Revised Draft—NIOSH Current Intelligence Bulletin

Total Page:16

File Type:pdf, Size:1020Kb

Revised Draft—NIOSH Current Intelligence Bulletin This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. Revised Draft NIOSH CURRENT INTELLIGENCE BULLETIN Asbestos Fibers and Other Elongated Mineral Particles: State of the Science and Roadmap for Research June 2008 Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. Foreword Asbestos has been a highly visible issue in public health for over three decades. During the mid- to late-20th century, many advances were made in the scientific understanding of worker health effects from exposure to asbestos and other elongated mineral particles (EMPs), and it is now well documented that fibers of asbestos minerals, when inhaled, can cause serious diseases in exposed workers. Yet, as we enter the 21st century, many questions and areas of scientific uncertainty remain. For instance, because of the complexity of the mineralogy, the scientific literature contains various inconsistencies in the definition and application of the term asbestos for health protection guidance and regulatory purposes. As the federal agency responsible for conducting research and making recommendations for the prevention of worker injury and illness, the National Institute for Occupational Safety and Health (NIOSH) is undertaking a 21st century reappraisal of how to ensure adequate protection of workers from exposure to asbestos fibers and other EMPs. As a first step in this science reappraisal effort, NIOSH convened an internal work group to develop a framework for future scientific research and policy development. The NIOSH Mineral Fibers Work Group prepared an earlier draft of this State of the Science and Roadmap for Scientific Research (Roadmap), which summarized NIOSH's understanding of occupational exposure and toxicity issues concerning asbestos and other EMPs. NIOSH invited comments on the occupational health issues identified and the framework for research suggested in the first draft Roadmap. NIOSH sought other views about additional key issues that need to be identified, additional research that needs to be conducted, and suggested methods to conduct the research. In particular, NIOSH sought input from stakeholders concerning study designs, techniques for generating size-selected fibers, analytic approaches, sources of particular types of EMPs suitable for experimental studies, and worker populations suitable for epidemiological study. As a result of comments received during the public and expert peer review process, NIOSH has revised its first draft and is now disseminating a revised draft of the Roadmap. The purpose of the Roadmap is to outline a research agenda that will guide the development of specific research programs to be conducted by NIOSH and others, as well as within and across disciplines to provide answers to current scientific questions, reduce scientific uncertainties, and provide a sound scientific foundation for future policy development. NIOSH continues to be interested in available and forthcoming research results that can help answer the questions set forth in the Roadmap, as well as information on existing workplace exposure data, health effects, and control technologies. NIOSH recognizes that results from toxicity research on asbestos and other EMPs may impact both occupational as well as environmental health policies and practices. Many of the issues that are important in the workplace are also important to communities and to Revised Draft NIOSH CURRENT INTELLIGENCE BULLETIN June 2008 Asbestos and Other Elongated Mineral Particles: State of the Science and Roadmap for Research Page i This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. the general population. Therefore, NIOSH intends to continue to pursue partnerships with Federal agencies, including the Agency for Toxic Substances and Disease Registry (ATSDR), the Consumer Product Safety Commission (CPSC), the Environmental Protection Agency (EPA), the Mine Safety and Health Administration (MSHA), the National Institute of Environmental Health Sciences (NIEHS), the National Institute of Standards and Technology (NIST), the National Toxicology Program (NTP), the Occupational Safety and Health Administration (OSHA), and the United States Geological Survey (USGS), as well as with labor, industry, academia, practitioners, and other interested parties, including international groups. These partnerships will help to focus the scope of the research that will contribute to the scientific understanding of asbestos and other EMPs, to fund and conduct the research activities, and to develop and disseminate informational materials describing results from the research on EMPs and their implications for occupational and public health policies and practices. John Howard, M.D. Director June 2008 Revised Draft NIOSH CURRENT INTELLIGENCE BULLETIN June 2008 Asbestos and Other Elongated Mineral Particles: State of the Science and Roadmap for Research Page ii This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. CONTENTS Foreword.............................................................................................................................. i Executive Summary……………………………………………………………………. vi Acknowledgements………………………………………………………………………xi NIOSH Mineral Fibers Work Group…………………………………………….……….xi Peer Reviewers…………………………………………………………………………..xii Abbreviations …………………………………………………………………………..xiii 1 REVIEW OF CURRENT ISSUES…………………………………………………….1 1.1 Introduction……………………………………………………………………1 1.2 Minerals and Mineral Morphology……………………………………………2 1.3.Trends in Asbestos Use, Occupational Exposures, and Disease……………...4 1.3.1 Trends in Asbestos Use……………………………………………..4 1.3.2 Trends in Occupational Exposure…………………………………..5 1.3.3 Trends in Asbestos-related Disease…………………………………7 1.3.3.1 Asbestosis…………………………………………………8 1.3.3.2 Malignant Mesothelioma………………………………….8 1.4 Clinical Issues…………………………………………………………………9 1.5 Components of the NIOSH Recommendation for Asbestos ……………..…12 1.5.1 Minerals Covered by the NIOSH REL …………………..………..13 1.5.1.1 Chrysotile………………………………………………...14 1.5.1.2 Amphibole Asbestos and Other Fibrous Mineral………..15 1.5.1.3 Nonasbestiform Analogs of the Asbestos Varieties ……..16 1.5.1.3.1 Rationale for NIOSH Policy…………………...16 1.5.1.3.2 Epidemiological Studies………………………18 1.5.1.3.3 Animal Studies…………………………………28 1.5.1.3.4 Analytical Limitations…………………………30 1.6 Determinants of Particle Toxicity and Health Effects…………………..…..31 1.6.1. Deposition…………………………………………………………31 1.6.2 Clearance and Retention…………………………………………...32 1.6.3 Biopersistence and other Potentially Important Particle Characteristics……………………………………………………...34 1.6.3.1 Biopersistence……………………………………………35 1.6.3.2 Other Potentially Important Particle Characteristics…….38 1.6.4 Animal and In Vitro Toxicity Studies……………………………..38 1.6.5 Thresholds…………………………………………………………51 1.7 Analytical Methods………………………………………………………….54 1.7.1 NIOSH Sampling and Analytical Methods for Standardized Industrial Hygiene………………………………….……….…55 1.7.2 Analytical Methods for Research………………………………….56 Revised Draft NIOSH CURRENT INTELLIGENCE BULLETIN June 2008 Asbestos and Other Elongated Mineral Particles: State of the Science and Roadmap for Research Page iii This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the National Institute for Occupational Safety and Health. It does not represent and should not be construed to represent any agency determination or policy. CONTENTS (CONTINUED) 1.7.3 Differential Counting and Other Proposed Analytical Approaches for Differentiating EMPs ……………………………..…………58 1.8 Basis for the Recommended Exposure Limit………………………………..59 1.8.1 1990 Recommendation ……………………………………………59 1.8.1.1 Comments to OSHA……………………………………..59 1.8.1.2 Testimony at OSHA Public meeting …………………….60 1.8.2 The NIOSH Recommended Exposure …………………………..61 1.8.2.1 Clarification of the Recommended Exposure Limit……..61 1.9 Summary of Key Issues……………………………………………………..62 2 FRAMEWORK FOR RESEARCH…………………….………………………..…64 2.1 Strategic Research Goals and Objectives……………………………………64 2.2 Develop a broader understanding of the important determinants of toxicity for mineral fibers and other EMPs……..…………………….………………….66 2.2.1 Conduct in vitro studies to ascertain what physical and chemical properties influence the toxicity of
Recommended publications
  • Tabulation of Asbestos-Related Terminology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Library for Earth System Education Tabulation of Asbestos-Related Terminology By Heather Lowers and Greg Meeker Open-File Report 02-458 2002 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY i Acknowledgements The authors of this report would like to give special thanks to Doug Stoeser, Brad Van Gosen, and Robert Virta for their time spent reviewing this report as well as for comments and suggestions offered on how to better present the information to the reader. ii Abstract The term asbestos has been defined in numerous publications including many State and Federal regulations. The definition of asbestos often varies depending on the source or publication in which it is used. Differences in definitions also exist for the asbestos-related terms acicular, asbestiform, cleavage, cleavage fragment, fiber, fibril, fibrous, and parting. An inexperienced reader of the asbestos literature would have difficulty understanding these differences and grasping many of the subtleties that exist in the literature and regulatory language. Disagreement among workers from the industrial, medical, mineralogical, and regulatory communities regarding these definitions has fueled debate as to their applicability to various morphological structures and chemical compositions that exist in the amphibole and serpentine groups of minerals. This debate has significant public health, economic and legal implications.
    [Show full text]
  • Asbestiform Antigorite from New Caledonia
    Asbestiform antigorite from New Caledonia Dr. Jasmine Rita Petriglieri Department of Chemistry, University of Torino Centro Scansetti «G. Scansetti» Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates Universe of fibres ALL PARTICLES ELONGATE OTHER Commercial/regulated definition PARTICLES (EMP) NOA are the six minerals that are currently identified as asbestos (were commercially INORGANIC ORGANIC exploited). minerals, mineraloids, and e.g., plant fibres and material made from minerals synthetic fibres Mineralogical definition Discriminate fibrous mineral from non- ASBESTIFORM MINERAL FIBRES NON ASBESTIFORM (EMPs from mass fibre, cross fibre and slip fibrous form (e.g., acicular, tabular, INORGANIC FIBRES fibre occurrences ) prismatic, …). Chemical alteration of mineral is considered. REGULATED OTHER ROCK FORMING ASBESTOS MAN MADE Health-oriented definition MINERALS and erionite, fluoro-edenite, INORGANIC MINERALOIDS Identify any hazardous elongated mineral chrysotile, amosite, winchite, richterite, FIBRES (EMPs) particles (EMP) that requires to limit human crocidolite, glaucophane, anthophyllite-asbestos, antigorite, palygorskite, exposure. Most challenging. tremolite-asbestos, talc, minnesotaite, and actinolite-asbestos sepiolite 2 adapted from TAP (2018) 361, 185 Antigorite MONOCLINIC OR ORTHORHOMBIC Modulated wave-like 1:1 layer, with polarity inversion every half wavelength (Capitani and Mellini, 2004) Chemical composition deviates from that of the other serpentine minerals, because of discrete Mg(OH)2 loss
    [Show full text]
  • Balangeroite, a New Fibrous Silicate Related to Gageite from Balangero
    American Mineralogist, Volume 6E, pages 214-219, I9E3 Balangeroite,a new fibrous silicate related to gageitefrom Balangero,Italy Ronpnro CoupecNoxr Dipartimento di Scienzqdella Terra Universitd della Calabria Castiglione scalo, 87030Cosenza, Italy GtoveNNr Fr,nnents Istituto di Mineralogia, Cristallografia e Geochimica "G. Spezia", Universitddi Torino via S. Massimo 22. 10123Torino. Itqlv eNo LRune Flone Istituto di Petrografia, Universitd di Torino and Centro di Studio per i Problemi dell'Orogeno delle Alpi Occidentalidel C.N.R., via S. Massimo22, 10123Torino, Italy Abstract Balangeroiteoccurs as brown asbestiformfibers in a paragenesiswith long-fiber chrysotile,magnetite, and native Fe-Ni in the Balangeroserpentinite (Lanzo Valley, Piedmont,Italy). It is orthorhombicwith a 13.85(4),b 13.58(3), and c 9.65(3)A;a sub-cell with c' : c/3 is stronglyevident. The X-ray powderpattern demonstrates an isostructural relationshipof the newmineral with gageite;the strongestreflections are:9.59(40)(ll0), 6.77(80)(020),3.378(45)(410), 3.278(40Xr40), 2.714(100)(050,510), 2.674(75)(150,223), and 2.516(40)(250).The fibers are elongated parallel to [fi)l], showone or more{/r/<0} cleavages, and are usuallyintergrown with chrysotile.The refractiveindexes are aboutthe same, 1.680(5),both parallel and perpendicular to [fi)l]; coloris darkbrown and yellow brown in thesetwo directions,respectively. Chemical analysis gives a unit-cellcontent of (Mgzs.zoFez2.tqFe].t3Mn?:5Ab.rzCao.ozCro.orTio.or)>rae3Si15.3sO53oe(OH)ls.sz, andthe presenceof a sub-cellwith c' = c/3 suggeststhe formula (Mg,Fe2*,Fe3*,Mn2*,!;o2sir5(O,OH)eo with contentsdivisible by 3; a similarformula is probablyalso correct for the Mn-analogue, gageite.DTA, TGA, and high-temperatureX-ray powder analysesshow structural breakdownwith a total weightloss of 9.4Voand the appearanceof olivineat 8fi)'C.
    [Show full text]
  • 2 an Evaluation of Mineral Particles at Governeur Talc Company 1975 And
    Background Report Reference AP-42 Section Number: 1 1.26 Background Chapter: 2 Reference Number: 10 Title: An Evaluation of Mineral particles at Governeur Talc Company 1975 and 1982: A comparison of Mineralogical Results Between NIOSH an dDGC Dunn Geoscience Corporation Dunn Geoscience Corporation January 1985 ‘I 'I AP-42 Section 3 ,' RepoltReferenor Sect.. __ Reference /o 1)UIhIh GEOSCIENCE CORP. 5 NORTHWAV LANE NORTH LATHAH. NEW YORK 12110 l518l78361Oi An Evaluation of Mineral Particles at Gouverneur Talc Company 1975 and 1982: A Comparison of Mineralogical Results Between NIOSH and DGC Prepared for: Dr. C. S. Thompson R. T. Vanderbilt Company, Inc. Prepared by: Dunn Geoscience Corporation Latham, New York January 4,1985 DUNN GEOSCIENCE CORPORATION TABLE OF CONTENTS 1.O CONCLUSIONS 1 2.0 INTRODUCTION 1 2.1 Inception 1 2.2 Purposes 1 2.3 Previous Work 1 2.4 Implementation and Personnel 2 3.0 DEFINITIONS 2 4.0 FIBROUS TALC 4 5.0 SAMPLE COLLECTION 6 5.1 Introduction 6 5.2 Hand Specimen Collection 6 5.3 Air Sampling 7 5.4 Product Samples 9 6.0 THIN SECTION MINERALOGIC AND PETROGRAPHIC ANALYSIS 11 6.1 Introduction 11 6.2 Mineralogy 11 7.0 MINERALOGIC CHECK- THE FIBROUS TALC QUESTION 12 7.1 Introduction 12 7.2 How Are Minerals Identified? 12 7.3 Selection of Material 13 7.4 Description of Material 13 7.5 Summary and Discussion 19 8.0 MINERAL PARTICLE IDENTIFICATIONAND COUNTING PROCEDURES 21 - PRELIMINARY ANALYSIS 8.1 Introduction 21 8.2 Procedures Commonly Used 21 9.0 PROCEDURES AND PARTICLE COUNTS, FIRST PHASE 22 9.1 Introduction 22 9.2
    [Show full text]
  • GLY 4310C Lab 2 CLASS: SILICATE Subclass: Inosilicates Amphibole
    GLY 4310C Lab 2 CLASS: SILICATE Subclass: Inosilicates Amphibole group Mineral Name H G Color Cleavage, Luster Other Notes Streak Color Fracture, or Properties Parting ANTHOPHYLLITE 5.5 3.3 purplish, uneven fracture vitreous to divergent habit brownish-gold/white silky TREMOLITE 4.5 2.4 white-beige/white splintery fracture vitreous LW-bright orange reticulated habit SW-dull orange TREMOLITE, variety Hexagonite 5.5 3.5 lavender, good basal cleavage silky reticulated habit dark green, yellow/white ACTINOLITE 5.5 3.5 gray green/ uneven fracture vitreous white HORNBLENDE 5.0 3.0 black/green 2 dirs. at 60 vitreous acid reaction due to calcite impurities GLAUCOPHANE 5.0 2.8 blue gray/blue uneven fracture silky to dull acid reaction due to calcite impurities RIEBECKITE 5.5 (3.5) black/black poor basal cleavage vitreous fibrous 1 GLY 4310C Lab 2 CLASS: SILICATE Subclass: Phyllosilicates Serpentine Group Mineral Name H G Color Cleavage, Luster Other Notes Streak Color Fracture, or Properties Parting ANTIGORITE 4.5 2.4 jade green/gray uneven fracture greasy slight acid associated with reaction due pyrite to impurity CHRYSOTILE (2.5) (3.2) white/white uneven fracture silky asbestiform GARNIERITE 5.0 purple/ jagged fracture vitreous light green Subclass: Phyllosilicates Clay Mineral Group Mineral Name H G Color Cleavage, Luster Other Notes Streak Color Fracture, or Properties Parting KAOLINITE 2.0 2.6 white/white uneven fracture earthy to sticks to tongue; does not greasy absorb liquid PYROPHYLLITE 2.5 2.9 silver,gold,red, splintery fracture vitreous
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • 1 2 Jifsan Symposium 3 Asbestos in Talc 4 Main
    Main Session November 28, 2018 Page 1 1 2 JIFSAN SYMPOSIUM 3 ASBESTOS IN TALC 4 MAIN SESSION 5 Conducted by Catherine Sheehan 6 Wednesday, November 28, 2018 7 8:04 a.m. 8 9 10 7777 Baltimore Avenue 11 College Park, MD 20740 12 (202) 857-3376 13 14 15 16 17 18 Reported by: KeVon Congo 19 20 Capital Reporting Company 21 1250 Eye Street, NW, Suite 350 22 Washington, D.C. 20005 www.CapitalReportingCompany.com 202-857-3376 Main Session November 28, 2018 Page 2 1 C O N T E N T S 2 Catherine Sheehan 3 3 Bradley Van Gosen 10 4 Gregory Meeker 29 5 Martin Rutstein 44 6 Martin Harper 77 7 Brooke Taylor Mossman 115 8 Ann Wylie 137 9 10 11 12 13 14 15 16 17 18 19 20 21 22 www.CapitalReportingCompany.com 202-857-3376 Main Session November 28, 2018 Page 3 1 P R O C E E D I N G S 2 CATHERINE SHEEHAN: Good morning everybody. 3 Since we are -- I have 15 minutes to introduce -- 4 welcome everybody. Please bear in mind that we have a 5 webinar aspect of this meeting as well. So in the 6 interest of time, I would like everybody in the meeting 7 room to take their seats, please, so we can commence 8 with the meeting. 9 So welcome, everybody. My name is Catherine 10 Sheehan, and I've been given the honor of doing the 11 opening and closing remarks. So can I have quiet, 12 please? Thank you.
    [Show full text]
  • Northmet Mine and Ore Processing Facilities Project
    NorthMet Mine and Ore Processing Facilities Project Fibers Data Related to the Processing of NorthMet Deposit Ore Prepared for PolyMet Mining Inc. June 2007 NorthMet Mine and Ore Processing Facilities Project Fibers Data Related to the Processing of NorthMet Deposit Ore Prepared for PolyMet Mining Inc. June 2007 4700 West 77th Street Minneapolis, MN 55435-4803 Phone: (952) 832-2600 Fax: (952) 832-2601 RS 61 Draft-03 June 2007 RS 61 – Fiber Information NorthMet Mine and Ore Processing Facilities Project Fibers Data Related to the Processing of NorthMet Deposit Ore (EIS Report Study RS61) Table of Contents DEFINITIONS ..............................................................................................................................................................1 1.0 INTRODUCTION...........................................................................................................................................3 1.1 Interest in the NorthMet Deposit.....................................................................................................................3 1.2 Crystalline Morphology and Relevance to the Fibers Discussion...................................................................8 1.3 Environmental Sampling and Analysis Plan – Fibers ...................................................................................11 2.0 BACKGROUND INFORMATION ON GEOLOGY AND MINERALOGY..............................................14 2.1 Project Setting ...............................................................................................................................................14
    [Show full text]
  • Argentina): a Case Study
    Environ Earth Sci (2017) 76:631 DOI 10.1007/s12665-017-6969-y ORIGINAL ARTICLE Asbestiform and non-asbestiform morphologies in a talc and vermiculite mine from the province of Co´rdoba (Argentina): a case study 1,2 3 4 1,2 Leticia Lescano • Francisco Locati • Jorge Sfragulla • Silvina Marfil • 4 1 Aldo Bonalumi • Pedro Maiza Received: 11 July 2017 / Accepted: 5 September 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract In this work, a talc and vermiculite mine from deformational events, multimethodological approaches are the province of Co´rdoba (Argentina) was investigated with necessary to develop models of occurrence of asbestiform special emphasis on the occurrence of asbestiform and non- morphologies that may be applicable to other with similar asbestiform phases. The meta-ultramafic rock was studied characteristics. by a multimethodological approach, complementing field studies with petrographic-mineralogical, compositional and Keywords Meta-ultramafic rock Á Tremolite Á Asbestos Á morphological analyses. Samples were examined by Talc Á Argentina stereomicroscopy, polarizing light microscopy, SEM–EDS, XRD, DSC-TGA and FTIR. Complementary, composi- tional and textural analyses were performed with FE-SEM– Introduction EDS and EPMA. Talc-rich veins with a laminar and fibrous appearance were at first recognized. However, the fibrous The meta-ultramafic rocks of the province of Co´rdoba morphology observed both in the field and by microscopy (Argentina) have been exploited for decades, especially for is due to an apparent habit because of the sample orienta- the production of dark green to black aggregates for the tion. To avoid erroneous interpretations, studies by sec- manufacture of mosaics and as fluxes in steelworks in ondary electron images (SEM) are fundamental to carrying partial replacement of calcite and dolomite.
    [Show full text]
  • Multi-Analytical Approach for Asbestos Minerals and Their Non-Asbestiform Analogues: Inferences from Host Rock Textural Constraints
    Article Multi-Analytical Approach for Asbestos Minerals and Their Non-Asbestiform Analogues: Inferences from Host Rock Textural Constraints Gaia Maria Militello 1,*, Andrea Bloise 2, Laura Gaggero 1, Gabriele Lanzafame 3 and Rosalda Punturo 4 1 Department of Earth, Environment and Life Sciences – DISTAV, University of Genoa, Corso Europa 26, I-16132 Genoa, Italy; [email protected] 2 Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Pietro Bucci, I-87036 Rende, CS, Italy; [email protected] 3 Elettra - Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy; [email protected] 4 Department of Biological, Geological and Environmental Sciences, University of Catania, Corso Italia 55, I-95129 Catania, CT, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-010-3538301 Received: 28 February 2019; Accepted: 3 May 2019; Published: 10 May 2019 Abstract: Asbestos is a hazardous mineral, as well as a common and well-known issue worldwide. However, amphiboles equal in composition but not in morphology, as well as the fibrous antigorite and lizardite, are not classified as asbestos even if more common than other forms of the mineral. Still, their potential hazardous properties requires further exploration. The proposed multi-instrumental approach focuses on the influence of textural constraints on the subsequent origin of asbestiform products in massive rock. This aspect has a significant effect on diagnostic policies addressing environmental monitoring and the clinical perspective. Concerning minerals that are chemically and geometrically (length >5 μm, width <3 μm and length:diameter >3:1) but not morphologically analogous to regulated asbestos, the debate about their potential hazardous properties is open and ongoing.
    [Show full text]
  • Significance of Tourmaline-Rich Rocks in the Grenville Complex of St
    Significance of Tourmaline-Rich Rocks in the Grenville Complex of St. Lawrence County, New York U.S. GEOLOGICAL SURVEY BULLETIN 1626-C Chapter C Significance of Tourmaline-Rich Rocks in the Grenville Complex of St. Lawrence County, New York By C. ERVIN BROWN and ROBERT A. AYUSO A study of tourmaline compositions and their possible use as indices of mineralization U.S. GEOLOGICAL SURVEY BULLETIN 1626 CONTRIBUTIONS TO THE GEOLOGY OF MINERAL DEPOSITS DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1985 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 Library of Congress Catalog-card No. 84-600189 CONTENTS Abstract Cl Introduction Cl Purpose of study C2 Stratigraphic and lithologic setting C2 Petrography and summary of the bulk composition of tourmaline-bearing rocks C3 Sampling C7 Analytical procedure C7 Results of compositional studies Cll Tourmaline end members in nature Cll Compositional variation of tourmaline in North Gouverneur area Cll Calcium content of tourmalines C20 Substitutions in hypothetical structural formula C20 Mineralized areas and tourmaline compositions C22 Discussion C25 Comparison with the Balmat-Edwards district C29 Tourmaline genesis in the North Gouverneur area C29 Terranes showing most favorable implications for containing stratabound sulflde deposits C31 References cited C31 FIGURES 1. Index map of St. Lawrence County, N.Y. C2 2. Generalized geologic map showing sample localities for this study C4 3. Photographs of tourmalinite, brecciated tourmalinite, granular patches of black schorl, and schorl prisms C6 4. Photomicrographs of granoblastic tourmalinite and tourmaline-bearing rock C7 5.
    [Show full text]
  • Summer 1985 Gems & Gemology
    SUMMER 1985 Volume 21 Number 2 TABLE OF CONTENTS FEATURE 63 Pearl Fashion Through the Ages ARTICLES Dona M,Dirlam, Elise B. Misiorowski, and Sally A. Thomas Russian Flux-Grown Synthetic Emeralds John I. Koivula and Peter C. Keller Gem Pegmatites of Minas Gerais, Brazil: The Tourmalines of the Governador Valadares District Keith Proctor t, NOTES . i . 105 The Eyepiece Pointer: A Useful Microscope Accessory AND NEW' C. W.Fryer and John I. Koivula TECHNIQUES REGULAR 108 Gem Trade Lab Notes FEATURES 115 Editorial Forum Gem News Gemological Abstracts ABOUT THE COVER: For thousands of years, mankind has been fascinated by pearls. Virtually every civilization has revered their natural beauty, and considered them to be among the most precious ofgems. This issue features a review of [.hehistory of pearl fashion, ancient to modern, in the Mediterranean, Western Europe, and the United States. The signed Cartier Art Deco mystery clock pictured here demonstrates one of the many ingenious ways that pearls have been incorporatedinto jewelry and objets d'art throughout the ages. It is fabricatedofgoldandplatinum with a citrine face. The hands are set with diamonds, and pearl studs mark the hours. The clock rests on a pearl-fringed saddle that sits on a chalcedony chimera set with cabochon emerald eyes. Twocoral frogsobserve from a nephrite base. The entire piece measures 13.7 x 7.2 x 17.3 crn {5% x 2% x 6% in.). Photo courtesy of Cariier, Inc. Typesetting for Gems a) Gemology is by Scientific Composition, Los Angeles, CA. Color separa- lions are by Effective Graphics, Compton, CA.
    [Show full text]