Track Buckling Prevention: Theory, Safety Concepts, and Applications RR219/R2011; RR319/RR3011; RR419/AB019 6

Total Page:16

File Type:pdf, Size:1020Kb

Track Buckling Prevention: Theory, Safety Concepts, and Applications RR219/R2011; RR319/RR3011; RR419/AB019 6 U.S. Department of Transportation Track Buckling Prevention: Theory, Safety Federal Railroad Concepts, and Applications Administration Office of Research and Development Washington, D.C. 20590 Track Systems Safety DOT/FRA/ORD-13/16 Final Report This document is available to the March 2013 public through the National Technical Information Service, Springfield, VA 22161. This document is also available on the FRA Web site at www.fra.dot.gov. iii NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. Any opinions, findings and conclusions, or recommendations expressed in this material do not necessarily reflect the views or policies of the United States Government, nor does mention of trade names, commercial products, or organizations imply endorsement by the United States Government. The United States Government assumes no liability for the content or use of the material contained in this document. NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. ii Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED March 2013 Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Track Buckling Prevention: Theory, Safety Concepts, and Applications RR219/R2011; RR319/RR3011; RR419/AB019 6. AUTHOR(S) Andrew Kish and Gopal Samavedam* 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER U.S. Department of Transportation Research and Innovative Technology Administration DDTS.020104 John A. Volpe National Transportation Systems Center Cambridge, MA 02142 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER U.S. Department of Transportation Federal Railroad Administration DOT/ FRA/ORD-13/16 1200 New Jersey Ave., SW Washington, DC 20590 11. SUPPLEMENTARY NOTES *Foster-Miller, Inc. 350 Second Avenue Waltham, MA 02451-1196 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE This document is available to the public through the National Technical Information Service, Springfield, VA 22161 and on the FRA Web site at www.fra.dot.gov. 13. ABSTRACT (Maximum 200 words) This report is a part of the John A. Volpe National Transportation Systems Center’s Track Stability Research Program for the Federal Railroad Administration on thermal buckling of continuous welded rail (CWR) track and its prevention. Presented in this report are the developments of theoretical results and the development and application of the CWR-SAFE computer software model for prediction of CWR track buckling strength. This comprehensive predictive model encompasses several different modules designed to perform both deterministic and probabilistic buckling analyses, based on the dynamic buckling theory previously validated by tests, and predicts safe limits for buckling prevention. The model accounts for all the important parameters influencing track buckling, such as rail size, curvature, lateral resistance, tie- ballast friction, fastener torsional and longitudinal resistances, track vertical stiffness, misalignment amplitude and wavelength, and vehicle parameters. Applications of the model are demonstrated through analyses of parametric sensitivity, development of buckling safety limits in terms of safe and critical temperatures, and evaluation of annual probability of buckling occurrences for typical CWR line segments. The report also presents techniques to determine the input parameters for CWR-SAFE application and a practical methodology for CWR track safety monitoring. A risk-based approach is proposed to provide more flexibility to the industry in achieving a minimum number of annual buckles in a given territory and to provide science-based guidelines for improved slow order policies when operating at elevated rail temperatures. 14. SUBJECT TERMS 15. NUMBER OF PAGES 168 Track Buckling, Lateral Stability, CWR, Buckling Prevention, Buckling Models, CWR Safety and Maintenance, Neutral Temperature, Rail Temperature 16. PRICE CODE 17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT Unclassified Unclassified Unclassified NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-9) Prescribed by ANSI Std. 239-18 298-102 iii METRIC/ENGLISH CONVERSION FACTORS ENGLISH TO METRIC METRIC TO ENGLISH LENGTH (APPROXIMATE) LENGTH (APPROXIMATE) 1 inch (in) = 2.5 centimeters (cm) 1 millimeter (mm) = 0.04 inch (in) 1 foot (ft) = 30 centimeters (cm) 1 centimeter (cm) = 0.4 inch (in) 1 yard (yd) = 0.9 meter (m) 1 meter (m) = 3.3 feet (ft) 1 mile (mi) = 1.6 kilometers (km) 1 meter (m) = 1.1 yards (yd) 1 kilometer (km) = 0.6 mile (mi) AREA (APPROXIMATE) AREA (APPROXIMATE) 1 square inch (sq in, in2) = 6.5 square centimeters (cm2) 1 square centimeter (cm2) = 0.16 square inch (sq in, in2) 1 square foot (sq ft, ft2) = 0.09 square meter (m2) 1 square meter (m2) = 1.2 square yards (sq yd, yd2) 1 square yard (sq yd, yd2) = 0.8 square meter (m2) 1 square kilometer (km2) = 0.4 square mile (sq mi, mi2) 1 square mile (sq mi, mi2) = 2.6 square kilometers (km2) 10,000 square meters (m2) = 1 hectare (ha) = 2.5 acres 1 acre = 0.4 hectare (he) = 4,000 square meters (m2) MASS - WEIGHT (APPROXIMATE) MASS - WEIGHT (APPROXIMATE) 1 ounce (oz) = 28 grams (gm) 1 gram (gm) = 0.036 ounce (oz) 1 pound (lb) = 0.45 kilogram (kg) 1 kilogram (kg) = 2.2 pounds (lb) 1 short ton = 2,000 pounds (lb) = 0.9 tonne (t) 1 tonne (t) = 1,000 kilograms (kg) = 1.1 short tons VOLUME (APPROXIMATE) VOLUME (APPROXIMATE) 1 teaspoon (tsp) = 5 milliliters (ml) 1 milliliter (ml) = 0.03 fluid ounce (fl oz) 1 tablespoon (tbsp) = 15 milliliters (ml) 1 liter (l) = 2.1 pints (pt) 1 fluid ounce (fl oz) = 30 milliliters (ml) 1 liter (l) = 1.06 quarts (qt) 1 cup (c) = 0.24 liter (l) 1 liter (l) = 0.26 gallon (gal) 1 pint (pt) = 0.47 liter (l) 1 quart (qt) = 0.96 liter (l) 1 gallon (gal) = 3.8 liters (l) 1 cubic foot (cu ft, ft3) = 0.03 cubic meter (m3) 1 cubic meter (m3) = 36 cubic feet (cu ft, ft3) 1 cubic yard (cu yd, yd3) = 0.76 cubic meter (m3) 1 cubic meter (m3) = 1.3 cubic yards (cu yd, yd3) TEMPERATURE (EXACT) TEMPERATURE (EXACT) [(x-32)(5/9)] °F = y °C [(9/5) y + 32] °C = x °F QUICK INCH - CENTIMETER LENGTH CONVERSION 0 1 2 3 4 5 Inches Centimeters 0 1 2 3 4 5 6 7 8 9 10 11 12 13 QUICK FAHRENHEIT - CELSIUS TEMPERATURE CONVERSIO °F -40° -22° -4° 14° 32° 50° 68° 86° 104° 122° 140° 158° 176° 194° 212° °C -40° -30° -20° -10° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 100° For more exact and or other conversion factors, see NIST Miscellaneous Publication 286, Units of Weights and Measures. Price $2.50 SD Catalog No. C13 10286 Updated 6/17/98 iv PREFACE This report provides a current state-of-the-art understanding of continuous welded rail (CWR) response and behavior and its impact on track safety and performance. The report is based on U.S. research over the past 20 years, including the development of versatile computer analysis software called CWR-SAFE. CWR-SAFE is a product of Volpe Center, Foster-Miller, Inc. (FMI), and Federal Railroad Administration (FRA) research under the latter’s Track and Structures Program initiatives in line with the FRA’s Five-Year Strategic Plan for Railroad Research, Development, and Demonstration (2002). The work reported herein was performed with the support of FMI under Contract DTRS-57-99-D-0003, Task Order #14, under the technical direction of Dr. Andrew Kish of the US Department of Transportation’s Volpe Center and FMI’s Project Manager and Principal Investigator, Dr. Gopal Samavedam. The FRA sponsor was Dr. Magdy El-Sibaie of the Office of Research & Development, whose assistance and support is greatly acknowledged. Additional thanks also go to Mr. Wesley Mui of the Volpe Center for performing the CWR-SAFE parametric studies. The report is intended to synthesize into one reference volume the various CWR relevant research results obtained at different periods during a 20-year program duration. The report covers the following research items performed from 1984 to 2004: • Development of vehicle induced (dynamic) buckling theory for the determination of critical conditions leading to track buckling • Identification and determination of track and vehicle parameters in the theory • Development of a versatile computer software (CWR-SAFE) for application of the theory • Parametric analyses of track buckling • Development of buckling safety limits • Tests to validate the theory and safety limits • Determination of annual probability of buckling estimates for typical
Recommended publications
  • Use of Ballast Inspection Technology for the Prioritization, Planning and Management of Ballast Delivery and Placement Dr
    Use of Ballast Inspection Technology for the Prioritization, Planning and Management of Ballast Delivery and Placement Dr. Allan M. Zarembski, PE, Hon. Mbr. AREMA, FASME Research Professor University of Delaware Mr. Gregory T. Grissom, PE Vice President Engineering, Georgetown Rail Equipment Company Mr. Todd L. Euston, PE Senior Engineer Inspection Technologies Georgetown Rail Equipment Company Abstract This paper presents the results of a study on the optimization of ballast placement planning, prioritization and management for railway ballast distribution. Specifically, this paper presents the requirements for and inputs necessary to more effectively manage the ballast placement process and take advantage of the new track inspection technologies that provide more accurate and reliable data about ballast condition and track profile. This is to include addressing such key issues as: Where and how much ballast should be placed; to include ballast at end of ties (shoulders), under ties, and in cribs. How much ballast should be placed; to include reference or required ballast profile based on vertical, lateral and longitudinal performance requirements A key portion of this study was the introduction of new inspection technologies now available to more accurately define the ballast requirements. This includes such newly introduced inspection technologies as LIDAR for measurement of the ballast profile, Ground Penetrating Radar inspection for ballast depth deficiency, and other related inspection technologies. This in turn allows for more accurate ballast deficit analysis and calculation to include the reference or “ideal” profile used to determine the ballast deficit and the calculation of the difference between the current profile and this reference profile, which includes vertical load distribution and lateral and longitudinal restraint requirements.
    [Show full text]
  • Longitudinal Track-Ballast Resistance of Railroad Tracks Considering Four Different Types of Sleepers
    Longitudinal Track-Ballast Resistance of Railroad Tracks Considering Four Different Types of Sleepers Rudney C. Queiroz São Paulo State University, Bauru (SP), Brazil Abstract This paper aims at studying the behavior of a railroad track concerning the action of longitudinal forces, targeting the determination of the track-ballast resistance, in a real scale standard track model. This research, was developed at the São Paulo State University, and consisted of a comparative study of track- ballast resistance for railroad tracks built with four different types of sleepers. The first set of sleepers was made of steel, the second one was made of wood, the third one of prestressed-concrete and the fourth one of two-block concrete. In order to carry out this research, four 1600 mm gauge models were built with two TR-68 rails, fastened to seven sleepers by means of elastic fasteners and base plates. The sleepers, all of the same type for each model, were embedded in 0.35 m thick ballast, which was supported by a layer of 30 cm thick compacted soil. The computerized data acquisition system allowed displacement and force values to be obtained in real time. By convention, the maximum longitudinal track-ballast resistance corresponds to a displacement of 15 mm. The prestressed-concrete sleeper setup showed the greatest longitudinal track-ballast resistance per sleeper. The second best performance was obtained by the two- block concrete sleeper setup, followed by the wooden and the steel sleeper setups. The force- displacement curves showed an exponential rise to a maximum shape. The displacement corresponding to the maximum track-ballast resistances were different for each kind of sleeper setup.
    [Show full text]
  • Applications of Prestressed Afrp Bars in Concrete
    APPLICATIONS OF PRESTRESSED AFRP BARS IN CONCRETE RAILROAD TIES A Thesis by RYAN D. POSLUSZNY Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE Committee Chair, Stefan Hurlebaus Committee Members, John B. Mander Gary T. Fry Anastasia Muliana Head of Department Robin Autenrieth December 2016 Major Subject: Civil Engineering Copyright 2016 Ryan D. Posluszny ABSTRACT Since the 1970’s, concrete railroad ties have become more and more prominent in the railroad industry. Their improved durability and increased safety over traditional timber ties has paved the way for new and more efficient concrete ties to be developed. Prestressing with steel strands was a key design aspect in providing the strength the ties needed to overcome the tonnage seen in heavy haul lines spread across the United States and the world. A major flaw seen with these concrete ties is deterioration due to environment or fatigue loading under the connected rail. This deterioration can lead to a change in gauge of the track structure which can then cause derailment of trains. A second issue found in concrete ties that was not found in timber is the electrical conductivity. Timber is a highly insulating material while concrete possesses insulating and conductive properties based on the amount of moisture present. This is an issue because track structures use the steel rails to carry electrical signals to detect the presence of a train within a signaled block. During construction, the steel strands may come into contact with the embedded steel shoulders on both sides of the tie, therefore creating a direct circuit that needs to be insulated from the steel rails.
    [Show full text]
  • Directory of Resources
    SETTLE – CARLISLE RAILWAY DIRECTORY OF RESOURCES A listing of printed, audio-visual and other resources including museums, public exhibitions and heritage sites * * * Compiled by Nigel Mussett 2016 Petteril Bridge Junction CARLISLE SCOTBY River Eden CUMWHINTON COTEHILL Cotehill viaduct Dry Beck viaduct ARMATHWAITE Armathwaite viaduct Armathwaite tunnel Baron Wood tunnels 1 (south) & 2 (north) LAZONBY & KIRKOSWALD Lazonby tunnel Eden Lacy viaduct LITTLE SALKELD Little Salkeld viaduct + Cross Fell 2930 ft LANGWATHBY Waste Bank Culgaith tunnel CULGAITH Crowdundle viaduct NEWBIGGIN LONG MARTON Long Marton viaduct APPLEBY Ormside viaduct ORMSIDE Helm tunnel Griseburn viaduct Crosby Garrett viaduct CROSBY GARRETT Crosby Garrett tunnel Smardale viaduct KIRKBY STEPHEN Birkett tunnel Wild Boar Fell 2323 ft + Ais Gill viaduct Shotlock Hill tunnel Lunds viaduct Moorcock tunnel Dandry Mire viaduct Mossdale Head tunnel GARSDALE Appersett Gill viaduct Mossdale Gill viaduct HAWES Rise Hill tunnel DENT Arten Gill viaduct Blea Moor tunnel Dent Head viaduct Whernside 2415 ft + Ribblehead viaduct RIBBLEHEAD + Penyghent 2277 ft Ingleborough 2372 ft + HORTON IN RIBBLESDALE Little viaduct Ribble Bridge Sheriff Brow viaduct Taitlands tunnel Settle viaduct Marshfield viaduct SETTLE Settle Junction River Ribble © NJM 2016 Route map of the Settle—Carlisle Railway and the Hawes Branch GRADIENT PROFILE Gargrave to Carlisle After The Cumbrian Railways Association ’The Midland’s Settle & Carlisle Distance Diagrams’ 1992. CONTENTS Route map of the Settle-Carlisle Railway Gradient profile Introduction A. Primary Sources B. Books, pamphlets and leaflets C. Periodicals and articles D. Research Studies E. Maps F. Pictorial images: photographs, postcards, greetings cards, paintings and posters G. Audio-recordings: records, tapes and CDs H. Audio-visual recordings: films, videos and DVDs I.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS SCHOOL OF CIVIL ENGINEERING AND THE ENVIRONMENT TRACK BEHAVIOUR: THE IMPORTANCE OF THE SLEEPER TO BALLAST INTERFACE BY LOUIS LE PEN THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 2008 ACKNOWLEDGMENTS I would like to sincerely thank Professor William Powrie and Dr Daren Bowness for the opportunity given to me to carry out this research. I'd also like to thank the Engineering and Physical Sciences Research Council for the funding which made this research possible. Dr Daren Bowness worked very closely with me in the first year of my research and helped me begin to develop some of the skills required in the academic research community. Daren also provided me with some of the key references in this report, he is sadly missed.
    [Show full text]
  • Special Specification 5104 Ballasted Track Construction
    5104 Special Specification 5104 Ballasted Track Construction 1. DESCRIPTION This Item will govern for the construction of ballasted track on constructed trackbed. Ballasted track construction includes, but is not limited to, placing ballast, distributing and lining ties, installing and field welding running rail, installing jointed rail, installing turnouts and switches, rehabilitating existing ties and rail, raising and lining track, installing vehicular grade crossings, and other incidentals as specified herein. Track on ballasted and open deck bridges is also included. 2. MATERIALS 2.1. General. Use new material conforming to this specification unless otherwise designated in the plans or as approved by the Engineer. New material must be free from defects, rust, or damage and conform to the requirements of AREMA standards and the most current version of the UP General Specifications and Project Special Provisions unless otherwise stated in the plans, these specifications, or as required by the Engineer. Provide new material in an unblemished condition, free from defects, rust, or damage. 2.2. Rail. 2.2.1. Use Type RE 136 lb. Standard Strength Continuous Welded Rail meeting the requirements of Union Pacific Standard Drawing 176500, “136 Lb. Rail Section” and conforming to the requirements of American Railway Engineering and Maintenance of Way Association (AREMA) Chapter 4 “Rail” and UP General Specifications Section 34 11 10 – Railroad Track Construction unless otherwise specified in the plans. Rail must be 136 RE head hardened rail unless otherwise specified in the plans. 2.2.2. All rail, excluding rail for industry leads, must be continuously shop welded and transported in 400 ft.
    [Show full text]
  • Use of Geogrids in Railroad Beds and Ballast Construction
    Use of Geogrid in Subgrade-Ballast System of Railroads Subjected to Cyclic Loading for Reducing Maintenance B. M. Das, Dean Emeritus California State University, Sacramento, USA ABSTRACT During the past twenty-five years biaxial geogrids have been used as reinforcement in the construction of railroad beds and ballasts to improve their performance and structural integrity. A review of several published field and large-scale laboratory test results relating to the reinforcing ability of geogrids is presented. Also included are a number of case histories from several countries where layer(s) of geogrid were used in ballast and sub-ballast layers and on soft subgrade to reduce track settlement and, hence, the frequency of maintenance. 1. INTRODUCTION A geogrid is defined as a polymeric (i.e., geosynthetic) material consisting of connected parallel sets of tensile ribs with apertures of sufficient size to allow strike-through of surrounding soil, stone, or other geotechnical material. Their primary functions are reinforcement and separation. Reinforcement refers to the mechanism(s) by which the engineering properties of the composite soil/aggregate are mechanically improved. Separation refers to the physical isolation of dissimilar materials — say, ballast and sub-ballast or sub-ballast and subgrade — such that they do not commingle. Netlon Ltd. of the United Kingdom was the first producer of geogrids. In 1982 the Tensar Corporation (presently Tensar International) introduced geogrids in the United States. Historically speaking, in the 1950’s Dr. Brian Mercer (1927-1998) developed the Netlon® process in which plastics are extruded into a net-like process in one stage. He founded Netlon Ltd.
    [Show full text]
  • C17 Land Disposal, Andover Station Yard, Hampshire Decision Notice
    Les Waters Senior Manager, Licensing Railway Markets and Economics Telephone 020 7282 2106 E-mail: [email protected] Company Secretary Network Rail Infrastructure Limited 1 Eversholt Street London NW1 2DN 17 January 2020 Network licence Condition 17 (land disposal): Andover station yard, Hampshire Decision 1. On 3 October 2019, Network Rail gave notice of its intention to dispose of land at Andover station yard, Hampshire (“the land”), in accordance with Condition 17 of its network licence. The land is described in more detail in the notice (copy attached) and at Annex B. 2. We have considered the information supplied by Network Rail including the responses received from third parties consulted. For the purposes of Condition 17 of Network Rail’s network licence, ORR consents to the disposal of the land in accordance with the particulars set out in its notice. Reasons for decision 3. In considering this case, and with Network Rail’s agreement, we considered it appropriate, under Condition 17.5 of Network Rail’s network licence, to extend the deadline to 20 January 2020, to allow Network Rail sufficient time to address the points we raised below. i. We considered that the disposal was inconsistent with Network Rail’s freight site enhancements plan for Andover, as it would remove the area designated as a “Bufferstop Overrun Risk Zone” (shown in Annex B). Further, the proposed disposal could also reduce operational flexibility for passenger train through-running towards Basingstoke and beyond, and it was not clear whether this had been considered sufficiently. ii. We noted that Andover Town Council wished to see redevelopment north of Andover station, which would include the provision of direct pedestrian access to the station.
    [Show full text]
  • TO JUNE 2020 (Issue 711) Abbreviations
    MIDLAND & GREAT NORTHERN CIRCLE COMBINED INDEX OF BULLETINS AUGUST 1959 (Issue 1) TO JUNE 2020 (Issue 711) Abbreviations: ASLEF Associated Society of Locomotive Engineers M&GSW Midland, Glasgow & South Western Railway and Firemen M&NB Midland and North British Joint Railway ASRS Amalgamated Society of Railway Servants MR Midland Railway BoT Board of Trade Mr M Mr William Marriott B&L Bourn & Lynn Joint Railway MRN Model Railway News BR British Rail[ways] M&GN Midland and Great Northern Joint Railway BTC British Transport Commission N&S Norwich & Spalding Railway B’s Circle Bulletins N&SJt Norfolk & Suffolk Joint Railway CAB Coaching Arrangement Book NCC Norfolk County Council CLC Cheshire Lines Committee NNR North Norfolk Railway [preserved] Cttee Committee NRM National Railway Museum, York E&MR Eastern & Midlands Railway NUR National Union of Railwaymen EDP Eastern Daily Press. O.S. Ordnance Survey GCR Great Central Railway PW&SB Peterborough, Wisbech & Sutton Bridge Rly GER Great Eastern Railway RAF Royal Air Force GNoSR Great North of Scotland Railway Rly Railway GNR Great Northern Railway RCA Railway Clerks’ Association GNWR Glasgow & North Western Railway RCH Railway Clearing House GY&S Great Yarmouth & Stalham Light Railway RDC Rural District Council H&WNR Hunstanton & West Norfolk Railway S&B Spalding & Bourn[e] Railway Jct Junction S&DJR Somerset & Dorset Joint Railway L&FR Lynn & Fakenham Railway SM Station Master L&HR Lynn & Hunstanton Railway SVR Severn Valley Railway L&SB Lynn & Sutton Bridge Railway TMO Traffic Manager’s
    [Show full text]
  • PM N IDEA D1.5 Image Analysis
    EC Contract No. FP7 - 234299 PM n IDEA D1.5 Image analysis - Component catalogue Due date of deliverable: 31/5/2012 Actual submission date: 31/5/2012 Leader of this Deliverable: R Carroll, Stagecoach Reviewed: Y Document status Revision Date Description 0 31/5/2012 First issue Project co-funded by the European Commission within the Seven Framework Programme (2007-2013) Dissemination Level PU Public Y PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Start date of project: 01/06/2009 Duration: 36 months Instrument: Small or medium-scale focused research project Thematic priority: Sustainable Surface Transport EC Contract No. FP7 - 234299 EXECUTIVE SUMMARY The partners in PM n IDEA include many measurement and sensor specialists with little knowledge of the railway environment. This document has been written to give an overview of the different components that can be found on tramways to allow the non-specialist to understand their use. For each component a description, use and typical degradation mechanisms or maintenance requirements are given along with images. The catalogue is not exhaustive but includes most of the common features found on a typical tramway, other components and different designs are in use on different tramways. PMI–D-STA–009.1 Page 2 of 49 31/05/2012 EC Contract No. FP7 - 234299 1. INTRODUCTION One of the aims of PM n IDEA was to carry out image capture and analysis of the track system of metro and tram networks to reduce the need for manual inspection and increase the subjectivity of the data reported.
    [Show full text]
  • Track Report 2006-03.Qxd
    DIRECT FIXATION ASSEMBLIES The Journal of Pandrol Rail Fastenings 2006/2007 1 DIRECT FIXATION ASSEMBLIES DIRECT FIXATION ASSEMBLIES PANDROL VANGUARD Baseplate Installed on Guangzhou Metro ..........................................pages 3, 4, 5, 6, 7 PANDROL VANGUARD Baseplate By L. Liu, Director, Track Construction, Guangzhou Metro, Guangzhou, P.R. of China Installed on Guangzhou Metro Extension of the Docklands Light Railway to London City Airport (CARE project) ..............pages 8, 9, 10 PANDROL DOUBLE FASTCLIP installation on the Arad Bridge ................................................pages 11, 12 By L. Liu, Director, Track Construction, Guangzhou Metro, Guangzhou, P.R. of China PANDROL VIPA SP installation on Nidelv Bridge in Trondheim, Norway ..............................pages 13,14,15 by Stein Lundgreen, Senior Engineer, Jernbanverket Head Office The city of Guangzhou is the third largest track form has to be used to control railway VANGUARD vibration control rail fastening The Port Authority Transit Corporation (PATCO) goes High Tech with Rail Fastener............pages 16, 17, 18 in China, has more than 10 million vibration transmission in environmentally baseplates on Line 1 of the Guangzhou Metro by Edward Montgomery, Senior Engineer, Delaware River Port Authority / PACTO inhabitants and is situated in the south of sensitive areas. Pandrol VANGUARD system has system (Figure 1) in China was carried out in the country near Hong Kong. Construction been selected for these requirements on Line 3 January 2005. The baseplates were installed in of a subway network was approved in and Line 4 which are under construction. place of the existing fastenings in a tunnel on PANDROL FASTCLIP 1989 and construction started in 1993. Five the southbound track between Changshoulu years later, the city, in the south of one of PANDROL VANGUARD TRIAL ON and Huangsha stations.
    [Show full text]
  • Track Report 2009 V1:G 08063 PANDROLTEXT
    The Journal of Pandrol Rail Fastenings 2009 DIRECT FIXATION ASSEMBLIES Pandrol and the Railways in China................................................................................................page 03 by Zhenping ZHAO, Dean WHITMORE, Zhenhua WU, RailTech-Pandrol China;, Junxun WANG, Chief Engineer, China Railway Construction Co. No. 22, P. R. of China Korean Metro Shinbundang Project ..............................................................................................page 08 Port River Expressway Rail Bridge, Adelaide, Australia...............................................................page 11 PANDROL FASTCLIP Pandrol, Vortok and Rosenqvist Increasing Productivity During Tracklaying...................................................................................page 14 PANDROL FASTCLIP on the Gaziantep Light Rail System, Turkey ...............................................page 18 The Arad Tram Modernisation, Romania .....................................................................................page 20 PROJECTS Managing the Rail Thermal Stress Levels on MRS Tracks - Brazil ...............................................page 23 by Célia Rodrigues, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil Cristiano Mendonça, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil Cristiano Jorge, Railroad Specialist, MRS Logistics, Juiz de Fora, MG-Brazil Alexandre Bicalho, Track Maintenance Manager, MRS Logistics, Juiz de Fora, MG-Brazil Walter Vidon Jr., Railroad Consultant, Ch Vidon, Juiz de Fora, MG-Brazil
    [Show full text]