Study on Powder Coke Combustion and Pollution Emission Characteristics of Fluidized Bed Boilers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Update on Lignite Firing
Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ -
'Retrofitting CCS to Coal: Enhancing Australia's Energy
RETROFITTING CCS TO COAL: ENHANCING AUSTRALIA’S ENERGY SECURITY RETROFITTING CCS TO COAL: ENHANCING AUSTRALIA’S ENERGY SECURITY any representation about the content and suitability Disclaimer of this information for any particular purpose. The document is not intended to comprise advice, and is This report was completed on 2 March 2017 and provided “as is” without express or implied therefore the Report does not take into account warranty. Readers should form their own conclusion events or circumstances arising after that time. The as to its applicability and suitability. The authors Report’s authors take no responsibility to update the reserve the right to alter or amend this document Report. without prior notice. The Report’s modelling considers only a single set of Authors: Geoff Bongers, Gamma Energy Technology input assumptions which should not be considered Stephanie Byrom, Gamma Energy Technology entirely exhaustive. Modelling inherently requires Tania Constable, CO2CRC Limited assumptions about future behaviours and market interactions, which may result in forecasts that deviate from actual events. There will usually be About CO2CRC Limited: differences between estimated and actual results, CO2CRC Limited is Australia’s leading CCS research because events and circumstances frequently do not organisation, having invested $100m in CCS research occur as expected, and those differences may be over the past decade. CO2CRC is the first organisation material. The authors of the Report take no in Australia to have demonstrated CCS end-to-end, responsibility for the modelling presented to be and has successfully stored more than 80,000 tonnes considered as a definitive account. of CO2 at its renowned Otway Research Facility in The authors of the Report highlight that the Report, Victoria. -
Solutions for Energy Crisis in Pakistan I
Solutions for Energy Crisis in Pakistan i ii Solutions for Energy Crisis in Pakistan Solutions for Energy Crisis in Pakistan iii ACKNOWLEDGEMENTS This volume is based on papers presented at the two-day national conference on the topical and vital theme of Solutions for Energy Crisis in Pakistan held on May 15-16, 2013 at Islamabad Hotel, Islamabad. The Conference was jointly organised by the Islamabad Policy Research Institute (IPRI) and the Hanns Seidel Foundation, (HSF) Islamabad. The organisers of the Conference are especially thankful to Mr. Kristof W. Duwaerts, Country Representative, HSF, Islamabad, for his co-operation and sharing the financial expense of the Conference. For the papers presented in this volume, we are grateful to all participants, as well as the chairpersons of the different sessions, who took time out from their busy schedules to preside over the proceedings. We are also thankful to the scholars, students and professionals who accepted our invitation to participate in the Conference. All members of IPRI staff — Amjad Saleem, Shazad Ahmad, Noreen Hameed, Shazia Khurshid, and Muhammad Iqbal — worked as a team to make this Conference a success. Saira Rehman, Assistant Editor, IPRI did well as stage secretary. All efforts were made to make the Conference as productive and result oriented as possible. However, if there were areas left wanting in some respect the Conference management owns responsibility for that. iv Solutions for Energy Crisis in Pakistan ACRONYMS ADB Asian Development Bank Bcf Billion Cubic Feet BCMA -
Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas
energies Article Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas Magdalena Gazda-Grzywacz 1,* , Łukasz Winconek 2 and Piotr Burmistrz 1 1 Faculty of Energy & Fuels, AGH University of Science and Technology, Mickiewicz Avenue 30, 30-059 Krakow, Poland; [email protected] 2 Grand Activated Sp. z o.o., Białostocka 1, 17-200 Hajnówka, Poland; [email protected] * Correspondence: [email protected] Abstract: Power production from coal combustion is one of two major anthropogenic sources of mercury emission to the atmosphere. The aim of this study is the analysis of the carbon footprint of mercury removal technologies through sorbents injection related to the removal of 1 kg of mercury from flue gases. Two sorbents, i.e., powdered activated carbon and the coke dust, were analysed. The assessment included both direct and indirect emissions related to various energy and material needs life cycle including coal mining and transport, sorbents production, transport of sorbents to the power plants, and injection into flue gases. The results show that at the average mercury concentration in processed flue gasses accounting to 28.0 µg Hg/Nm3, removal of 1 kg of mercury from flue gases required 14.925 Mg of powdered activated carbon and 33.594 Mg of coke dust, respec- tively. However, the whole life cycle carbon footprint for powdered activated carbon amounted to −1 89.548 Mg CO2-e·kg Hg, whereas for coke dust this value was around three times lower and −1 amounted to 24.452 Mg CO2-e·kg Hg. Considering the relatively low price of coke dust and its lower impact on GHG emissions, it can be found as a promising alternative to commercial powdered Citation: Gazda-Grzywacz, M.; activated carbon. -
Appendix A: Calculation of Flue Gas Composition
Appendix A: Calculation of Flue Gas Composition Consider 100 kg of biomass (pine wood) with an Ultimate Analysis on a dry ash free basis given in Table A.1. This calculation assumes that all the carbon is burned i.e. there is no carbon in the ash or carbon monoxide formed. If there is the unburned carbon has to be sub- tracted from the value of carbon in the above table. Also that the S, N and Cl are negligible and there is no ingress of N2 in the flue or sampling system. Moisture content given in the Proximate Analysis has to be allowed for in the calculation as well. Assume the combustion reactions are C + O2 = CO2 2H2 + O2 = 2H2O Oxygen required for stoichiometric combustion = 4.33 + 1.6 − 1.3 = 4.63kg-mol Air requirement = [4.63 × 100 × 22.41 ]/[ 21]=494.1 m3 at NTP Composition of the dry flue gas from the stoichiometric combustion of 1 kg of biomass: 3 N2 from theoretical air 4.94 0.79 3.90 m . = × = 3 N2 from biomass 0.001 0.224 0.0002 m . = × = 3 CO2 from biomass 4.33 0.224 0.97 m . Total amount of dry= flue gas× per 1 kg= wood 4.872 m3. = If the concentration in the wet flue gas is required then the water content has to be included in the above calculation. © The Author(s) 2014 105 J.M. Jones et al., Pollutants Generated by the Combustion of Solid Biomass Fuels, SpringerBriefs in Applied Sciences and Technology, DOI 10.1007/978-1-4471-6437-1 106 Appendix A: Calculation of Flue Gas Composition Table A.1 Calculation of Element Molecular weight Mols O2 required flue gas composition C, 52.00 12 4.33 H, 6.20 2 1.6 O, 41.60 32 1.3 − N, 0.2 28 Therefore % CO 0.97/4.872 19.91 assuming stoichiometric combustion (0 % 2 = = O2). -
Combustion of Solid Fuel Ina Fluidized Bed Combustor
COMBUSTION OF SOLID FUEL INA FLUIDIZED BED COMBUSTOR A Thesis Presented to The Faculty ofthe Fritz J. and Dolores H. Russ College ofEngineering and Technology Ohio University In Partial Fulfillment Ofthe Requirement for the Degree Master ofScience --,-,*, \ ., by ,m Abu Noman Hossain June, 1998 i ACKNOWLEDGEMENTS I would like to express and extend my heartfelt appreciation and deep gratitude to the many people who have, in one way or other, helped and supported me in my work. To Dr. David J Bayless, my honorable advisor, whom I respect and admire for the excellent advice and guidance he has given me throughout the entire course ofmy study. I will always remember him for his advising, academic, and financial support at Ohio University. To Dr. H. Pasic, who generously served on my thesis committee. His suggestions and hearty attitude made my work easier and enjoyable. To Dr. M. Prudich for his keenness and initiative to serve on my thesis committee. To Len Huffman, for his excellent help and cooperation in the laboratory and mechanical workshop. To Matt Eckels, Ben Reineck and Kyle Wilson for their collaborative help and work in the design and drafting process. To Muhammad Turjo and Shatkat Shah for their endless support and continuous cooperation. To my beloved parents and my family, for their love, support, and encouragement. To Almighty Allah who has blessed me with the opportunity to come to Ohio University and has given this chance to work with these people. ii ABSTRACT The emissions ofpollutants from power plants have become the subject of increasing public concern. -
Fluidized Bed Combustion for Clean Energy
Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Fluidized Bed Combustion for Clean Energy Filip Johnsson Chalmers University of Technology, Dept. of Energy and Environment, Goteborg, Sweden, fi[email protected] This paper is posted at ECI Digital Archives. http://dc.engconfintl.org/fluidization xii/5 Johnsson: Fluidized Bed Combustion for Clean Energy FLUIDIZATION XII 47 FLUIDIZED BED COMBUSTION FOR CLEAN ENERGY Filip Johnsson Department of Energy and Environment, Energy Technology Chalmers University of Technology SE-41296 Göteborg (Sweden) T: +46-31 772 1449; E: [email protected] ABSTRACT This paper gives a brief overview of the status and prospects for fluidized bed combustion (FBC) for clean energy, with focus on power and heat generation. The paper summarizes recent development trends for the FB technology and makes an outlook into the future with respect to challenges and opportunities for the technology. The paper also identifies areas related to fluidization, which are critical for the technology and, thus, will require research. The main advantage with the FBC technology is the fuel flexibility. A compilation of 715 FB boilers (bubbling and circulating) worldwide illustrates the two main applications for the FBC technology: 1. Small and medium scale heat only or combined heat and power boilers (typically of the order of or less than 100 MW thermal), burning biomass or waste derived fuels, including co-firing with coal and 2. larger (up to 1,000 MWth) power boilers using coal (black coal or lignite) as fuel. Emerging development includes circulating fluidized beds with supercritical steam data (power boilers) with the first project coming on-line in the near future and research on oxy-fuel fired circulating fluidized beds for CO2 capture (O2/CO2 recycle schemes as well as chemical looping combustion). -
COAL CONFERENCE University of Pittsburgh · Swanson School of Engineering ABSTRACTS BOOKLET
Thirty-Fifth Annual INTERNATIONAL PITTSBURGH COAL CONFERENCE University of Pittsburgh · Swanson School of Engineering ABSTRACTS BOOKLET Clean Coal-based Energy/Fuels and the Environment October 15-18, 2018 New Century Grand Hotel Xuzhou Hosted by: The conference acknowledges the support of Co-hosted by: K. C. Wong Education Foundation, Hong Kong A NOTE TO THE READER This Abstracts Booklet is prepared solely as a convenient reference for the Conference participants. Abstracts are arranged in a numerical order of the oral and poster sessions as published in the Final Conference Program. In order to facilitate the task for the reader to locate a specific abstract in a given session, each paper is given two numbers: the first designates the session number and the second represents the paper number in that session. For example, Paper No. 25.1 is the first paper to be presented in the Oral Session #25. Similarly, Paper No. P3.1 is the first paper to appear in the Poster Session #3. It should be cautioned that this Abstracts Booklet is prepared based on the original abstracts that were submitted, unless the author noted an abstract change. The contents of the Booklet do not reflect late changes made by the authors for their presentations at the Conference. The reader should consult the Final Conference Program for any such changes. Furthermore, updated and detailed full manuscripts, published in the Conference Proceedings, will be sent to all registered participants following the Conference. On behalf of the Thirty-Fifth Annual International Pittsburgh Coal Conference, we wish to express our sincere appreciation and gratitude to Ms. -
Identification and Selection of Major Carbon Dioxide Stream Compositions
PNNL-20493 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Identification and Selection of Major Carbon Dioxide Stream Compositions GV Last MT Schmick June 2011 PNNL-20493 Identification and Selection of Major Carbon Dioxide Stream Compositions GV Last MT Schmick June 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Abstract A critical component in the assessment of long-term risk from geologic sequestration of carbon dioxide (CO2) is the ability to predict mineralogical and geochemical changes within storage reservoirs as a result of rock-brine-CO2 reactions. Impurities and/or other constituents in CO2 source streams selected for sequestration can affect both the chemical and physical (e.g., density, viscosity, interfacial tension) properties of CO2 in the deep subsurface. The nature and concentrations of these impurities are a function of both the industrial source(s) of CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for subsurface injection and geologic sequestration. This report summarizes the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy-related industrial sources of CO2. Assuming that carbon capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, the authors of this report selected four test fluid compositions for use in geochemical experiments. These included the following: 1) a pure CO2 stream representative of food-grade CO2 used in most enhanced oil recovery projects; 2) a test fluid composition containing low concentrations (0.5 mole %) SO2 and NOx (representative of that generated from cement production); 3) a test fluid composition with higher concentrations (2.5 mole %) of SO2; and 4) test fluid composition containing 3 mole % H2S. -
Operation of a Coupled Fluidized Bed System for Chemical Looping
Engineering Conferences International ECI Digital Archives The 14th nI ternational Conference on Fluidization Refereed Proceedings – From Fundamentals to Products 2013 Operation of a Coupled Fluidized Bed System for Chemical Looping Combustion of Solid Fuels with a Synthetic CU-Based Oxygen Carrier Andreas Thon Hamburg University of Technology, Germany Marvin Kramp Hamburg University of Technology, Germany Ernst-Ulrich Hartge Hamburg University of Technology, Germany Stefan Heinrich Hamburg University of Technology, Germany Joachim Werther Hamburg University of Technology, Germany Follow this and additional works at: http://dc.engconfintl.org/fluidization_xiv Part of the Chemical Engineering Commons Recommended Citation Andreas Thon, aM rvin Kramp, Ernst-Ulrich Hartge, Stefan Heinrich, and Joachim Werther, "Operation of a Coupled Fluidized Bed System for Chemical Looping Combustion of Solid Fuels with a Synthetic CU-Based Oxygen Carrier" in "The 14th nI ternational Conference on Fluidization – From Fundamentals to Products", J.A.M. Kuipers, Eindhoven University of Technology R.F. Mudde, Delft nivU ersity of Technology J.R. van Ommen, Delft nivU ersity of Technology N.G. Deen, Eindhoven University of Technology Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/fluidization_xiv/127 This Article is brought to you for free and open access by the Refereed Proceedings at ECI Digital Archives. It has been accepted for inclusion in The 14th International Conference on Fluidization – From Fundamentals to Products by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. OPERATION OF A COUPLED FLUIDIZED BED SYSTEM FOR CHEMICAL LOOPING COMBUSTION OF SOLID FUELS WITH A SYNTHETIC CU-BASED OXYGEN CARRIER Andreas Thon, Marvin Kramp, Ernst-Ulrich Hartge, Stefan Heinrich, Joachim Werther* Institute of Solids Process Engineering and Particle Technology; Hamburg University of Technology Denickestr. -
Flexibility of CFB Combustion: an Investigation of Co-Combustion with Biomass and RDF at Part Load in Pilot Scale
energies Article Flexibility of CFB Combustion: An Investigation of Co-Combustion with Biomass and RDF at Part Load in Pilot Scale Jens Peters * , Jan May, Jochen Ströhle and Bernd Epple Institute for Energy Systems and Technology, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany; [email protected] (J.M.); [email protected] (J.S.); [email protected] (B.E.) * Correspondence: [email protected]; Tel.: +49-(0)-615-1162-2689 Received: 30 July 2020; Accepted: 31 August 2020; Published: 8 September 2020 Abstract: Co-combustion of biomass and solid fuels from wastes in existing highly efficient power plants is a low-cost solution that can be applied quickly and with low effort to mitigate climate change. Circulating fluidized bed combustion has several advantages when it comes to co-combustion, such as high fuel flexibility. The operational flexibility of circulating fluidized bed (CFB) co-combustion is investigated in a 1 MWth pilot plant. Straw pellets and refuse-derived fuel (RDF) are co-combusted with lignite at full load and part loads. This study focusses on the impact on the hydrodynamic conditions in the fluidized bed, on the heat transfer to the water/steam side of the boiler, and on the flue gas composition. The study demonstrates the flexibility of CFB combustion for three low-rank fuels that differ greatly in their properties. The co-combustion of RDF and straw does not have a negative effect on hydrodynamic stability. How the hydrodynamic conditions determine the temperature and pressure development along the furnace height is shown. -
Experience from Post-Combustion Capture Pilot Plant Operations in Australia
1st Post Combustion Capture Conference Experience from post-combustion capture pilot plant operations in Australia A. Cottrella*, P.H.M. Ferona aCoal Technology Portfolio, CSIRO Energy Technology, Newcastle, Australia Australia is highly dependent on coal for power generation and also for income and job creation through its significant exports. With this it is essential that Australia has an active program for investigating the implementation of coal combustion CO2 reduction technologies. CSIRO is a national, government funded research organization that has been tasked with challenge of addressing the issues associated with the reduction of CO2 emissions through application of post- combustion capture technologies for coal fired power stations. PCC program at CSIRO investigates many aspects of the technology and part of that has been through construction and operation of three PCC pilot plants located at Australian power station sites treating real flue gas. This paper will discuss learnings that have come from the operation of the plants. Australia is highly dependent on coal for power generation and also income and job creation through its significant exports. With this it is essential that Australia has an active program for investigating the implementation of CO2 reduction technologies as a result of the combustion of coal. CSIRO is a national, government funded research organization that has been tasked with challenge of addressing the issues associated with the reduction of CO2 emissions through application of post-combustion capture technologies for coal fired power stations. PCC program at CSIRO investigates many aspects of the technology and part of that has been through construction and operation of three PCC pilot plants located at Australian power station sites treating real flue gas.