2021 CHAPTER Monoclonal paraprotein influences baseline B cell repertoire diversity and pertubates influenza vaccination-induced 5 B cell response Sarah M.
    [Show full text]
  • 36-2559: Anti-Igm (Immunoglobulin Mu Heavy Chain) (B-Cell Marker) Monoclonal Antibody(Clone: IGHM/3135R)
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 36-2559: Anti-IgM (Immunoglobulin Mu Heavy Chain) (B-Cell Marker) Monoclonal Antibody(Clone: IGHM/3135R) Clonality : Monoclonal Clone Name : IGHM/3135R Application : IHC Reactivity : Human Gene : IGHM Gene ID : 3507 Uniprot ID : P01871; P20769 Alternative Name : AGM1; IGHM; Constant Region of Heavy Chain of IgM; Ig Mu Chain C Region Isotype : Rabbit IgG Immunogen Information : Recombinant full-length human IGHM protein Description Recognizes a protein of 75kDa, identified as mu heavy chain of human immunoglobulins. It does not cross-react with alpha (IgA), gamma (IgG), epsilon (IgE), or delta (IgD), heavy chains, T-cells, monocytes, granulocytes, or erythrocytes. Monomeric IgM is expressed as a membrane bound antibody on the surface of B cells and as a pentamer when secreted by plasma cells. IgM antibody is prominent in early immune responses to most antigens. Aberrant levels are associated with immune deficiency states, hereditary deficiencies, myeloma, Waldenstrom's macroglobulinemia, chronic infection and hepatocellular disease. This MAb is useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. The most common feature of these malignancies is the restricted expression of a single heavy chain class. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is clonal and therefore malignant. Product Info Amount : 20 µg / 100 µg 200 µg/ml of Ab Purified from Bioreactor Concentrate by Protein A/G. Prepared in 10mM PBS with Content : 0.05% BSA & 0.05% azide. Also available WITHOUT BSA & azide at 1.0mg/ml.
    [Show full text]
  • The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia
    RESEARCH ARTICLE The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia Dongfeng Chen1, Junxiong Zheng1, Natalija Gerasimcik1, Kristina Lagerstedt1, Helene Sjögren2, Jonas Abrahamsson3, Linda Fogelstrand2,4, Inga-Lill Mårtensson1* a11111 1 Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden, 2 Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden, 3 Queen Silvia Children’s Hospital, Gothenburg, Sweden, 4 Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden * [email protected] OPEN ACCESS Abstract Citation: Chen D, Zheng J, Gerasimcik N, Lagerstedt K, Sjögren H, Abrahamsson J, et al. (2016) The Precursor-B cell receptor (pre-BCR) signaling represents a crucial checkpoint at the pre-B Expression Pattern of the Pre-B Cell Receptor cell stage. Aberrant pre-BCR signaling is considered as a key factor for B-cell precursor Components Correlates with Cellular Stage and acute lymphoblastic leukemia (BCP-ALL) development. BCP-ALL are believed to be Clinical Outcome in Acute Lymphoblastic Leukemia. PLoS ONE 11(9): e0162638. doi:10.1371/journal. arrested at the pre-BCR checkpoint independent of pre-BCR expression. However, the cel- pone.0162638 lular stage at which BCP-ALL are arrested and whether this relates to expression of the pre- Editor: Connie J Eaves, B.C. Cancer Agency, BCR components (IGHM, IGLL1 and VPREB1) is still unclear. Here, we show differential CANADA protein expression and copy number variation (CNV) patterns of the pre-BCR components Received: June 27, 2016 in pediatric BCP-ALL.
    [Show full text]