Zinc-Finger Protein ZFP318 Is Essential for Expression of Igd, the Alternatively Spliced Igh Product Made by Mature B Lymphocytes

Total Page:16

File Type:pdf, Size:1020Kb

Zinc-Finger Protein ZFP318 Is Essential for Expression of Igd, the Alternatively Spliced Igh Product Made by Mature B Lymphocytes Zinc-finger protein ZFP318 is essential for expression of IgD, the alternatively spliced Igh product made by mature B lymphocytes Anselm Endersa,1, Alanna Shorta, Lisa A. Miosgea, Hannes Bergmanna, Yovina Sontania, Edward M. Bertrama,b, Belinda Whittleb, Bhavani Balakishnanb, Kaoru Yoshidac, Geoff Sjollemab, Matthew A. Fielda, T. Daniel Andrewsa,b, Hiromi Hagiwarac, and Christopher C. Goodnowa,1 aDepartment of Immunology and bAustralian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; and cDepartment of Biomedical Engineering, Toin University of Yokohama, Aoba-ku, Yokohama 225-8503, Japan Contributed by Christopher C. Goodnow, February 13, 2014 (sent for review January 14, 2014) IgD and IgM are produced by alternative splicing of long primary of separate LHV, D, and J elements in pre-B cells. Downstream RNA transcripts from the Ig heavy chain (Igh) locus and serve as from the VDJH exon are six Ighm constant region exons encoding the receptors for antigen on naïve mature B lymphocytes. IgM is the extracellular and transmembrane segments of membrane IgM, made selectively in immature B cells, whereas IgD is coexpressed then five Ighd constant region exons encoding the corresponding with IgM when the cells mature into follicular or marginal zone B segments of IgD, and finally similar sets of Ighg, Ighe,orIgha exons cells, but the transacting factors responsible for this regulated encoding the constant regions of IgG, IgE, and IgA. Isotype change in splicing have remained elusive. Here, we use a genetic switching results from further DNA recombination within the locus screen in mice to identify ZFP318, a nuclear protein with two U1-type that deletes the Ighm and Ighd exons and brings either the Ighg, Ighe Igha ′ VDJ zinc fingers found in RNA-binding proteins and no known role in ,or exons immediately 3 to the H exon, so that the latter is spliced to IgG, IgE, or IgA constant region exons in the the immune system, as a critical factor for IgD expression. A point resulting mRNA (6–8). IgD is the exception, however, because most mutation in an evolutionarily conserved lysine-rich domain B cells do not express IgD by DNA recombination but instead encoded by the alternatively spliced Zfp318 exon 10 abolished via a reversible, developmentally regulated process of alterna- IMMUNOLOGY IgD expression on marginal zone B cells, decreased IgD on follic- tive mRNA splicing of the VDJH exon to the Ighm and Ighd exons ular B cells, and increased IgM, but only slightly decreased the (5, 9, 10). This unique arrangement for coexpression of IgM and percentage of B cells and did not decrease expression of other IgD mRNA by alternative splicing is conserved in bony fish, maturation markers CD21, CD23, or CD62L. A targeted Zfp318 amphibians, reptiles, monotremes, and mammals (11), yet it is not null allele extinguished IgD expression on mature B cells and known how IgD mRNA is selectively produced in mature B cells. increased IgM. Zfp318 mRNA is developmentally regulated in Pre-B cells and immature B cells express very little IgD parallel with IgD, with little in pro-B cells, moderate amounts mRNA and express only IgM, despite transcribing the Ighd exons in immature B cells, and high levels selectively in mature follicu- at levels that are often only two- to threefold lower than the Ighm + − + lar B cells. These findings identify ZFP318 as a crucial factor reg- exons and not differing between IgD and IgD IgM B cells, ulating the expression of the two major antibody isotypes on the when measured by RNA-polymerase run-on experiments in surface of most mature B cells. isolated nuclei (12–16). These results have led to the hypothesis that 25-kb-long Igh pre-mRNA transcripts traverse from the IgHm | IgHd | immunoglobulin isotype | ENU mutation VDJH exon through the Ighd exons in both immature and mature g isotypes with different heavy (H)-chain constant regions are Significance Imade by B lymphocytes in a developmentally regulated series (1). The different antibody isotypes serve as cell surface markers Mammalian B lymphocytes make antibodies of five different of B-cell maturation, as functionally distinct receptors for B-cell heavy chain isotypes, IgM, IgD, IgG, IgE, and IgA. The different activation by antigens and as secreted mediators of different anti- isotypes are produced at discrete stages in B-cell development body effector functions (2). All B cells begin as immature B cells in from a single immunoglobulin heavy chain (Igh) gene, either by bone marrow or fetal liver that express only the IgM isotype on their irreversible rearrangement of the gene to make IgG, IgE, or IgA cell surface (3), comprised of H chains with an N-terminal variable or by alternative splicing of the RNA transcribed from the Igh domain and C-terminal constant region domains, transmem- gene to coexpress IgM and IgD. Developmentally regulated brane segment, and cytoplasmic tail, paired with Ig light chains. trans-acting factors have been hypothesized to control IgM Maturation into follicular B cells, which recirculate among the and IgD expression from large Igh RNAs, but these factors have spleen, lymph nodes, and other secondary lymphoid tissues, is remained elusive for several decades. Here, using a genome- marked by coexpression of a second isotype, IgD. Each mature wide mutation screen in mice, we identify an obscure gene, follicular B cells displays a mixture of cell surface B-cell receptors Zfp318, as encoding a specific and essential factor promoting (BCRs) comprising the same variable domain joined to either IgD IgD expression in mature B cells. or IgM constant regions, with greater levels of IgD than IgM (4, 5). B cells undergo isotype switching after activation by microbial Author contributions: A.E., A.S., L.A.M., H.B., Y.S., E.M.B., B.W., B.B., G.S., M.A.F., T.D.A., and C.C.G. designed research; A.E., A.S., L.A.M., H.B., Y.S., B.W., B.B., G.S., M.A.F., T.D.A., antigens and helper T cells: They irreversibly lose IgM and IgD and and C.C.G. performed research; K.Y. and H.H. contributed new reagents/analytic tools; switch to expressing the same variable domain linked to IgG, IgA, A.E., A.S., L.A.M., H.B., Y.S., E.M.B., B.W., B.B., G.S., M.A.F., T.D.A., and C.C.G. analyzed or IgE constant region domains. Although the process of isotype data; A.E. and C.C.G. wrote the paper. switching to IgG, IgA, and IgE is well understood, the mechanism The authors declare no conflict of interest. for developmentally regulated IgD expression remains obscure. Freely available online through the PNAS open access option. The developmental order of antibody isotype expression is 1To whom correspondence may be addressed. E-mail: [email protected] or reflected in the layout of the Ig heavy chain locus, Igh.Insurface [email protected]. + IgM immature B cells, transcription begins with two variable This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. exons (LH and VDJH) formed by intrachromosomal recombination 1073/pnas.1402739111/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1402739111 PNAS Early Edition | 1of6 Downloaded by guest on September 30, 2021 B cells, but an unknown transacting factor alters splicing either by decreased IgD and increased IgM on mature B cells (Fig. 1 A by: (i) promoting RNA cleavage at Ighm polyadenylation sites in and B). Homozygotes had one-third as much IgD as wild-type immature B cells to preclude VDJH splicing to Ighd;or(ii) si- littermates and unrelated controls, whereas heterozygotes had an lencing Ighm cleavage and polyadenylation sites in mature B ∼25% decrease. The frequency of B cells was slightly reduced cells to allow splicing to Ighd (13). In some immature B cells, (Table 1). Exome sequencing of an affected animal followed by failure to express IgD also appears to reflect unloading of genotyping of candidate mutations in a large cohort of siblings RNA Pol II at an attenuation region 3′ to Ighm and 5′ to Ighd, and offspring revealed that the low IgD trait was completely cor- but when this region is removed, there is still little splicing to related with inheritance of a point mutation in the gene encoding IgD (16, 17). In contrast, in terminally differentiated plasma zinc-finger protein (ZFP) 318. cells, transcription termination occurs upstream of Ighd,re- ZFP318 is also called testicular zinc-finger protein (TZF) and sulting in very low expression of Ighd mRNA. has been implicated in transcriptional regulation in testes with Although differential expression of IgM and IgD was one of the genetic deficiency causing infertility in mice (18–21) but has no first examples of developmentally regulated alternative mRNA known function in the immune system. Microarray comparisons splicing, progress to understand its basis has stalled because it has of gene expression in B-cell subsets have identified Zfp318 as not been possible to identify the nature of the transacting factors. a member of a set of mRNAs that increases during maturation of Here, we use a phenotype-driven genetic screen in mice to identify immature B cells into mature follicular B cells (22–24). By ana- a gene that fulfils the criteria for encoding the elusive trans- lyzing flow-sorted B-cell subsets, we confirmed expression of activating factor promoting IgD expression. Zfp318 mRNA closely parallels IgD heavy chain (Ighd) mRNA during B-cell development (Fig. 1C). There was very little Zfp318 Results in pro-B cells in the bone marrow, moderate amounts in imma- + − Identification of a Missense Mutation in Zfp318 Causing Decreased ture (CD93 , CD62L ) B cells in the spleen, and high amounts in − + IgD and Increased IgM.
Recommended publications
  • IDF Patient & Family Handbook
    Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficiency Diseases This book contains general medical information which cannot be applied safely to any individual case. Medical knowledge and practice can change rapidly. Therefore, this book should not be used as a substitute for professional medical advice. FIFTH EDITION COPYRIGHT 1987, 1993, 2001, 2007, 2013 IMMUNE DEFICIENCY FOUNDATION Copyright 2013 by Immune Deficiency Foundation, USA. REPRINT 2015 Readers may redistribute this article to other individuals for non-commercial use, provided that the text, html codes, and this notice remain intact and unaltered in any way. The Immune Deficiency Foundation Patient & Family Handbook may not be resold, reprinted or redistributed for compensation of any kind without prior written permission from the Immune Deficiency Foundation. If you have any questions about permission, please contact: Immune Deficiency Foundation, 110 West Road, Suite 300, Towson, MD 21204, USA; or by telephone at 800-296-4433. Immune Deficiency Foundation Patient & Family Handbook for Primary Immunodeficency Diseases 5th Edition This publication has been made possible through a generous grant from Baxalta Incorporated Immune Deficiency Foundation 110 West Road, Suite 300 Towson, MD 21204 800-296-4433 www.primaryimmune.org [email protected] EDITORS R. Michael Blaese, MD, Executive Editor Francisco A. Bonilla, MD, PhD Immune Deficiency Foundation Boston Children’s Hospital Towson, MD Boston, MA E. Richard Stiehm, MD M. Elizabeth Younger, CPNP, PhD University of California Los Angeles Johns Hopkins Los Angeles, CA Baltimore, MD CONTRIBUTORS Mark Ballow, MD Joseph Bellanti, MD R. Michael Blaese, MD William Blouin, MSN, ARNP, CPNP State University of New York Georgetown University Hospital Immune Deficiency Foundation Miami Children’s Hospital Buffalo, NY Washington, DC Towson, MD Miami, FL Francisco A.
    [Show full text]
  • Λ-Light Chain and Igg-Heavy Chain Constant Regions
    Detection of new allotypic variants of bovine antibody -light chain and IgG-heavy chain constant regions Dissertation To obtain the Ph.D. degree In the International Ph. D. Program for Agricultural Sciences in Goettingen (IPAG) At the Faculty of Agricultural Sciences, Georg-August-University Goettingen, Germany Presented by Dalia Mohamed Hemdan Aboelhassan born in Cairo, Egypt Göttingen, 2012 D7 Referent: Prof. Dr. Dr. Claus-Peter Czerny Co-referent: Prof. Dr. Sven König Date of dissertation: 03.02.2012 Contents I Contents Abbreviations 1 INTRODUCTION ................................................................................................................ 1 2 REVIEW OF LITERATURE .............................................................................................. 2 2.1 IMMUNOGLOBULIN (IG) ........................................................................................................... 2 2.2 BOVINE IMMUNOGLOBULINS ................................................................................................... 5 2.3 BOVINE IMMUNOGLOBULIN HEAVY CHAINS .......................................................................... 6 2.3.1 Bovine immunoglobulin M (IgM) ................................................................................... 6 2.3.2 Bovine immunoglobulin D (IgD) .................................................................................... 7 2.3.3 Bovine immunoglobulin E (IgE) ..................................................................................... 8 2.3.4 Bovine immunoglobulin
    [Show full text]
  • Pulmonary Extranodal Marginal Zone Lymphoma That Presented
    lin Journal of clinical and experimental hematopathology JC Vol. 58 No.3, 141-147, 2018 EH xp ematopathol Case report Pulmonary extranodal marginal zone lymphoma that presented with macroglobulinemia and marked plasmacytic cell proliferation carrying the t(14;18)(q32;q21)/MALT1- immunoglobulin heavy-chain fusion gene in pleural fluid Takashi Akasaka,1) Chiyuki Kishimori,2) Fumiyo Maekawa,2) Kayo Takeoka,2) 2) 3) 3) 1),2) Masahiko Hayashida, Hiroshi Gomyo, Tohru Murayama, and Hitoshi Ohno An 80-year-old man presented with the accumulation of pleural fluid in the right thoracic cavity. Serum electrophoresis revealed an M-component and immunofixation confirmed IgM/λ. The level of IgM was 1,526 mg/dL. Imaging studies showed an infil- trative condition of the ipsilateral lung parenchyma. The fluid contained abundant neoplastic cells with the morphological and immunophenotypic features of plasma cells, which expressed IgM/λ monoclonal immunoglobulins on the cell surface and in the cytoplasm. The karyotype was 48,XY,+3,add(9)(p13),+12,add(14)(q32),del(16)(q22),−18,+mar, and a series of fluores- cence in situ hybridization studies demonstrated that the add(14) chromosome represented der(14)t(14;18)(q32;q21), at which the MALT1-immunoglobulin heavy-chain (IGH) fusion gene was localized. A long-distance polymerase chain reaction ampli- fied the fragment encompassing the two genes, showing that the junction occurred at the J6 segment of IGH and 3.7-kb upstream of the MALT1 breakpoint cluster. We propose that this case represents an extreme form of the plasmacytic differenti- ation of extranodal marginal zone lymphoma that developed in the lung.
    [Show full text]
  • Absence of Surface Igd Does Not Impair Naive B Cell Homeostasis and Memory B Cell
    bioRxiv preprint doi: https://doi.org/10.1101/332361; this version posted May 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Absence of surface IgD does not impair naive B cell homeostasis and memory B cell formation in humans J. Nechvatalova,1,2 S.J.W. Bartol,3 Z. Chovancova,1,2 L. Boon,4 M. Vlkova,1,2 M.C. van Zelm3,5* 1Dept. Clinical Immunology and Allergology, St Anne´s University Hospital in Brno, the Czech Republic 2Faculty of Medicine, Masaryk University, Brno, the Czech Republic 3Dept. Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands 4Bioceros B.V., Utrecht, the Netherlands 5Dept. Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, VIC, Australia One Sentence Summary: Human B cells with a genetic defect in IGHD develop normally in vivo, and do not have a competitive disadvantage to IgD-expressing B cells for developing into memory B cells. * Address correspondence to: Menno C. van Zelm, Department of Immunology and Pathology, Central Clinical School, Monash University, Level 6 Burnet Centre, 89 Commercial Rd, Melbourne VIC 3004, Australia; Email: [email protected] Conflict of interest: The authors have declared that no conflict of interest exists. Key words: IgD; B cell; inherited gene defect; antibody; memory; immunodeficiency; auto- immunity; surface immunoglobulin 1 bioRxiv preprint doi: https://doi.org/10.1101/332361; this version posted May 28, 2018.
    [Show full text]
  • Immunoglobulin Heavy) Marie-Paule Lefranc IMGT, LIGM, IGH, UPR CNRS 1142, 141 Rue De La Cardonille, 34396 Montpellier Cedex 5, France (MPL)
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review IGH@ (Immunoglobulin Heavy) Marie-Paule Lefranc IMGT, LIGM, IGH, UPR CNRS 1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France (MPL) Published in Atlas Database: September 2003 Online updated version: http://AtlasGeneticsOncology.org/Genes/IgHID40.html DOI: 10.4267/2042/38013 This article is an update of : Lefranc MP. IGH (immunoglobulin heavy). Atlas Genet Cytogenet Oncol Haematol.2000;4(3):107-110. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2003 Atlas of Genetics and Cytogenetics in Oncology and Haematology depending from the haplotypes, 27 IGHD segments Identity belonging to 7 subgroups, 9 IGHJ segments, and 11 Other names: IGH (Immunoglobulin Heavy) IGHC genes. HGNC (Hugo): IGH@ Eighty-two to 88 IGHV genes belong to 7 subgroups, whereas 41 pseudogenes, which are too divergent to be Location: 14q32.33 assigned to subgroups, have been assigned to 4 clans. Note Seven non-mapped IGHV genes have been described The human IGH locus is located on the chromo-some as insertion/deletion polymorphism but have not yet 14 at band 14q32.33, at the telomeric extremity of the been precisely located. long arm; the orientation of the locus has been The most 5' IGHV genes occupy a position very close determined by the analysis of translocations, involving to the chromosome 14q telomere whereas the IGHC the IGH locus, in leukemia and lymphoma. genes are in a more centromeric position. The potentiel genomic IGH repertoire is more limited since it comprises 38-46 functional IGHV genes belonging to 6 or 7 subgroups depending from the haplotypes 23 IGHD, 6 IGHJ, and 9 IGHC genes.
    [Show full text]
  • Ig Light Chain Precedes Heavy Chain Gene Rearrangement During Development of B Cells in Swine
    Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine This information is current as Marek Sinkora, Jana Sinkorova and Katerina Stepanova of September 27, 2021. J Immunol 2017; 198:1543-1552; Prepublished online 9 January 2017; doi: 10.4049/jimmunol.1601035 http://www.jimmunol.org/content/198/4/1543 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/01/06/jimmunol.160103 Material 5.DCSupplemental References This article cites 43 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/198/4/1543.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Ig Light Chain Precedes Heavy Chain Gene Rearrangement during Development of B Cells in Swine Marek Sinkora, Jana Sinkorova, and Katerina Stepanova The current mammalian paradigm states that 1) rearrangements in the IgH locus precede those in IgL loci, 2) IgLl genes rearrange only when IgLk genes are consumed, and 3) the surrogate L chain is necessary for selection of productive IgH gene rearrange- ments.
    [Show full text]
  • The Diagnostic Significance of Immunoglobulin Light Chain Gene Expression Signatures by Gene Expression Profiling for B-Cell Lymphoma
    Research Article Remedy Open Access Published: 26 Jul, 2016 The Diagnostic Significance of Immunoglobulin Light Chain Gene Expression Signatures by Gene Expression Profiling for B-Cell Lymphoma James Z. Huang1*, Rita M. Braziel2, Guang Fan2, Louis M. Staudt3 and Wing C. Chan4 1Departments of Pathology and Laboratory Medicine, Oakland University William Beaumont School of Medicine, USA 2Departments of Pathology, Oregon Health & Science University, USA 3Metabolism Branch, Division of Clinical Sciences, National Institutes of Health, USA 4Departments of Pathology, City of Hope National Medical Center, USA Abstract Gene expression profiling (GEP) has been shown to have great potential to become a powerful diagnostic tool for lymphoma classification. However, it is not clear whether the expression pattern of immunoglobulin light chain genes defined by GEP can be used as a diagnostic signature to differentiate B-cell lymphoma from B-cell hyperplasia. To assess the difference in expression signatures of kappa and lambda genes among samples from reactive tonsils, normal peripheral bloods, chronic lymphocytic leukemias (CLL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), GEP data available from the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) were reanalyzed. A normal reference range of kappa and lambda light chain gene expression was defined by analysis of polyclonal B-cells from normal peripheral bloods and tonsils. Restricted light chain gene expression was detected in 100% (11/11) of CLL, in 83% (5/6) of FL, and 67% (198 of 296) of DLBCL. Our findings provide the evidence for the concept that immunoglobulin OPEN ACCESS light chain restriction can be determined at the gene transcription level by GEP microarray in most *Correspondence: of B-cell malignancies.
    [Show full text]
  • Insights Into the Function of Igd
    Developmental and Comparative Immunology 35 (2011) 1309–1316 Contents lists available at ScienceDirect Developmental and Comparative Immunology journal homepage: www.elsevier.com/locate/dci Insights into the function of IgD Eva-Stina Edholm, Eva Bengten, Melanie Wilson ∗ University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, United States article info abstract Article history: IgD, previously thought to be a recent addition to the immunoglobulin classes, has long been consid- Available online 15 March 2011 ered an enigmatic molecule. For example, it was debated if IgD had a specific function other than as an antigen receptor co-expressed with IgM on naive B cells and if it had an important role in mammalian Keywords: immunity. However, during the past decade extensive sequencing of vertebrate genomes has shown that Teleosts IgD homologs are present in all vertebrate taxa, except for birds. Moreover, recent functional studies Immunoglobulin indicate that IgD likely performs a unique role in vertebrate immune responses. The goal of this review is IgD to summarize the IgD gene organization and structural data, which demonstrate that IgD has an ancient Alternative splicing B cells origin, and discuss the findings in catfish and humans that provide insight into the possible function of this elusive immunoglobulin isotype. © 2011 Elsevier Ltd. All rights reserved. 1. Introduction (Gambon-Deza et al., 2010), and Atlantic salmon, Salmo salar (Tadiso et al., 2010). However, PCR and genomic sequencing stud- It is well
    [Show full text]
  • Genetic Diversity of IGHM and IGHE in the Leporids Revealed Different
    animals Article Genetic Diversity of IGHM and IGHE in the Leporids Revealed Different Patterns of Diversity in the Two European Rabbit Subspecies (O. cuniculus algirus and O. c. cuniculus) Ana Pinheiro 1,*, Tereza Almeida 1,2 and Pedro J. Esteves 1,2,3 1 CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; [email protected] (T.A.); [email protected] (P.J.E.) 2 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 3 CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra PRD, Portugal * Correspondence: [email protected]; Tel.: +00351-252-660-411 Received: 7 October 2019; Accepted: 8 November 2019; Published: 12 November 2019 Simple Summary: The study of European rabbit immunoglobulin genes has contributed decisively to the current knowledge on antibody structure and diversification. The European rabbit has also been increasingly used as an animal model for the study of many human diseases, such as syphilis, tuberculosis, and AIDS. As such, the study of its immune system genes is of crucial relevance, but the study of rabbit immunoglobulins has focused only on the IgG and IgA antibodies. In this study, we added to the knowledge of the rabbit immune system by investigating the genetic diversity of two antibodies, IgM and IgE, in wild and domestic rabbits as well as other rabbit close species. With the data obtained in this study, we showed a high similarity between the different rabbit close species studied and we pointed out important genetic differences in the wild and domestic rabbits.
    [Show full text]
  • University of Groningen Influenza Vaccination-Induced B Cell
    University of Groningen Influenza vaccination-induced B cell response in monoclonal gammopathy of undetermined significance (MGUS) Tete, Sarah IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tete, S. (2014). Influenza vaccination-induced B cell response in monoclonal gammopathy of undetermined significance (MGUS). [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 02-10-2021 CHAPTER Monoclonal paraprotein influences baseline B cell repertoire diversity and pertubates influenza vaccination-induced 5 B cell response Sarah M.
    [Show full text]
  • 36-2559: Anti-Igm (Immunoglobulin Mu Heavy Chain) (B-Cell Marker) Monoclonal Antibody(Clone: IGHM/3135R)
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 36-2559: Anti-IgM (Immunoglobulin Mu Heavy Chain) (B-Cell Marker) Monoclonal Antibody(Clone: IGHM/3135R) Clonality : Monoclonal Clone Name : IGHM/3135R Application : IHC Reactivity : Human Gene : IGHM Gene ID : 3507 Uniprot ID : P01871; P20769 Alternative Name : AGM1; IGHM; Constant Region of Heavy Chain of IgM; Ig Mu Chain C Region Isotype : Rabbit IgG Immunogen Information : Recombinant full-length human IGHM protein Description Recognizes a protein of 75kDa, identified as mu heavy chain of human immunoglobulins. It does not cross-react with alpha (IgA), gamma (IgG), epsilon (IgE), or delta (IgD), heavy chains, T-cells, monocytes, granulocytes, or erythrocytes. Monomeric IgM is expressed as a membrane bound antibody on the surface of B cells and as a pentamer when secreted by plasma cells. IgM antibody is prominent in early immune responses to most antigens. Aberrant levels are associated with immune deficiency states, hereditary deficiencies, myeloma, Waldenstrom's macroglobulinemia, chronic infection and hepatocellular disease. This MAb is useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. The most common feature of these malignancies is the restricted expression of a single heavy chain class. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is clonal and therefore malignant. Product Info Amount : 20 µg / 100 µg 200 µg/ml of Ab Purified from Bioreactor Concentrate by Protein A/G. Prepared in 10mM PBS with Content : 0.05% BSA & 0.05% azide. Also available WITHOUT BSA & azide at 1.0mg/ml.
    [Show full text]
  • The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia
    RESEARCH ARTICLE The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia Dongfeng Chen1, Junxiong Zheng1, Natalija Gerasimcik1, Kristina Lagerstedt1, Helene Sjögren2, Jonas Abrahamsson3, Linda Fogelstrand2,4, Inga-Lill Mårtensson1* a11111 1 Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden, 2 Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden, 3 Queen Silvia Children’s Hospital, Gothenburg, Sweden, 4 Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden * [email protected] OPEN ACCESS Abstract Citation: Chen D, Zheng J, Gerasimcik N, Lagerstedt K, Sjögren H, Abrahamsson J, et al. (2016) The Precursor-B cell receptor (pre-BCR) signaling represents a crucial checkpoint at the pre-B Expression Pattern of the Pre-B Cell Receptor cell stage. Aberrant pre-BCR signaling is considered as a key factor for B-cell precursor Components Correlates with Cellular Stage and acute lymphoblastic leukemia (BCP-ALL) development. BCP-ALL are believed to be Clinical Outcome in Acute Lymphoblastic Leukemia. PLoS ONE 11(9): e0162638. doi:10.1371/journal. arrested at the pre-BCR checkpoint independent of pre-BCR expression. However, the cel- pone.0162638 lular stage at which BCP-ALL are arrested and whether this relates to expression of the pre- Editor: Connie J Eaves, B.C. Cancer Agency, BCR components (IGHM, IGLL1 and VPREB1) is still unclear. Here, we show differential CANADA protein expression and copy number variation (CNV) patterns of the pre-BCR components Received: June 27, 2016 in pediatric BCP-ALL.
    [Show full text]