What Is a Skeletal Muscle Channelopathy?

Total Page:16

File Type:pdf, Size:1020Kb

What Is a Skeletal Muscle Channelopathy? Muscle Channel Patient Day 2019 Dr Emma Matthews The Team • Professor Michael Hanna • Emma Matthews • Doreen Fialho - neurophysiology • Natalie James – clinical nurse specialist • Sarah Holmes - physiotherapy • Richa Sud - genetics • Roope Mannikko – electrophysiology • Iwona Skorupinska – research nurse • Louise Germain – research nurse • Kira Baden- service manager • Jackie Kasoze-Batende– NCG manager • Jean Elliott – NCG senior secretary • Karen Suetterlin, Vino Vivekanandam • – research fellows What is a skeletal muscle channelopathy? Muscle and nerves communicate by electrical signals Electrical signals are made by the movement of positively and negatively charged ions in and out of cells The ions can only move through dedicated ion channels If the channel doesn’t work properly, you have a “channelopathy” Ion channels CHLORIDE CHANNELS • Myotonia congenita – CLCN1 • Paramyotonia congenita – SCN4A MYOTONIA SODIUM CHANNELS • Hyperkalaemic periodic paralysis – SCN4A • Hypokalaemic periodic paralysis – 80% CACNA1S CALCIUM CHANNELS – 10% SCN4A PARALYSIS • Andersen-Tawil Syndrome – KCNJ2 POTASSIUM CHANNELS Myotonia and Paralysis • Two main symptoms • Paralysis = an inexcitable muscle – Muscles are very weak or paralysed • Myotonia = an overexcited muscle – Muscle keeps contracting and become “stuck” - Nerve action potential Cl_ - + - + + + Motor nerve K+ + Na+ Na+ Muscle membrane Ach Motor end plate T-tubule Nav1.4 Ach receptors Cav1.1 and RYR1 Muscle action potential Calcium MuscleRelaxed contraction muscle Myotonia Congenita • Myotonia = stiff or stuck muscles • Difficulty starting to move • “warm up” once I’m moving I’m ok • Legs>arms or face • Falls • +/- Muscle weakness – usually improves with repetition Paramyotonia Congenita • Myotonia • COLD!!! • It gets worse the more I do it • Eyes + face + hands > legs • Weakness/paralysis Periodic Paralysis POTASSIUM POTASSIUM • Hyperkalaemic • Hypokalaemic • Any time • Night/early morning • Mins to hours • Hours to days • High potassium foods • Carbohydrates Andersen – Tawil Syndrome • Periodic paralysis • Cardiac conduction • Characteristic features Investigations • History and Clinical exam • Blood tests: Potassium, CK, TFTs, Renal tests • ECG • Neurophysiology (electrical tests) • MRI scan • Genetic tests EMG Myotonia EMG - Myotonia Congenita 120 100 80 60 Baseline) 40 20 0 CMAP amplidtue(% andarea 0 10 30 50 70 80 100 120 140 150 170 190 210 Time EMG – Paramyotonia Congenita 140 120 100 80 60 40 area (% Baseline) (% area 20 CMAP amplidtue and and amplidtue CMAP 0 0 10 30 50 70 80 100 120 140 150 170 190 210 Time EMG – Periodic Paralysis McManis long exercise test 200 150 100 50 (%of baseline) 0 CMAP CMAP Amplitude and Area 0 1 3 5 1 3 5 8 12 16 20 24 28 32 36 40 44 CMAP amp CMAP area Treatment Exacerbating Factors • Temperature • Food • Exercise Pharmacological Therapies Periodic Paralysis • Hypokalaemic Periodic Paralysis – K supplements – Acetazolamide – Diuretics: Spirinolactone, Amiloride • Hyperkalaemic periodic paralysis – Acetazolamide – Thiazide diuretics Pharmacological Therapies Myotonia • Anti-arrhythmic drugs – Mexiletine – Flecainide Magnesium • Anti-epileptic drugs – Carbamazepine – Topiramate, Lamotrigine Mexiletine • Mexiletine is a safe long term 50 treatment for patients with non- 45 dystrophic myotonia 40 35 • Patients with chloride channel 30 myotonia may require a higher 25 dose of mexiletine for efficacy. 20 • Slow dose titration of 100mg per 15 % of Patients ReportingSymptom week may help to reduce side 10 effects 5 • Indigestion therapy may be 0 needed Acetazolamide Risk of kidney stones Kidney Stones: A Global Picture of Prevalence, Incidence, and Associated Risk Factors Rev Urol. 2010 Spring-Summer; 12(2-3): e86–e96. .
Recommended publications
  • Spectrum of CLCN1 Mutations in Patients with Myotonia Congenita in Northern Scandinavia
    European Journal of Human Genetics (2001) 9, 903 ± 909 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia Chen Sun*,1, Lisbeth Tranebjñrg*,1, Torberg Torbergsen2,GoÈsta Holmgren3 and Marijke Van Ghelue1,4 1Department of Medical Genetics, University Hospital of Tromsù, Tromsù, Norway; 2Department of Neurology, University Hospital of Tromsù, Tromsù, Norway; 3Department of Clinical Genetics, University Hospital of UmeaÊ, UmeaÊ,Sweden;4Department of Biochemistry, Section Molecular Biology, University of Tromsù, Tromsù, Norway Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. At least 50 different CLCN1 mutations have been described worldwide, but in many studies only about half of the patients showed mutations in CLCN1. Limitations in the mutation detection methods and genetic heterogeneity might be explanations. In the current study, we sequenced the entire CLCN1 gene in 15 Northern Norwegian and three Northern Swedish MC families. Our data show a high prevalence of myotonia congenita in Northern Norway similar to Northern Finland, but with a much higher degree of mutation heterogeneity. In total, eight different mutations and three polymorphisms (T87T, D718D, and P727L) were detected. Three mutations (F287S, A331T, and 2284+5C4T) were novel while the others (IVS1+3A4T, 979G4A, F413C, A531V, and R894X) have been reported previously.
    [Show full text]
  • Paramyotonia Congenita
    Paramyotonia congenita Description Paramyotonia congenita is a disorder that affects muscles used for movement (skeletal muscles). Beginning in infancy or early childhood, people with this condition experience bouts of sustained muscle tensing (myotonia) that prevent muscles from relaxing normally. Myotonia causes muscle stiffness that typically appears after exercise and can be induced by muscle cooling. This stiffness chiefly affects muscles in the face, neck, arms, and hands, although it can also affect muscles used for breathing and muscles in the lower body. Unlike many other forms of myotonia, the muscle stiffness associated with paramyotonia congenita tends to worsen with repeated movements. Most people—even those without muscle disease—feel that their muscles do not work as well when they are cold. This effect is dramatic in people with paramyotonia congenita. Exposure to cold initially causes muscle stiffness in these individuals, and prolonged cold exposure leads to temporary episodes of mild to severe muscle weakness that may last for several hours at a time. Some older people with paramyotonia congenita develop permanent muscle weakness that can be disabling. Frequency Paramyotonia congenita is an uncommon disorder; it is estimated to affect fewer than 1 in 100,000 people. Causes Mutations in the SCN4A gene cause paramyotonia congenita. This gene provides instructions for making a protein that is critical for the normal function of skeletal muscle cells. For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of positively charged atoms (ions), including sodium, into skeletal muscle cells. The SCN4A protein forms channels that control the flow of sodium ions into these cells.
    [Show full text]
  • Periodic Paralysis
    Periodic Paralysis In Focus Dear Readers Fast Facts This “In Focus” report is the third in a series of MDA’s three-year commitment for all Hypokalemic periodic paralysis MDA comprehensive reports about the latest in periodic paralysis research as of March Hypokalemic PP can begin anywhere from neuromuscular disease research and manage- 2009 is $1,938,367. The Association’s early childhood to the 30s, with periodic ment. allocation for research on hyperkalemic attacks of severe weakness lasting hours This report focuses on the periodic and hypokalemic periodic paralysis to days. The frequency of attacks gener- paralyses, a group of disorders that result from research since 1950 is $8,125,341. ally lessens in the 40s or 50s. Permanent malfunctions in so-called ion channels, micro- MDA’s allocation for the recently weakness may persist between attacks, scopic tunnels that make possible high-speed identified Andersen-Tawil syndrome usually beginning in middle age and pro- movement of electrically charged particles is $515,430 since 2001. MDA is cur- gressing slowly over years. across barriers inside cells and between cells rently funding 11 grants in the periodic The most common underlying cause and their surroundings. paralyses. is any of several genetic mutations in When ion channels fail to open or close The periodic paralyses are gener- a gene on chromosome 1 that carries according to an exquisitely fine-tuned program, ally divided into hyperkalemic periodic instructions for a calcium channel protein episodes of paralysis of the skeletal muscles paralysis, hypokalemic periodic paralysis in skeletal muscle fibers. When this chan- and even temporary irregularities in the heart- and Andersen-Tawil syndrome.
    [Show full text]
  • Neuromyotonia in Hereditary Motor Neuropathy J Neurol Neurosurg Psychiatry: First Published As 10.1136/Jnnp.54.3.230 on 1 March 1991
    230 Journal ofNeurology, Neurosurgery, and Psychiatry 1991;54:230-235 Neuromyotonia in hereditary motor neuropathy J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.54.3.230 on 1 March 1991. Downloaded from A F Hahn, A W Parkes, C F Bolton, S A Stewart Abstract Case II2 Two siblings with a distal motor This 15 year old boy had always been clumsy. neuropathy experienced cramping and Since the age of 10, he had noticed generalised difficulty in relaxing their muscles after muscle stiffness which increased with physical voluntary contraction. Electromyogra- activity such as walking upstairs, running and phic recordings at rest revealed skating. For some time, he was aware of repetitive high voltage spontaneous elec- difficulty in releasing his grip and his fingers trical discharges that were accentuated tended to cramp on writing. He had noticed after voluntary contraction and during involuntary twitching of his fingers, forearm ischaemia. Regional neuromuscular muscles and thighs at rest and it was more blockage with curare indicated hyperex- pronounced after a forceful voluntary con- citability of peripheral nerve fibres and traction. Muscle cramping and spontaneous nerve block suggested that the ectopic muscle activity were particularly unpleasant activity originated in proximal segments when he re-entered the house in the winter, of the nerve. Symptoms were improved for example, after a game of hockey. Since the with diphenylhydantoin, carbamazepine age of twelve, he had noticed a tendency to and tocainide. trip. Subsequently he developed bilateral foot drop and weakness of his hands. He denied sensory symptoms and perspired only with The term "neuromyotonia" was coined by exertion.
    [Show full text]
  • Correlating-Phenotype-And-Genotype
    I am pleased to provide you complimentary one-time access to my article as a PDF file for your own personal use. Any further/multiple distribution, publication or commercial usage of this copyrighted material would require submission of a permission request to the publisher. Timothy M. Miller, MD, PhD Correlating phenotype and genotype in the periodic paralyses T.M. Miller, MD, PhD; M.R. Dias da Silva, MD, PhD; H.A. Miller, BS; H. Kwiecinski, MD, PhD; J.R. Mendell, MD; R. Tawil, MD; P. McManis, MD; R.C. Griggs, MD; C. Angelini, MD; S. Servidei, MD; J. Petajan, MD, PhD; M.C. Dalakas, MD; L.P.W. Ranum, PhD; Y.H. Fu, PhD; and L.J. Ptáek, MD Abstract—Background: Periodic paralyses and paramyotonia congenita are rare disorders causing disabling weakness and myotonia. Mutations in sodium, calcium, and potassium channels have been recognized as causing disease. Objective: To analyze the clinical phenotype of patients with and without discernible genotype and to identify other mutations in ion channel genes associated with disease. Methods: The authors have reviewed clinical data in patients with a diagnosis of hypokalemic periodic paralysis (56 kindreds, 71 patients), hyperkalemic periodic paralysis (47 kindreds, 99 patients), and paramyotonia congenita (24 kindreds, 56 patients). For those patients without one of the classically known mutations, the authors analyzed the entire coding region of the SCN4A, KCNE3, and KCNJ2 genes and portions of the coding region of the CACNA1S gene in order to identify new mutations. Results: Mutations were identified in approximately two thirds of kindreds with periodic paralysis or paramyotonia congenita.
    [Show full text]
  • Ion Channels: Structural Basis for Function and Disease
    UC Irvine UC Irvine Previously Published Works Title Ion channels: structural basis for function and disease. Permalink https://escholarship.org/uc/item/39x307jx Journal Seminars in perinatology, 20(6) ISSN 0146-0005 Author Goldstein, SA Publication Date 1996-12-01 DOI 10.1016/s0146-0005(96)80066-8 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ion Channels: Structural Basis for Function and Disease Steve A. N. Goldstein Ion channels are ubiquitous proteins that mediate nervous and muscular function, rapid transmem- brane signaling events, and ionic and fluid balance. The cloning of genes encoding ion channels has led to major strides in understanding the mechanistic basis for their function. These advances have shed light on the role of ion channels in normal physiology, clarified the molecular basis for an expanding number of diseases, and offered new direction to the development of rational therapeutic interventions. Copyright 1996 by W.B. Saunders Company on channels reside in the membranes of all by ion channels to be divided into two broad cells and control their electrical activity. 1 mechanistic groups: those resulting from loss of These proteins underlie subtle biological events channel function and those consequent to gain such as the response of a single rod cell to a of channel function. Three exemplary patho- beam of light, the activation of a T cell by its physiological correlates are examined, Long QT antigen, and the fast block to polyspermy of a syndrome, Liddle's syndrome and pseudohypo- fertilized ovum.
    [Show full text]
  • Gain-Of-Function Mutation in Nav 1.7 in Familial Erythromelalgia Induces Bursting of Sensory Neurons
    Gain-of-function mutation in Nav 1.7 in familial erythromelalgia induces bursting of sensory neurons S. D. Dib-Hajj,1,2,3 A. M. Rush,1,2,3 T. R. Cummins,4 F. M. Hisama,1 S. Novella,1 L. Tyrrell,1,2,3, L. Marshall1 and S. G. Waxman1,2,3 1Department of Neurology and 2Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, 3Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT and 4Department of Pharmacology and Toxicology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA Correspondence to: Stephen G. Waxman, MD, PhD, Department of Neurology, LCI 707, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA E-mail: [email protected] Erythromelalgia is an autosomal dominant disorder characterized by burning pain in response to warm stimuli or moderate exercise. We describe a novel mutation in a family with erythromelalgia in SCN9A, the gene that encodes the Nav1.7 sodium channel. Nav1.7 produces threshold currents and is selectively expressed within sensory neurons including nociceptors. We demonstrate that this mutation, which produces a hyperpolarizing shift in activation and a depolarizing shift in steady-state inactivation, lowers thresholds for single action potentials and high frequency firing in dorsal root ganglion neurons. Erythromelalgia is the first inherited pain disorder in which it is possible to link a mutation with an abnormality in ion channel function and with altered firing of pain signalling neurons. Keywords: channel; channelopathy; erythromelalgia; mutation; pain; sodium Abbreviations: DRG = dorsal root ganglion Received January 25, 2005.
    [Show full text]
  • Myotonia in Centronuclear Myopathy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.41.12.1102 on 1 December 1978. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1978, 41, 1102-1108 Myotonia in centronuclear myopathy A. GIL-PERALTA, E. RAFEL, J. BAUTISTA, AND R ALBERCA From the Departments of Neurology and Pathology, Ciudad Sanitaria Virgen del Rocio, Seville, Spain SUMMARY Centronuclear myopathy, which is unusual because of clinical myotonia, is described in two sisters. The diagnosis was established in adult life, but the first symptoms were noticed in infancy. The outstanding points of the clinical picture were mild amyotrophy, paresis, and clinical myotonia. Myotubular myopathy (Spiro et al., 1966) is an the age of 27 years she noticed increased muscular entity defined by its morphological muscular difficulties, and needed support to climb stairs. by guest. Protected copyright. alterations. The disease displays a notable clinical Later on, paresis of the upper extremities, of variability and marked genetic heterogeneity indeterminate onset, caused difficulty in raising (Radu et al., 1977). Usually it is present early in the arms above the shoulders. These symptoms life, and is found only rarely in adults (Vital et al., were not modified by cold weather. The patient 1970). Electrical myotonia (Munsat et al., 1969; repeatedly suffered from corneal ulcers, and within Radu et al., 1977) with accompanying cataract the past year she had noticed macular skin lesions has been described in this disease (Hawkes and on the right arm. Absolon, 1975). The patient walked with a waddling gait and a We report a family in which two members dis- limp on the right side.
    [Show full text]
  • Severe Infantile Hyperkalaemic Periodic Paralysis And
    1339 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.9.1339 on 21 August 2003. Downloaded from SHORT REPORT Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A F Brancati, E M Valente, N P Davies, A Sarkozy, M G Sweeney, M LoMonaco, A Pizzuti, M G Hanna, B Dallapiccola ............................................................................................................................. J Neurol Neurosurg Psychiatry 2003;74:1339–1341 the face and hand muscles, and paradoxical myotonia. Onset The authors describe an Italian kindred with nine individu- of paramyotonia is usually at birth.2 als affected by hyperkalaemic periodic paralysis associ- HyperPP/PMC shows characteristics of both hyperPP and ated with paramyotonia congenita (hyperPP/PMC). PMC with varying degrees of overlap and has been reported in Periodic paralysis was particularly severe, with several association with eight mutations in SCN4A gene (I693T, episodes a day lasting for hours. The onset of episodes T704M, A1156T, T1313M, M1360V, M1370V, R1448C, was unusually early, beginning in the first year of life and M1592V).3–9 While T704M is an important cause of isolated persisting into adult life. The paralytic episodes were hyperPP, this mutation has been only recently described in a refractory to treatment. Patients described minimal single hyperPP/PMC family. As with other SCN4A mutations, paramyotonia, mainly of the eyelids and hands. All there can be marked intrafamilial and interfamilial variability affected family members carried the threonine to in paralytic attack frequency and severity in patients harbour- methionine substitution at codon 704 (T704M) in exon 13 ing T704M.10–12 We report an Italian kindred, in which all of the skeletal muscle voltage gated sodium channel gene patients presented with an unusually severe and homogene- (SCN4A).
    [Show full text]
  • Clinical Approach to the Floppy Child
    THE FLOPPY CHILD CLINICAL APPROACH TO THE FLOPPY CHILD The floppy infant syndrome is a well-recognised entity for paediatricians and neonatologists and refers to an infant with generalised hypotonia presenting at birth or in early life. An organised approach is essential when evaluating a floppy infant, as the causes are numerous. A detailed history combined with a full systemic and neurological examination are critical to allow for accurate and precise diagnosis. Diagnosis at an early stage is without a doubt in the child’s best interest. HISTORY The pre-, peri- and postnatal history is important. Enquire about the quality and quantity of fetal movements, breech presentation and the presence of either poly- or oligohydramnios. The incidence of breech presentation is higher in fetuses with neuromuscular disorders as turning requires adequate fetal mobility. Documentation of birth trauma, birth anoxia, delivery complications, low cord R van Toorn pH and Apgar scores are crucial as hypoxic-ischaemic encephalopathy remains MB ChB, (Stell) MRCP (Lond), FCP (SA) an important cause of neonatal hypotonia. Neonatal seizures and an encephalo- Specialist pathic state offer further proof that the hypotonia is of central origin. The onset of the hypotonia is also important as it may distinguish between congenital and Department of Paediatrics and Child Health aquired aetiologies. Enquire about consanguinity and identify other affected fam- Faculty of Health Sciences ily members in order to reach a definitive diagnosis, using a detailed family Stellenbosch University and pedigree to assist future genetic counselling. Tygerberg Children’s Hospital CLINICAL CLUES ON NEUROLOGICAL EXAMINATION Ronald van Toorn obtained his medical degree from the University of Stellenbosch, There are two approaches to the diagnostic problem.
    [Show full text]
  • Hypokalemic Periodic Paralysis in Graves' Disease
    대한외과학회지:제62권 제4호 □ Case Report □ Vol. 62, No. 4, April, 2002 Hypokalemic Periodic Paralysis in Graves' Disease Department of Surgery, St. Vincent's Hospital and 1Holy Family Hospital, The Catholic University of Korea, Suwon, Korea Young-Jin Suh, M.D., Wook Kim, M.D.1 and Chung-Soo Chun, M.D. clude hypokalemic and hyperkalemic periodic paralysis, para- 그레이브스씨병에서 발생한 저칼륨성 주기 myotonia congenita, and myotonia congenita. Primary hypo- 적 마비증 kalemic periodic paralysis (HPP) is a rare entity first described by Shakanowitch in 1882, (1) and is an autosomal dominant 서영진․김 욱․전정수 disease. We hereby report a case of HPP in a male adult, successfully managed by total thyroidectomy for his Graves' Thyrotoxic hypokalemic periodic paralysis is a rare endocrine disease and hypokalemic periodic paralysis. disorder, most prevalent among Asians, which presents as proximal muscle weakness, hypokalemia, and with signs of CASE REPORT hyperthyroidism from various etiologies. It is an autosomal dominant disorder characterized by acute and recurrent episodes of muscle weakness concomitant with a decrease A 30-year-old male patient presented with complaints of in blood potassium levels below the reference range, lasting recurrent attacks of quadriparesis especially after vigorous from hours to days, and is often triggered by physical activity exercises for the last 5 years, which had been started 2 months or ingestion of carbohydrates. Although hypokalemic periodic after the diagnosis of and medications for Graves' disease. He paralysis is a common complication of hyperthyroidism had taken medications of methimazole (15 mg/day) and among Asian populations, it has never been documented propylthiouracil (50 mg/day) initially but discontinued medica- since in Korea.
    [Show full text]
  • Hypothyroidism with True Myotonia
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.41.11.1013 on 1 November 1978. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1978, 41, 1013-1015 Short report Hypothyroidism with true myotonia G. S. VENABLES, D. BATES, AND D. A. SHAW From the Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne SUMMARY A patient with subclinical hypothyroidism who presented with true myotonia is described. There was no evidence that either he or members of his family had dystrophia myotonica or myotonia congenita. Treatment with thyroxine resolved his symptoms completely. There are two recognised circumstances in which had occasional cramping pains in the forearms myotonia is seen in thyroid disease (Pearce and and legs, and after a hiccough he was aware of the Aziz, 1969). Firstly, clinical pseudomyotonia in- slow relaxation of his abdominal muscles. Direct volving slow contraction and relaxation of the questioning elicited no symptoms of hypo- muscles is seen in severe hypothyroidism and is thyroidism or other disease. There was no family by guest. Protected copyright. one of the features of the Hoffmann syndrome. history of muscle, endocrine, or autoimmune Secondly, hypothyroidism may reveal true myo- disease. tonia in patients who suffer from dystrophia myotonica (Brumlik and Maier, 1972) or myotonia EXAMINATION congenita (Jarcho and Tyler, 1958). Pseudomyo- On examination he was a well-built man without tonia and myotonia are readily distinguishable by evident stigmata of hypothyroidism. He had a electromyography (Waldsterm et al., 1958). Except smooth, non-tender goitre of moderate size with- in the setting of dystrophia myotonica or myotonia out audible bruit.
    [Show full text]