Alkane Hydroxylation

Total Page:16

File Type:pdf, Size:1020Kb

Alkane Hydroxylation Baran Group Meeting Florina Voica 3/21/2009 Alkane Hydroxylation " Selective C-H functionalization is a class of reactions that 3. Managing the regioselectivity = making "your" bond react could lead to a paradigm shift in organic synthesis, relying Complex molecules contain numerous C-H bonds that can on selective modifications of ubiquitous C-H bonds of sometimes be differentiated based on steric and electronic organic compounds instead of th standard approach of factors. Various oxidation systems show distinguished conducting transformations on pre-existing functional selectivity in terms of 3°, 2° and 1° C-H bonds. groups." Strategies toward this goal: Davies Nature 2008, 451, 417-424. - use directing groups (functional groups withing the substrate that can coordinate to the metal) Challenges for C-H bond functionalization: - design intramolecular reactions that proceed through a favorable five or six-membered TS 1. Controlling the reactivity -devise supramolecular structures that position the desired Among hydrocarbons, alkanes have long been C-H bond next to the catalyst active site considered inert. Their low reactivity toward reagents is due to their saturation (no low energy empty π orbitals and no high energy filled n orbitals ). 4. Inducing stereoselectivity = functionalize a C-H bond at a prochiral center enantioselectively ΔGC-H (Kcal/mol) pKa Strategies toward this goal (same old...): - substrate control (existing chiral centers, chiral auxiliaries H2 104 ∼ 36 - catalyst control CH4 104 48 - functionalize C-H bonds at existing stereocenters with retention or inversion of configuration C2H4 106 50 C2H2 120 24 C6H6 109 43 " One 'Holy Grail' of C-H activation research, therefore, is 2. Achieving chemoselectivity = stopping the reaction at the not simply to find new C-H activation reactions but to obtain correct oxidation state an understanding of them that will allow the development of Strategies toward this goal: reagents capable of selective transformations of C-H bonds - run the reaction at low conversion into more reactive functionalized molecules." - use large excess of substrate vs oxidant Bergman Acc. Chem. Res. 1995, 28, 154-162. - block the overoxidation of the product with functional groups Baran Group Meeting Florina Voica 3/21/2009 Alkane Hydroxylation Summary of this report The Shilov "electrophilic" process 1. Introduction - Challenges for C-H oxidation 2- 2- PtCl4 - 2. C-H activation by transition metals CH4 + PtCl6 + H2O CH3OH + PtCl4 + 2HCl a. The Shilov process H2O b. Catalytica process 120° C c. Further applications of Pt(II)/Pt(IV) system Shilov Zhurnal Fizicheskoi Khimii 1972, 46, 1353. d. Stoichiometric processes with Pd Shilov Chem. Rev. 1997, 97, 2879-2932. e. Catalytic Pd(II)/Pd(IV) C-H oxidations - first example of a system capable of achieving selective oxidation 3. C-H oxidation with dioxiranes of methane a. Stoichiometric approaches - stoichiometric in Pt(IV) b. Oxidations with DMDO, TFDO in complex systems - shows selectivity for terminal C-H bonds, rather than secondary or c. Fluorinated oxaziridine as stoichiometric oxidant tertiary C-H bonds d. Catalytic oxidation with oxaziridines - intriguing reaction mechanism. Not enough evidence to ascertain 4. C-H oxidation by metal-oxo species that oxidative addition (OA) occurs alone. 5. C-H oxidation by radical mechanisms Proposed mechanism: a. Fenton chemistry b. Barton and Hofmann-Laffler-Freytag chemistries R-OH 2- Cl Cl R-H 6. Biomimetic approaches to C-H oxidation Pt Cl Cl a. Prophryin systems Cl - Cl Cl b. Gif chemistry R Pt Cl c. Non-heme iron catalysts and mechanism Cl H2O d. Applications of non-heme iron catalysts 2- 2- H OA Cl Cl Cl R Pt - Pt Cl H Definition: Cl 2 Cl Cl Cl Cl C-H bond activation is the process in which a strong C-H Pt R Cl R + bond is replaced with a weaker, easier to functionalize one. Cl -H 2- Cl Cl Pt + Cl R H 2- [PtCl6] Baran Group Meeting Florina Voica 3/21/2009 Alkane Hydroxylation Major improvement of the Shilov process For more examples see Shilov Chem. Rev., 1997, 97, 2879; Goldman ACS Symposium Series 885, Activation and (bpym)PtCl2 Functionalization of C-H bonds, 2004. CH4 + 2H2SO4 CH3OSO3H + 2H2O + SO2 100° C Methods for alkane oxidation with transition metals 72% yield (one pass) N N O 81% conversion O CO2H O N N CO H conditions + O + Periana Science 1998, 280, 560. 2 Pt OH Cl Cl for CH4 CH3CO2H see Periana Science 2003, 8.2% 16.2% 2% 301, 814. (bpym)PtCl2 Conditions: K2PtCl4 (0.15 eq), K2PtCl4 (0.3 eq), O2, 90° C, 144h Main features of this process: a) product is "protected" from overoxidation CO H HO CO H + CO 2 2 2 2 b) the reaction mechanim similar to the one proposed before 17% HO H 1.8% c) SO3 acts as an oxidant OH Et O 3 + The first example of sp C-H oxidative addition CO2H + O 1.3% 2.1% Because they are weak σ-bases and π-acids, alkanes are O poor ligands for metals. They can however form σ-complexes O CO H HO CO2H + + with metals, that are stabilized by π-backbonding from 2 O the metal into C-H σ* orbitals. When such an interaction 6.5% O 23% 3% takes place efficiently, the C-H bond is cleaved and oxidative addition occurs. J. Chem. Soc. Chem. Comm., 1991, 1242 Proposed reaction mechanism: + Pt(II) O + O hν CO2H Pt Ir H Ir H O O + Pt Me P -H Me P H 3 H 2 3 O II K2PtCl4 5 O2 O 0 from (η -Me5C5)IrH2 Bergman J. Am. Chem. Soc., 1982, 104, 352 -Pt 5 from (η -Me5C5)Ir(CO)2 Graham J. Am. Chem. Soc., 1982, 104, 3723 Baran Group Meeting Florina Voica 3/21/2009 Alkane Hydroxylation 5 mol% K2PtCl4 O O O 1.Na2PdCl4 (1.2 eq) Cl 7 eq. CuCl2 1. Boc2O HO HO O O N NaOAc (1.2 eq), EtOH N Pd OH 2. AcOH Pyr NH + NHBoc 2. Pyr 2 NH3 27% yield 56% yield (crude) 1. Pb(OAc)4 (1eq) 3:1 anti/syn Baldwin Tetrahedron, 1985, 41, 699 AcOH 2. NaBH4 (1 eq) ! No products obtained when Na2S2O8/CuCl2 were used. HO This implies that the reaction doesnt proceed through a N OAc radical mechanism. O O CO2H quant Cat/Ox NH2 NH CO2H O + O 2 + NH 1. Na2PdCl4 NH2 NaOAc prod ratio 2 : 1 : 3 2. Ac2O, Et3N AcO N crude yield 57% HO Cl Pd Proposed reaction mechanism: N ( 2 CO H E-lupanone oxime 2 Pyr 2- Cl Cl Pt NH2 1. Pb(OAc)4 (1eq) O Cl Cl R AcOH O AcO 2. NaBH4 (1 eq) N H AcO 2- 2 Cl N N Pd R Pt 90% yield Cl NH + Cl O O Pyr 3 OAc R For more applications of this methodology in steroid synthesis: H CuCl H2 2 Studies on Lanostenone E J. Chem. Soc. Perkin Trans. 1, 1988, 1599 Cl N Pt Synthesis of β-Boswellic acid analogues J. Org. Chem., 2000, 65, 6278 Sames Cl O Cl O CuCl J. Am. Chem. Soc., Partial synthesis of Hyptatic Acid-A J. Org. Chem., 2007, 72, 3500 2001, 123, 8149 Pt(IV) Total synthesis of Labatoside E J. Am. Chem. Soc., 2008, 130, 5872 Baran Group Meeting Florina Voica 3/21/2009 Alkane Hydroxylation MeO MeO 5 mol% Pd(OAc)2 N H N 5 mol% Pd(OAc)2 N 2 eq MeCOOOtBu OAc N 1.1 - 3.2 eq PhI(OAc)2 OAc O O Ac2O, 65 °C, 48 -72h R1 R2 R R 1:1 AcOH:Ac2O or DCM, 1 2 80 - 100 C AcO ° 61% yield AcO MeO OAc AcO OAc N OAc H AcO N OMe OAc N Et N N N Et HO N O O O O O N tBu OAc H 71% 69% 75% 86% 44% 81% AcO 89% OAc AcO Sanford J. Am. Chem. Soc. 2004, 126, 9542 CO2Me N AcO N N tBu tBu O tBu O BuOt O 10 mol% Pd(OAc)2 BuOt O O 50% * * DCM, 50 °C, 40h from alcohol 73%, 24% de 49%, 82% de N H N OAc R 1 eq. IOAc R in SM * Lauroyl peroxide used as oxidant Proposed reaction mechanism: PhI(OAc) + I OAc 2 2 AgOAc + I2 OAc AcO II IV Pd H Pd 2 MeCO tBu 2 Pd(OAc)2 N 3 N OtBu Boc N Boc OMe Et N OAc N OAc Boc Ac O O N OAc Boc O oxidative O 2 MeO N OAc addition R R R1 R2 Et R1 R2 1 2 92% 91% 96% 96% Ac2O Boc Boc Yu Angew. Chem. Int. Ed. N OAc N OAc 2005, 44, 7420 OAc N OtBu AcO IV Pd I 2 Ph OAc N -Pd(OAc) 77% 86% 0% O 2 N OAc O reductive O Yu Org. Lett. 2006, 8, 3387 elimination R1 R2 R1 R2 Baran Group Meeting Florina Voica 3/21/2009 Alkane Hydroxylation Oxidation of sp3 C-H bond with dioxiranes TFDO, 18 min OH O -20 °C, 98% Oxone Oxone O NaHCO O O O O O or DMDO, 17h 3 NaHCO3 F3C F3C rt, 84% DMDO TFDO TFDO, 3 min Murray J. Org. Curci J. Org. Me Me Me Me -20 °C, 98% OH Chem., 1985, 50, Chem., 1988, 53, Me Me 2847 3890 Me Me TFDO, 5 min OH Reaction mechanism: -20 °C, 98% O O- - SO 2- pH 7 - 8 4 R1 O HO SO - or DMDO, 17h + - 3 O SO3 R1 R2 R1 O O slow O rt, 84% R2 R2 OH Useful practical information about dioxiranes: 20 eq TFDO, 3 h - can be isolated and stored (-20 °C) in solution -20 °C, 74% HO - standard concentration for DMDO (0.07 - 0.1M), TFDO (0.8 M ...) OH TFDO 3 DMDO - methods have been described for their in situ generation k ≈ 10 k OH - ketone free solutions can be obtained (in certain cases, the reagent is more potent in a less polar solvent e.g.
Recommended publications
  • Emerging Role of the Hexosamine Biosynthetic Pathway in Cancer Neha M
    Akella et al. BMC Biology (2019) 17:52 https://doi.org/10.1186/s12915-019-0671-3 REVIEW Open Access Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer Neha M. Akella, Lorela Ciraku and Mauricio J. Reginato* “ ” Abstract conditions [2]. This switch, termed the Warburg effect , funnels glycolytic intermediates into pathways that produce Altered metabolism and deregulated cellular energetics nucleosides, amino acids, macromolecules, and organelles are now considered a hallmark of all cancers. Glucose, required for rapid cell proliferation [3]. Unlike normal cells, glutamine, fatty acids, and amino acids are the primary cancer cells reprogram cellular energetics as a result of drivers of tumor growth and act as substrates for the oncogenic transformations [4]. The hexosamine biosyn- hexosamine biosynthetic pathway (HBP). The HBP thetic pathway utilizes up to 2–5% of glucose that enters a culminates in the production of an amino sugar uridine non-cancer cell and along with glutamine, acetyl- diphosphate N-acetylglucosamine (UDP-GlcNAc) that, coenzyme A (Ac-CoA) and uridine-5′-triphosphate (UTP) along with other charged nucleotide sugars, serves as the are used to produce the amino sugar UDP-GlcNAc [5]. basis for biosynthesis of glycoproteins and other The HBP and glycolysis share the first two steps and di- glycoconjugates. These nutrient-driven post-translational verge at fructose-6-phosphate (F6P) (Fig. 1). Glutamine modifications are highly altered in cancer and regulate fructose-6-phosphate amidotransferase (GFAT) converts protein functions in various cancer-associated processes. F6P and glutamine to glucosamine-6-phosphate and glu- In this review, we discuss recent progress in tamate in the rate-limiting step of HBP [6].
    [Show full text]
  • Nitroso and Nitro Compounds 11/22/2014 Part 1
    Hai Dao Baran Group Meeting Nitroso and Nitro Compounds 11/22/2014 Part 1. Introduction Nitro Compounds O D(Kcal/mol) d (Å) NO NO+ Ph NO Ph N cellular signaling 2 N O N O OH CH3−NO 40 1.48 molecule in mammals a nitro compound a nitronic acid nitric oxide b.p = 100 oC (8 mm) o CH3−NO2 57 1.47 nitrosonium m.p = 84 C ion (pKa = 2−6) CH3−NH2 79 1.47 IR: υ(N=O): 1621-1539 cm-1 CH3−I 56 Nitro group is an EWG (both −I and −M) Reaction Modes Nitro group is a "sink" of electron Nitroso vs. olefin: e Diels-Alder reaction: as dienophiles Nu O NO − NO Ene reaction 3 2 2 NO + N R h 2 O e Cope rearrangement υ O O Nu R2 N N N R1 N Nitroso vs. carbonyl R1 O O O O O N O O hυ Nucleophilic addition [O] N R2 R O O R3 Other reaction modes nitrite Radical addition high temp low temp nitrolium EWG [H] ion brown color less ion Redox reaction Photochemical reaction Nitroso Compounds (C-Nitroso Compounds) R2 R1 O R3 R1 Synthesis of C-Nitroso Compounds 2 O R1 R 2 N R3 3 R 3 N R N R N 3 + R2 2 R N O With NO sources: NaNO2/HCl, NOBF4, NOCl, NOSbF6, RONO... 1 R O R R1 O Substitution trans-dimer monomer: blue color cis-dimer colorless colorless R R NOBF OH 4 - R = OH, OMe, Me, NR2, NHR N R2 R3 = H or NaNO /HCl - para-selectivity ΔG = 10 Kcal mol-1 Me 2 Me R1 NO oxime R rate determining step Blue color: n π∗ absorption band 630-790 nm IR: υ(N=O): 1621-1539 cm-1, dimer υ(N−O): 1300 (cis), 1200 (trans) cm-1 + 1 Me H NMR (α-C-H) δ = 4 ppm: nitroso is an EWG ON H 3 Kochi et al.
    [Show full text]
  • Chemistry 0310 - Organic Chemistry 1 Chapter 3
    Dr. Peter Wipf Chemistry 0310 - Organic Chemistry 1 Chapter 3. Reactions of Alkanes The heterolysis of covalent bonds yields anions and cations, whereas the homolysis creates radicals. Radicals are species with unpaired electrons that react mostly as electrophiles, seeking a single electron to complete their octet. Free radicals are important reaction intermediates and are formed in initiation reactions under conditions that cause the homolytic cleavage of bonds. In propagation steps, radicals abstract hydrogen or halogen atoms to create new radicals. Combinations of radicals are rare due to the low concentration of these reactive intermediates and result in termination of the radical chain. !CHAIN REACTION SUMMARY reactant product initiation PhCH3 HCl Cl 2 h DH = -16 kcal/mol chain-carrying intermediates n o r D (low concentrations) PhCH2 . Cl . propagation PhCH2 . or Cl . PhCH . 2 DH = -15 kcal/mol or Cl . PhCH2Cl or PhCH CH Ph PhCH2Cl Cl2 2 2 PhCH2Cl or Cl2 termination product reactant termination Alkanes are converted to alkyl halides by free radical halogenation reactions. The relative stability of radicals is increased by conjugation and hyperconjugation: R H H H . CH2 > R C . > R C . > H C . > H C . R R R H Oxygen is a diradical. In the presence of free-radical initiators such as metal salts, organic compounds and oxygen react to give hydroperoxides. These autoxidation reactions are responsible for the degradation reactions of oils, fatty acids, and other biological substances when exposed to air. Antioxidants such as hindered phenols are important food additives. Vitamins E and C are biological antioxidants. Radical chain reactions of chlorinated fluorocarbons in the stratosphere are responsible for the "ozone hole".
    [Show full text]
  • Acetaldehyde Oxime Hazard Summary Identification
    Common Name: ACETALDEHYDE OXIME CAS Number: 107-29-9 RTK Substance number: 0003 DOT Number: UN 2332 Date: March 1987 Revision: August 1998 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Acetaldehyde Oxime can affect you when breathed in and No occupational exposure limits have been established for by passing through your skin. Acetaldehyde Oxime. This does not mean that this substance * Contact can irritate the eyes and skin. is not harmful. Safe work practices should always be * Breathing Acetaldehyde Oxime can irritate the nose and followed. throat. * Acetaldehyde Oxime is a FLAMMABLE LIQUID and a * It should be recognized that Acetaldehyde Oxime can be FIRE HAZARD. absorbed through your skin, thereby increasing your exposure. IDENTIFICATION Acetaldehyde Oxime is a colorless liquid or crystalline WAYS OF REDUCING EXPOSURE (needle-like) solid. It is used to make other chemicals. * Where possible, enclose operations and use local exhaust ventilation at the site of chemical release. If local exhaust REASON FOR CITATION ventilation or enclosure is not used, respirators should be * Acetaldehyde Oxime is on the Hazardous Substance List worn. because it is cited by DOT. * Wear protective work clothing. * This chemical is on the Special Health Hazard Substance * Wash thoroughly immediately after exposure to List because it is FLAMMABLE. Acetaldehyde Oxime and at the end of the workshift. * Definitions are provided on page 5. * Post hazard and warning information in the work area. In addition, as part of an ongoing education and training HOW TO DETERMINE IF YOU ARE BEING effort, communicate all information on the health and safety hazards of Acetaldehyde Oxime to potentially EXPOSED exposed workers.
    [Show full text]
  • Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
    life Review Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses Inseok Choi , Hyewon Son and Jea-Hyun Baek * School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; [email protected] (I.C.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +82-54-260-1347 Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Keywords: Krebs cycle; tricarboxylic acid cycle; cellular immunity; immunometabolism 1. Introduction The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid Citation: Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to Intermediates: Regulators of Immune generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates, Responses.
    [Show full text]
  • Tunable, Post-Translational Hydroxylation of Collagen Domains in Escherichia Coli † § † § ‡ † Daniel M
    LETTERS pubs.acs.org/acschemicalbiology Tunable, Post-translational Hydroxylation of Collagen Domains in Escherichia coli † § † § ‡ † Daniel M. Pinkas, , Sheng Ding, , Ronald T. Raines, and Annelise E. Barron ,* † Department of Bioengineering and, by courtesy, Department of Chemical Engineering, Schools of Medicine and of Engineering, Stanford University, Stanford, California 94305, United States ‡ Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States bS Supporting Information ABSTRACT: Prolyl 4-hydroxylases are ascorbate-dependent oxygenases that play key roles in a variety of eukaryotic biological processes including oxygen sensing, siRNA regula- tion, and collagen folding. They perform their functions by catalyzing the post-translational hydroxylation of specificpro- line residues on target proteins to form (2S,4R)-4-hydroxypro- line. Thus far, the study of these post-translational modifica- tions has been limited by the lack of a prokaryotic recombinant expression system for producing hydroxylated proteins. By introducing a biosynthetic shunt to produce ascorbate-like molecules in Eschericia coli cells that heterologously express human prolyl 4-hydroxylase (P4H), we have created a strain of E. coli that produces collagenous proteins with high levels of (2S,4R)-4-hydroxyproline. Using this new system, we have observed hydroxylation patterns indicative of a processive catalytic mode for P4H that is active even in the absence of ascorbate. Our results provide insights into P4H enzymology and create a foundation for better understanding how post- translational hydroxylation affects proteins. ioxygenases dependent on R-ketoglutarate play diverse roles Thus, reconstitution of collagen folding pathways in a prokaryotic Din a variety of eukaryotic biological processes, by catalyzing the host will greatly increase our understanding of how these essential irreversible post-translational hydroxylation of proteins.1 They biomolecules assemble.
    [Show full text]
  • Ihyd-Pseaac: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity Into Pseudo Amino Acid Composition
    Int. J. Mol. Sci. 2014, 15, 7594-7610; doi:10.3390/ijms15057594 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition Yan Xu 1,5,*, Xin Wen 1, Xiao-Jian Shao 2, Nai-Yang Deng 3 and Kuo-Chen Chou 4,5 1 Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China; E-Mail: [email protected] 2 Department of Mathematics and Information Science, Binzhou University, Binzhou 256603, China; E-Mail: [email protected] 3 College of Science, China Agricultural University, Beijing 100083, China; E-Mail: [email protected] 4 Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mail: [email protected] 5 Gordon Life Science Institute, Boston, MA 02478, USA * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel./Fax: +86-10-6233-2589. Received: 7 February 2014; in revised form: 4 April 2014 / Accepted: 17 April 2014 / Published: 5 May 2014 Abstract: Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers.
    [Show full text]
  • And the Failure to Detect N-Acetylation of 2-Aminofluorene in the Dog*
    The N- and Ring-Hydroxylation of 2-Acetylaminofluorene and the Failure To Detect N-Acetylation of 2-Aminofluorene in the Dog* LIONEL A. P0IRIER, JAMES A. MILLER, AND ELIZABETH C. MILLER (McArdle Memorial Latoratoryfor Cancer Research, Medical School, University of Wiscon.rin, Madison, Wisconthi) SUMMARY N-Hydroxy-2-acetylaminofluorene (N-hydroxy-AAF), in conjugated form, was identified as a urinary metabolite of 2-acetylaminofluorene (AM') in male mongrel dogs. This metabolite was isolated and characterized in crystalline form. 7-Hydnoxy AM', in conjugated form, and AM? were also found in the urine of dogs fed AAF; no 1-, 3-, or 5-hydroxy-AAF was detected. The ingestion of N-hydroxy-AAF led to the urinary excretion of the same metabolites; however, none of these acetylated metabo lites was detected in the urine of dogs fed 2-aminofluorene, N-hydroxy-2-aminofluorene, 1-hydroxy-AAF, or 3-hydroxy-AAF. Dietary supplementation with calcium pantoth enate and riboflavin and an attempt to induce acetylase activity by feeding 2-amino fluonene for several days did not lead to the urinary excretion of any recognizable acetylated urinary metabolites of 2-aminofluorene. Furthermore, under similar condi tions the specific activities of the acetylated urinary metabolites of 2-(acetyl-1'-C'4) aminofluonene fed in mixtures with unlabeled 2-aminofluorene were not appreciably different from the specific activity of the ingested acetyl-labeled AAF. In a dog fed a single dose of AAF-9-C'4 63 pen cent of the C'4 was excreted in the feces, and 19 per cent of the C'4 was found in the urine during the next 5 days.
    [Show full text]
  • Oxidative Stress and Radical-Induced Signalling John R
    part 2. mechanisms of carcinogenesis chapter 15. Oxidative stress and radical-induced signalling John R. Bucher PART 2 CHAPTER 15 Throughout evolution, aerobic An imbalance between the normal Pierre et al., 2002). Peroxisomes are organisms have developed mul- production of oxygen radicals and a source of H2O2, through reactions tiple defence systems to protect their capture and disposal by pro- involving acyl-CoA oxidase (which themselves against oxygen radicals tective enzyme systems and antiox- is involved in oxidation of long-chain (Benzie, 2000). One-, two-, and idants results in oxidative stress, and fatty acids), d-amino acid oxidase, three-electron reductions of molecu- this condition has been proposed and other oxidases (Schrader and lar oxygen give rise to, respectively, to be the basis of many deleterious Fahimi, 2006). • − superoxide (O2 ), hydrogen peroxide chronic health conditions and dis- When stimulated, inflammatory (H2O2, a radical precursor), and the eases, including cancer. cells such as neutrophils, eosino- highly reactive hydroxyl radical (•OH) phils, and macrophages produce ox- or equivalent transition metal–oxy- Sources of oxygen radicals ygen radicals during the associated gen complexes (Miller et al., 1990). respiratory burst (the rapid release of Reactions of oxygen radicals with Mitochondrial oxidative phosphor- reactive oxygen species from cells) cellular components can deplete an- ylation is a major source of oxy- that involves nicotinamide adenine tioxidants, can cause direct oxidative gen radicals of endogenous
    [Show full text]
  • Introduction to Alkenes and Alkynes in an Alkane, All Covalent Bonds
    Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene, however, only three σ bonds are formed from the alkene carbon -the carbon thus adopts an sp2 hybridization Ethene (common name ethylene) has a molecular formula of CH2CH2 Each carbon is sp2 hybridized with a σ bond to two hydrogens and the other carbon Hybridized orbital allows stronger bonds due to more overlap H H C C H H Structure of Ethylene In addition to the σ framework of ethylene, each carbon has an atomic p orbital not used in hybridization The two p orbitals (each with one electron) overlap to form a π bond (p bonds are not symmetric about the internuclear axis) π bonds are not as strong as σ bonds (in ethylene, the σ bond is ~90 Kcal/mol and the π bond is ~66 Kcal/mol) Thus while σ bonds are stable and very few reactions occur with C-C bonds, π bonds are much more reactive and many reactions occur with C=C π bonds Nomenclature of Alkenes August Wilhelm Hofmann’s attempt for systematic hydrocarbon nomenclature (1866) Attempted to use a systematic name by naming all possible structures with 4 carbons Quartane a alkane C4H10 Quartyl C4H9 Quartene e alkene C4H8 Quartenyl C4H7 Quartine i alkine → alkyne C4H6 Quartinyl C4H5 Quartone o C4H4 Quartonyl C4H3 Quartune u C4H2 Quartunyl C4H1 Wanted to use Quart from the Latin for 4 – this method was not embraced and BUT has remained Used English order of vowels, however, to name the groups
    [Show full text]
  • C11 Aromatic and N-Alkane Hydrocarbons on Crete, in Air from Eastern Europe During the MINOS Campaign
    Atmos. Chem. Phys., 3, 1461–1475, 2003 www.atmos-chem-phys.org/acp/3/1461/ Atmospheric Chemistry and Physics GC×GC measurements of C7−C11 aromatic and n-alkane hydrocarbons on Crete, in air from Eastern Europe during the MINOS campaign X. Xu1, J. Williams1, C. Plass-Dulmer¨ 2, H. Berresheim2, G. Salisbury1, L. Lange1, and J. Lelieveld1 1Max Planck Institute for Chemistry, Mainz, Germany 2German Weather Service, Meteorological Observatory Hohenpeissenberg, Germany Received: 23 January 2003 – Published in Atmos. Chem. Phys. Discuss.: 17 March 2003 Revised: 8 August 2003 – Accepted: 2 September 2003 – Published: 23 September 2003 Abstract. During the Mediterranean Intensive Oxidant campaign are estimated using the sequential reaction model Study (MINOS) campaign in August 2001 gas-phase or- and related data. They lie in the range of about 0.5–2.5 days. ganic compounds were measured using comprehensive two- dimensional gas chromatography (GC×GC) at the Finokalia ground station, Crete. In this paper, C7−C11 aromatic 1 Introduction and n-alkane measurements are presented and interpreted. The mean mixing ratios of the hydrocarbons varied from Atmospheric volatile organic compounds (VOCs) are recog- 1±1 pptv (i-propylbenzene) to 43±36 pptv (toluene). The nized as important atmospheric species affecting air chem- observed mixing ratios showed strong day-to-day variations istry on regional and global scales. Photochemical reactions and generally higher levels during the first half of the cam- of hydrocarbons in the atmosphere lead to the formation of paign. Mean diel profiles showed maxima at local mid- ozone, oxygenates and organic aerosols (Fehsenfeld et al., night and late morning, and minima in the early morning 1992; Andreae and Crutzen, 1997; Limbeck and Puxbaum, and evening.
    [Show full text]
  • Chem 51B Chapter 15 Notes
    Lecture Notes Chem 51B S. King Chapter 15 Radical Reactions I. Introduction A radical is a highly reactive intermediate with an unpaired electron. Radicals are involved in oxidation reactions, combustion reactions, and biological reactions. Structure: compare with: compare with: Stability: Free radicals and carbocations are both electron deficient and they follow a similar order of stability: R R H H , > R C > R C > R C > H C R H H H • like carbocations, radicals can be stabilized by resonance. H H H H C C C C H C CH3 H C CH3 H H • unlike carbocations, no rearrangements are observed in free radical reactions. Q. How are free radicals formed? A. Free radicals are formed when bonds break homolytically: 103 Look @ the arrow pushing: Notice the fishhook arrow! It shows movement of a single electron: Compare with heterolytic bond cleavage: A double-headed arrow shows movement of a pair of electrons: Nomenclature: bromide ion bromine atom Bromine (molecule) II. General Features of Radical Reactions Radicals are formed from covalent bonds by adding energy in the form of heat or light (hν). Some radical reactions are carried out in the presence of radical initiators, which contain weak bonds that readily undergo homolysis. The most common radical initiators are peroxides (ROOR), which contain the weak O−O bond. A. Common Reactions of Radicals: Radicals undergo two common reactions: they react with σ-bonds and they add to π-bonds. 1. Reaction of a Radical X• with a C−H bond A radical X• abstracts a H atom from a C−H bond to form H−X and a carbon radical: 104 2.
    [Show full text]