New Territory Opened by Periodic Paralysis Associated with Mitochondrial DNA Mutation

Total Page:16

File Type:pdf, Size:1020Kb

New Territory Opened by Periodic Paralysis Associated with Mitochondrial DNA Mutation EDITORIAL New territory opened by periodic paralysis associated with mitochondrial DNA mutation Robert L. Ruff, MD, PhD Science is an exploration of knowledge. Early world indirectly altered. In the previously discussed disor- Stephen Cannon, MD, maps did not recognize large land masses until some- ders of skeletal membrane excitability, including PhD one first observed them. The report by Auré et al.1 periodic paralysis, the pathophysiology could be describes new territory in the field of periodic paral- explained by direct alterations of the operations of ysis and other disorders of skeletal muscle membrane mutated ion channels. Episodes of periodic paralysis Correspondence to excitability. The muscle membrane has to balance on resulted from membrane depolarization that was a Dr. Ruff: [email protected] a knife edge between excessive excitability manifest by direct consequence of altered channel function. Auré conditions such as myotonia, and inexcitability, as et al.1 did not find any of the previously recognized – Neurology® 2013;81:1806–1807 occurs intermittently in periodic paralysis.2 4 Under- channelopathy mutations associated with periodic standing disorders of altered muscle membrane excit- paralysis. Instead, they found consistent mutations of ability is important because the knowledge gained mitochondrial DNA. They identified the MT-ATP6 leads to increased understanding of how excitable m.9185T.C p.Leu220Pro mutation that was previ- membranes function and may suggest ways of treat- ously associated with Leigh syndrome. In addition, ing membrane disorders that can involve many tis- they also discovered the MT-TL1 m.3271T.Cmuta- sues, including brain, peripheral nerve, and skeletal tion that caused MELAS (mitochondrial encephalop- and cardiac muscle. athy with lactic acidosis and stroke-like episodes) Pathophysiologic investigations have focused on syndrome in the one subject who had MELAS. They the roles of specific ion channels in maintaining nor- studied the effect of these mitochondrial DNA muta- mal skeletal muscle membrane excitability. Chloride tions in cultured fibroblasts and observed defects of channels enhance membrane stability, and the first complexes V and I as well as oxidative stress. The pre- identified channelopathies producing myotonia were cise pathophysiologic connection between the altered loss-of-function chloride channel mutations.2–4 intracellular metabolism and periodic paralysis pheno- Gain-of-function sodium channel mutations disturb- type is not clear; in patient-derived fibroblasts, how- ing the normal balance of channel opening (activa- ever, the mitochondrial mutations resulted in altered tion), closing, and inactivation can also produce potassium ion permeability associated with plasma myotonia.2–4 Paralytic episodes in periodic paralysis membrane depolarization. are associated with membrane depolarization that The possibility of indirect effects on channel func- inactivates sodium channels leading to membrane tion was suggested by prior studies of hypokalemic peri- inexcitability.2–4 The channels associated with peri- odic paralysis. Type 1 hypokalemic periodic paralysis, odic paralysis include CACNA1S (calcium), SCN4A which is associated with mutations involving CAC- (sodium), and KCNJ2 (inward rectifier potassium NA1S, and a related disorder, thyrotoxic periodic paral- channel).2,3 That similar phenotypes can result from ysis, are associated with reduction in the outward mutations of genes encoding different ion channels current component of a specific potassium channel emphasizes the important interplay among ion chan- and reduced voltage-gated sodium channel current.6 Re- nels involved with membrane excitability. Mutations ductions in these currents may be epiphenomena, of sodium and calcium channels associated with although an expected consequence of reduced voltage- hypokalemic periodic paralysis share a common gated sodium current, reduced membrane excitability,4 mechanistic pathway because the mutations permit is observed in type 1 hypokalemic periodic paralysis.7 an alternative current pathway through the mutant A causative role for these anomalous currents in channels that can depolarize the membrane.5 the susceptibility to periodic paralysis is supported The new pathophysiologic territory defined by by the observation of analogous functional changes Auré et al.1 was that membrane excitability could be in conventional channelopathies of skeletal muscle. See page 1810 From the Louis Stokes Cleveland Department of Veterans Affairs Medical Center (R.L.R.), Departments of Neurology and Neurosciences, Case Western Reserve University, Cleveland, OH; and Department of Neurology & Neurotherapeutics (S.C.), University of Texas Southwestern Medical Center, Dallas, TX. Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the editorial. 1806 © 2013 American Academy of Neurology ª"NFSJDBO"DBEFNZPG/FVSPMPHZ6OBVUIPSJ[FESFQSPEVDUJPOPGUIJTBSUJDMFJTQSPIJCJUFE In type 2 hypokalemic periodic paralysis, the sodium DISCLOSURE channel mutations increase resting-state inactivation, The authors report no disclosures relevant to the manuscript. Go to which would be expected to reduce the baseline so- Neurology.org for full disclosures. 2–4 dium channel current. There is also evidence that REFERENCES reduced inward rectifier potassium current contrib- 1. Auré K, Dubourg O, Jardel C, et al. Episodic weakness utes to the hypokalemic periodic paralysis phenotype. due to mitochondrial DNA MT-ATP6/8 mutations. Neu- Inward rectifier potassium channel mutations occur rology 2013;81:1810–1818. in both thyrotoxic periodic paralysis8 and Andersen- 2. Cannon SC. Pathomechanisms in channelopathies of skeletal – Tawil syndrome,9 which includes a periodic paralysis muscle and brain. Annu Rev Neurosci 2006;29:387 415. 3. Lehmann-Horn F, Rüdel R, Jurkat-Rott K. Nondytrophic phenotype. In an animal model of hypokalemic myotonias and periodic paralysis. In: Engel AG, Franzini- periodic paralysis, partial block of inward rectifier Armstrong C, editors. Myology, 3rd ed. New York: potassium channels leads to hypokalemia-induced McGraw-Hill; 2004:1257–1300. depolarization.10 Altered action of insulin on the 4. Shapiro BE, Ruff RL. Disorders of skeletal muscle mem- inward rectifier potassium channel contributes to brane excitability: myotonia congenita, paramyotonia con- insulin-induced paralysis in type 1 hypokalemic genita, periodic paralysis and related syndromes. In: Katirji B, Kaminski HJ, Preston D, Ruff RL, Shapiro BE, periodic paralysis.11 Additionally, increasing inward rec- editors. Neuromuscular Disorders in Clinical Practice. Bos- tifier potassium channel current may be the mechanism ton: Butterworth-Heinemann; 2002:987–1021. of action of acetazolamide-induced improvement of 5. Wu F, Mi W, Hernández-Ochoa EO, et al. A calcium chan- symptoms in hypokalemic periodic paralysis.12 All of nel knock-in mutant (CaV1.1-R528H) mouse model of hypo- these changes would be exacerbated by the inward cur- kalemic periodic paralysis. J Clin Invest 2012;122:4580–4591. rent conducted by an alternative pathway in both type 6. Puwanant A, Ruff RL. INa and IKir are reduced in type 1 (calcium) and type 2 (sodium) hypokalemic periodic 1 hypokalemic and thyrotoxic periodic paralysis. Muscle Nerve 2010;42:315–327. 5 paralysis. 7. Links TP, van der Hoeven JH. Muscle fiber conduction In contrast to the possibility that altered func- velocity in arg1239his mutation in hypokalemic periodic tion of inward rectifier potassium channels and paralysis. Muscle Nerve 2000;23:296. reduced voltage-gated sodium channel current con- 8. Ryan DP, Dias da Silva MR, Soong TW, et al. Mutations in tribute to the membrane depolarization in type potassium channel Kir2.6 cause susceptibility to thyrotoxic – 1 hypokalemic periodic paralysis, the work of Auré hypokalemic periodic paralysis. Cell 2010;140:88 98. 9. Bendahhou S, Fournier E, Sternberg D, et al. In vivo and et al.1 leaves little doubt that altered mitochondrial in vitro functional characterization of Andersen’s syn- function contributed to the periodic paralysis phe- drome mutations. J Physiol 2005;565:231–241. notype in their subjects. The challenge for future 10. Struyk AF, Cannon SC. Paradoxical depolarization of explorers is to determine how oxidative stress alters Ba21-treated muscle exposed to low extracellular K1: in- membrane function. sights into resting potential abnormalities in hypokalemic paralysis. Muscle Nerve 2008;37:326–337. AUTHOR CONTRIBUTIONS 11. Ruff RL. Insulin acts in hypokalemic periodic paralysis by 1 Robert L. Ruff: drafting/revising the manuscript, study concept or design, reducing inward rectifier K current. Neurology 1999;53: analysis or interpretation of data, acquisition of data, study supervision. 1556–1563. Stephen Cannon: drafting/revising the manuscript. 12. Tricarico D, Mele A, Camerino DC. Carbonic anhydrase inhibitors ameliorate the symptoms of hypokalaemic periodic STUDY FUNDING paralysisinratsbyopeningthemuscularCa21-activated-K1 No targeted funding reported. channels. Neuromuscul Disord 2006;16:39–45. Neurology 81 November 19, 2013 1807 ª"NFSJDBO"DBEFNZPG/FVSPMPHZ6OBVUIPSJ[FESFQSPEVDUJPOPGUIJTBSUJDMFJTQSPIJCJUFE.
Recommended publications
  • Spectrum of CLCN1 Mutations in Patients with Myotonia Congenita in Northern Scandinavia
    European Journal of Human Genetics (2001) 9, 903 ± 909 ã 2001 Nature Publishing Group All rights reserved 1018-4813/01 $15.00 www.nature.com/ejhg ARTICLE Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia Chen Sun*,1, Lisbeth Tranebjñrg*,1, Torberg Torbergsen2,GoÈsta Holmgren3 and Marijke Van Ghelue1,4 1Department of Medical Genetics, University Hospital of Tromsù, Tromsù, Norway; 2Department of Neurology, University Hospital of Tromsù, Tromsù, Norway; 3Department of Clinical Genetics, University Hospital of UmeaÊ, UmeaÊ,Sweden;4Department of Biochemistry, Section Molecular Biology, University of Tromsù, Tromsù, Norway Myotonia congenita is a non-dystrophic muscle disorder affecting the excitability of the skeletal muscle membrane. It can be inherited either as an autosomal dominant (Thomsen's myotonia) or an autosomal recessive (Becker's myotonia) trait. Both types are characterised by myotonia (muscle stiffness) and muscular hypertrophy, and are caused by mutations in the muscle chloride channel gene, CLCN1. At least 50 different CLCN1 mutations have been described worldwide, but in many studies only about half of the patients showed mutations in CLCN1. Limitations in the mutation detection methods and genetic heterogeneity might be explanations. In the current study, we sequenced the entire CLCN1 gene in 15 Northern Norwegian and three Northern Swedish MC families. Our data show a high prevalence of myotonia congenita in Northern Norway similar to Northern Finland, but with a much higher degree of mutation heterogeneity. In total, eight different mutations and three polymorphisms (T87T, D718D, and P727L) were detected. Three mutations (F287S, A331T, and 2284+5C4T) were novel while the others (IVS1+3A4T, 979G4A, F413C, A531V, and R894X) have been reported previously.
    [Show full text]
  • Difference in Allelic Expression of the CLCN1 Gene and the Possible Influence on the Myotonia Congenita Phenotype
    European Journal of Human Genetics (2004) 12, 738–743 & 2004 Nature Publishing Group All rights reserved 1018-4813/04 $30.00 www.nature.com/ejhg ARTICLE Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype Morten Dun1*, Eskild Colding-Jrgensen2, Morten Grunnet3,5, Thomas Jespersen3, John Vissing4 and Marianne Schwartz1 1Department of Clinical Genetics, 4062, University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; 2Department of Clinical Neurophysiology 3063,University Hospital, Rigshospitalet, Blegdamsvej 9, DK- 2100 Copenhagen, Denmark; 3Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; 4Department of Neurology and The Copenhagen Muscle Research Center, University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark Mutations in the CLCN1 gene, encoding a muscle-specific chloride channel, can cause either recessive or dominant myotonia congenita (MC). The recessive form, Becker’s myotonia, is believed to be caused by two loss-of-function mutations, whereas the dominant form, Thomsen’s myotonia, is assumed to be a consequence of a dominant-negative effect. However, a subset of CLCN1 mutations can cause both recessive and dominant MC. We have identified two recessive and two dominant MC families segregating the common R894X mutation. Real-time quantitative RT-PCR did not reveal any obvious association between the total CLCN1 mRNA level in muscle and the mode of inheritance, but the dominant family with the most severe phenotype expressed twice the expected amount of the R894X mRNA allele. Variation in allelic expression has not previously been described for CLCN1, and our finding suggests that allelic variation may be an important modifier of disease progression in myotonia congenita.
    [Show full text]
  • Periodic Paralysis
    Periodic Paralysis In Focus Dear Readers Fast Facts This “In Focus” report is the third in a series of MDA’s three-year commitment for all Hypokalemic periodic paralysis MDA comprehensive reports about the latest in periodic paralysis research as of March Hypokalemic PP can begin anywhere from neuromuscular disease research and manage- 2009 is $1,938,367. The Association’s early childhood to the 30s, with periodic ment. allocation for research on hyperkalemic attacks of severe weakness lasting hours This report focuses on the periodic and hypokalemic periodic paralysis to days. The frequency of attacks gener- paralyses, a group of disorders that result from research since 1950 is $8,125,341. ally lessens in the 40s or 50s. Permanent malfunctions in so-called ion channels, micro- MDA’s allocation for the recently weakness may persist between attacks, scopic tunnels that make possible high-speed identified Andersen-Tawil syndrome usually beginning in middle age and pro- movement of electrically charged particles is $515,430 since 2001. MDA is cur- gressing slowly over years. across barriers inside cells and between cells rently funding 11 grants in the periodic The most common underlying cause and their surroundings. paralyses. is any of several genetic mutations in When ion channels fail to open or close The periodic paralyses are gener- a gene on chromosome 1 that carries according to an exquisitely fine-tuned program, ally divided into hyperkalemic periodic instructions for a calcium channel protein episodes of paralysis of the skeletal muscles paralysis, hypokalemic periodic paralysis in skeletal muscle fibers. When this chan- and even temporary irregularities in the heart- and Andersen-Tawil syndrome.
    [Show full text]
  • Neuromyotonia in Hereditary Motor Neuropathy J Neurol Neurosurg Psychiatry: First Published As 10.1136/Jnnp.54.3.230 on 1 March 1991
    230 Journal ofNeurology, Neurosurgery, and Psychiatry 1991;54:230-235 Neuromyotonia in hereditary motor neuropathy J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.54.3.230 on 1 March 1991. Downloaded from A F Hahn, A W Parkes, C F Bolton, S A Stewart Abstract Case II2 Two siblings with a distal motor This 15 year old boy had always been clumsy. neuropathy experienced cramping and Since the age of 10, he had noticed generalised difficulty in relaxing their muscles after muscle stiffness which increased with physical voluntary contraction. Electromyogra- activity such as walking upstairs, running and phic recordings at rest revealed skating. For some time, he was aware of repetitive high voltage spontaneous elec- difficulty in releasing his grip and his fingers trical discharges that were accentuated tended to cramp on writing. He had noticed after voluntary contraction and during involuntary twitching of his fingers, forearm ischaemia. Regional neuromuscular muscles and thighs at rest and it was more blockage with curare indicated hyperex- pronounced after a forceful voluntary con- citability of peripheral nerve fibres and traction. Muscle cramping and spontaneous nerve block suggested that the ectopic muscle activity were particularly unpleasant activity originated in proximal segments when he re-entered the house in the winter, of the nerve. Symptoms were improved for example, after a game of hockey. Since the with diphenylhydantoin, carbamazepine age of twelve, he had noticed a tendency to and tocainide. trip. Subsequently he developed bilateral foot drop and weakness of his hands. He denied sensory symptoms and perspired only with The term "neuromyotonia" was coined by exertion.
    [Show full text]
  • Muscle Ion Channel Diseases Rehabilitation Article
    ISSN 1473-9348 Volume 3 Issue 1 March/April 2003 ACNR Advances in Clinical Neuroscience & Rehabilitation journal reviews • events • management topic • industry news • rehabilitation topic Review Articles: Looking at protein misfolding neurodegenerative disease through retinitis pigmentosa; Neurological complications of Behçet’s syndrome Management Topic: Muscle ion channel diseases Rehabilitation Article: Domiciliary ventilation in neuromuscular disorders - when and how? WIN BOOKS: See page 5 for details www.acnr.co.uk COPAXONE® WORKS, DAY AFTER DAY, MONTH AFTER MONTH,YEAR AFTER YEAR Disease modifying therapy for relapsing-remitting multiple sclerosis Reduces relapse rates1 Maintains efficacy in the long-term1 Unique MS specific mode of action2 Reduces disease activity and burden of disease3 Well-tolerated, encourages long-term compliance1 (glatiramer acetate) Confidence in the future COPAXONE AUTOJECT2 AVAILABLE For further information, contact Teva Pharmaceuticals Ltd Tel: 01296 719768 email: [email protected] COPAXONE® (glatiramer acetate) PRESCRIBING INFORMATION Presentation Editorial Board and contributors Glatiramer acetate 20mg powder for solution with water for injection. Indication Roger Barker is co-editor in chief of Advances in Clinical Reduction of frequency of relapses in relapsing-remitting multiple Neuroscience & Rehabilitation (ACNR), and is Honorary sclerosis in ambulatory patients who have had at least two relapses in Consultant in Neurology at The Cambridge Centre for Brain Repair. He trained in neurology at Cambridge and at the the preceding two years before initiation of therapy. National Hospital in London. His main area of research is into Dosage and administration neurodegenerative and movement disorders, in particular 20mg of glatiramer acetate in 1 ml water for injection, administered sub- parkinson's and Huntington's disease.
    [Show full text]
  • Correlating-Phenotype-And-Genotype
    I am pleased to provide you complimentary one-time access to my article as a PDF file for your own personal use. Any further/multiple distribution, publication or commercial usage of this copyrighted material would require submission of a permission request to the publisher. Timothy M. Miller, MD, PhD Correlating phenotype and genotype in the periodic paralyses T.M. Miller, MD, PhD; M.R. Dias da Silva, MD, PhD; H.A. Miller, BS; H. Kwiecinski, MD, PhD; J.R. Mendell, MD; R. Tawil, MD; P. McManis, MD; R.C. Griggs, MD; C. Angelini, MD; S. Servidei, MD; J. Petajan, MD, PhD; M.C. Dalakas, MD; L.P.W. Ranum, PhD; Y.H. Fu, PhD; and L.J. Ptáek, MD Abstract—Background: Periodic paralyses and paramyotonia congenita are rare disorders causing disabling weakness and myotonia. Mutations in sodium, calcium, and potassium channels have been recognized as causing disease. Objective: To analyze the clinical phenotype of patients with and without discernible genotype and to identify other mutations in ion channel genes associated with disease. Methods: The authors have reviewed clinical data in patients with a diagnosis of hypokalemic periodic paralysis (56 kindreds, 71 patients), hyperkalemic periodic paralysis (47 kindreds, 99 patients), and paramyotonia congenita (24 kindreds, 56 patients). For those patients without one of the classically known mutations, the authors analyzed the entire coding region of the SCN4A, KCNE3, and KCNJ2 genes and portions of the coding region of the CACNA1S gene in order to identify new mutations. Results: Mutations were identified in approximately two thirds of kindreds with periodic paralysis or paramyotonia congenita.
    [Show full text]
  • What Is a Skeletal Muscle Channelopathy?
    Muscle Channel Patient Day 2019 Dr Emma Matthews The Team • Professor Michael Hanna • Emma Matthews • Doreen Fialho - neurophysiology • Natalie James – clinical nurse specialist • Sarah Holmes - physiotherapy • Richa Sud - genetics • Roope Mannikko – electrophysiology • Iwona Skorupinska – research nurse • Louise Germain – research nurse • Kira Baden- service manager • Jackie Kasoze-Batende– NCG manager • Jean Elliott – NCG senior secretary • Karen Suetterlin, Vino Vivekanandam • – research fellows What is a skeletal muscle channelopathy? Muscle and nerves communicate by electrical signals Electrical signals are made by the movement of positively and negatively charged ions in and out of cells The ions can only move through dedicated ion channels If the channel doesn’t work properly, you have a “channelopathy” Ion channels CHLORIDE CHANNELS • Myotonia congenita – CLCN1 • Paramyotonia congenita – SCN4A MYOTONIA SODIUM CHANNELS • Hyperkalaemic periodic paralysis – SCN4A • Hypokalaemic periodic paralysis – 80% CACNA1S CALCIUM CHANNELS – 10% SCN4A PARALYSIS • Andersen-Tawil Syndrome – KCNJ2 POTASSIUM CHANNELS Myotonia and Paralysis • Two main symptoms • Paralysis = an inexcitable muscle – Muscles are very weak or paralysed • Myotonia = an overexcited muscle – Muscle keeps contracting and become “stuck” - Nerve action potential Cl_ - + - + + + Motor nerve K+ + Na+ Na+ Muscle membrane Ach Motor end plate T-tubule Nav1.4 Ach receptors Cav1.1 and RYR1 Muscle action potential Calcium MuscleRelaxed contraction muscle Myotonia Congenita • Myotonia
    [Show full text]
  • Skeletal Muscle Channelopathies: a Guide to Diagnosis and Management
    Review Pract Neurol: first published as 10.1136/practneurol-2020-002576 on 9 February 2021. Downloaded from Skeletal muscle channelopathies: a guide to diagnosis and management Emma Matthews ,1,2 Sarah Holmes,3 Doreen Fialho2,3,4 1Atkinson- Morley ABSTRACT in the case of myotonia may be precipi- Neuromuscular Centre, St Skeletal muscle channelopathies are a group tated by sudden or initial movement, George's University Hospitals NHS Foundation Trust, London, of rare episodic genetic disorders comprising leading to falls and injury. Symptoms are UK the periodic paralyses and the non- dystrophic also exacerbated by prolonged rest, espe- 2 Department of Neuromuscular myotonias. They may cause significant morbidity, cially after preceding physical activity, and Diseases, UCL, Institute of limit vocational opportunities, be socially changes in environmental temperature.4 Neurology, London, UK 3Queen Square Centre for embarrassing, and sometimes are associated Leg muscle myotonia can cause particular Neuromuscular Diseases, with sudden cardiac death. The diagnosis is problems on public transport, with falls National Hospital for Neurology often hampered by symptoms that patients may caused by the vehicle stopping abruptly and Neurosurgery, London, UK 4Department of Clinical find difficult to describe, a normal examination or missing a destination through being Neurophysiology, King's College in the absence of symptoms, and the need unable to rise and exit quickly enough. Hospital NHS Foundation Trust, to interpret numerous tests that may be These difficulties can limit independence, London, UK normal or abnormal. However, the symptoms social activity, choice of employment Correspondence to respond very well to holistic management and (based on ability both to travel to the Dr Emma Matthews, Atkinson- pharmacological treatment, with great benefit to location and to perform certain tasks) and Morley Neuromuscular Centre, quality of life.
    [Show full text]
  • Myotonia in Centronuclear Myopathy
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.41.12.1102 on 1 December 1978. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1978, 41, 1102-1108 Myotonia in centronuclear myopathy A. GIL-PERALTA, E. RAFEL, J. BAUTISTA, AND R ALBERCA From the Departments of Neurology and Pathology, Ciudad Sanitaria Virgen del Rocio, Seville, Spain SUMMARY Centronuclear myopathy, which is unusual because of clinical myotonia, is described in two sisters. The diagnosis was established in adult life, but the first symptoms were noticed in infancy. The outstanding points of the clinical picture were mild amyotrophy, paresis, and clinical myotonia. Myotubular myopathy (Spiro et al., 1966) is an the age of 27 years she noticed increased muscular entity defined by its morphological muscular difficulties, and needed support to climb stairs. by guest. Protected copyright. alterations. The disease displays a notable clinical Later on, paresis of the upper extremities, of variability and marked genetic heterogeneity indeterminate onset, caused difficulty in raising (Radu et al., 1977). Usually it is present early in the arms above the shoulders. These symptoms life, and is found only rarely in adults (Vital et al., were not modified by cold weather. The patient 1970). Electrical myotonia (Munsat et al., 1969; repeatedly suffered from corneal ulcers, and within Radu et al., 1977) with accompanying cataract the past year she had noticed macular skin lesions has been described in this disease (Hawkes and on the right arm. Absolon, 1975). The patient walked with a waddling gait and a We report a family in which two members dis- limp on the right side.
    [Show full text]
  • Severe Infantile Hyperkalaemic Periodic Paralysis And
    1339 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.9.1339 on 21 August 2003. Downloaded from SHORT REPORT Severe infantile hyperkalaemic periodic paralysis and paramyotonia congenita: broadening the clinical spectrum associated with the T704M mutation in SCN4A F Brancati, E M Valente, N P Davies, A Sarkozy, M G Sweeney, M LoMonaco, A Pizzuti, M G Hanna, B Dallapiccola ............................................................................................................................. J Neurol Neurosurg Psychiatry 2003;74:1339–1341 the face and hand muscles, and paradoxical myotonia. Onset The authors describe an Italian kindred with nine individu- of paramyotonia is usually at birth.2 als affected by hyperkalaemic periodic paralysis associ- HyperPP/PMC shows characteristics of both hyperPP and ated with paramyotonia congenita (hyperPP/PMC). PMC with varying degrees of overlap and has been reported in Periodic paralysis was particularly severe, with several association with eight mutations in SCN4A gene (I693T, episodes a day lasting for hours. The onset of episodes T704M, A1156T, T1313M, M1360V, M1370V, R1448C, was unusually early, beginning in the first year of life and M1592V).3–9 While T704M is an important cause of isolated persisting into adult life. The paralytic episodes were hyperPP, this mutation has been only recently described in a refractory to treatment. Patients described minimal single hyperPP/PMC family. As with other SCN4A mutations, paramyotonia, mainly of the eyelids and hands. All there can be marked intrafamilial and interfamilial variability affected family members carried the threonine to in paralytic attack frequency and severity in patients harbour- methionine substitution at codon 704 (T704M) in exon 13 ing T704M.10–12 We report an Italian kindred, in which all of the skeletal muscle voltage gated sodium channel gene patients presented with an unusually severe and homogene- (SCN4A).
    [Show full text]
  • Clinical Approach to the Floppy Child
    THE FLOPPY CHILD CLINICAL APPROACH TO THE FLOPPY CHILD The floppy infant syndrome is a well-recognised entity for paediatricians and neonatologists and refers to an infant with generalised hypotonia presenting at birth or in early life. An organised approach is essential when evaluating a floppy infant, as the causes are numerous. A detailed history combined with a full systemic and neurological examination are critical to allow for accurate and precise diagnosis. Diagnosis at an early stage is without a doubt in the child’s best interest. HISTORY The pre-, peri- and postnatal history is important. Enquire about the quality and quantity of fetal movements, breech presentation and the presence of either poly- or oligohydramnios. The incidence of breech presentation is higher in fetuses with neuromuscular disorders as turning requires adequate fetal mobility. Documentation of birth trauma, birth anoxia, delivery complications, low cord R van Toorn pH and Apgar scores are crucial as hypoxic-ischaemic encephalopathy remains MB ChB, (Stell) MRCP (Lond), FCP (SA) an important cause of neonatal hypotonia. Neonatal seizures and an encephalo- Specialist pathic state offer further proof that the hypotonia is of central origin. The onset of the hypotonia is also important as it may distinguish between congenital and Department of Paediatrics and Child Health aquired aetiologies. Enquire about consanguinity and identify other affected fam- Faculty of Health Sciences ily members in order to reach a definitive diagnosis, using a detailed family Stellenbosch University and pedigree to assist future genetic counselling. Tygerberg Children’s Hospital CLINICAL CLUES ON NEUROLOGICAL EXAMINATION Ronald van Toorn obtained his medical degree from the University of Stellenbosch, There are two approaches to the diagnostic problem.
    [Show full text]
  • Hypokalemic Periodic Paralysis in Graves' Disease
    대한외과학회지:제62권 제4호 □ Case Report □ Vol. 62, No. 4, April, 2002 Hypokalemic Periodic Paralysis in Graves' Disease Department of Surgery, St. Vincent's Hospital and 1Holy Family Hospital, The Catholic University of Korea, Suwon, Korea Young-Jin Suh, M.D., Wook Kim, M.D.1 and Chung-Soo Chun, M.D. clude hypokalemic and hyperkalemic periodic paralysis, para- 그레이브스씨병에서 발생한 저칼륨성 주기 myotonia congenita, and myotonia congenita. Primary hypo- 적 마비증 kalemic periodic paralysis (HPP) is a rare entity first described by Shakanowitch in 1882, (1) and is an autosomal dominant 서영진․김 욱․전정수 disease. We hereby report a case of HPP in a male adult, successfully managed by total thyroidectomy for his Graves' Thyrotoxic hypokalemic periodic paralysis is a rare endocrine disease and hypokalemic periodic paralysis. disorder, most prevalent among Asians, which presents as proximal muscle weakness, hypokalemia, and with signs of CASE REPORT hyperthyroidism from various etiologies. It is an autosomal dominant disorder characterized by acute and recurrent episodes of muscle weakness concomitant with a decrease A 30-year-old male patient presented with complaints of in blood potassium levels below the reference range, lasting recurrent attacks of quadriparesis especially after vigorous from hours to days, and is often triggered by physical activity exercises for the last 5 years, which had been started 2 months or ingestion of carbohydrates. Although hypokalemic periodic after the diagnosis of and medications for Graves' disease. He paralysis is a common complication of hyperthyroidism had taken medications of methimazole (15 mg/day) and among Asian populations, it has never been documented propylthiouracil (50 mg/day) initially but discontinued medica- since in Korea.
    [Show full text]