The Close-Up Imager Onboard the ESA Exomars Rover: Objectives, Description, Operations, and Science Validation Activities Jean-Luc Josset, Frances Westall, Beda A

Total Page:16

File Type:pdf, Size:1020Kb

The Close-Up Imager Onboard the ESA Exomars Rover: Objectives, Description, Operations, and Science Validation Activities Jean-Luc Josset, Frances Westall, Beda A The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities Jean-Luc Josset, Frances Westall, Beda A. Hofmann, John Spray, Charles Cockell, Stephan Kempe, Andrew D. Griffiths, Maria Cristina de Sanctis, Luigi Colangeli, Detlef Koschny, et al. To cite this version: Jean-Luc Josset, Frances Westall, Beda A. Hofmann, John Spray, Charles Cockell, et al.. The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities. Astrobiology, Mary Ann Liebert, 2017, 17 (6-7), pp.595 - 611. 10.1089/ast.2016.1546. hal-01618304 HAL Id: hal-01618304 https://hal.archives-ouvertes.fr/hal-01618304 Submitted on 7 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1546 The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities Jean-Luc Josset,1 Frances Westall,2 Beda A. Hofmann,3,4 John Spray,5 Charles Cockell,6 Stephan Kempe,7 Andrew D. Griffiths,8 Maria Cristina De Sanctis,9 Luigi Colangeli,10 Detlef Koschny,10 Karl Fo¨llmi,11 Eric Verrecchia,12 Larryn Diamond,4 Marie Josset,1 Emmanuelle J. Javaux,13 Francesca Esposito,14 Matthew Gunn,15 Audrey L. Souchon-Leitner,1 Tomaso R.R. Bontognali,16 Oleg Korablev,17 Suren Erkman,18 Gerhard Paar,19 Stephan Ulamec,20 Fre´de´ric Foucher,2 Philippe Martin,21 Antoine Verhaeghe,1 Mitko Tanevski,1 and Jorge L. Vago10 Abstract The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple po- sitioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument’s planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples col- lected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars—Biosignatures—Planetary Instrumentation. Astrobiology 17, 595–611. 1. Introduction ExoMars (e.g., Vago et al., 2013; Vago et al., 2017) is a collaboration program between ESA and Roscosmos con- ollowing on the recent exploration successes of sisting of two missions, ExoMars 2016 and ExoMars 2020. FNASA’s 2003 Mars Exploration Rovers (Spirit and ExoMars 2016 was launched on March 14th, 2016 (e.g., Opportunity) and 2011 Mars Science Laboratory (Curios- Witasse et al., 2014), and consists of a Trace Gas Orbiter ity), ESA will contribute to further our understanding of (TGO) plus an entry, descent, and landing demonstrator Downloaded by 85.26.12.50 from www.liebertpub.com at 10/09/18. For personal use only. Mars with the launch of the 2020 ExoMars Rover. module (EDM, or Schiaparelli lander) that will land in 1Space Exploration Institute, Neuchaˆtel, Switzerland. 2Centre de Biophysique Mole´culaire, CNRS, Orle´ans, France. 3Natural History Museum Bern, Bern, Switzerland. 4Institute of Geological Sciences, University of Bern, Bern, Switzerland. 5Planetary and Space Science, University of New Brunswick, New Brunswick, Canada. 6UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom. 7Institute of Applied Geosciences, Technische Universita¨t Darmstadt, Darmstadt, Germany. 8University College London, London, United Kingdom. 9Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy. 10ESA, ESTEC, Noordwijk, The Netherlands. 11Faculty of Geosciences and Environment, Institut des sciences de la Terre, University of Lausanne, Lausanne, Switzerland. 12Faculty of Geosciences and Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland. 13De´partement de Ge´ologie, UR GEOLOGY, University of Lie`ge, Lie`ge, Belgium. 14Osservatorio Astronomico di Capodimonte, Napoli, Italy. 15Department of Physics, Aberystwyth University, Wales, United Kingdom. 16Department of Earth Sciences, ETH Zurich, Zurich, Switzerland. 17Space Research Institute, IKI, Moscow, Russia. 18Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland. 19Joanneum Research, Graz, Austria. 20DLR, Space Operations, MUSC, Cologne, Germany. 21LPC2E, Orle´ans, France. 595 596 JOSSET ET AL. FIG. 1. CLUPI working team organization. CLUPI, close-up imager. Meridiani Planum. ExoMars 2020 will land an instrumented In this article, we focus on the CLUPI instrument, which rover on Mars. is being developed through international and multidisci- The overall ExoMars objectives are twofold: (i) tech- plinary science and technical teams, as illustrated in Fig. 1. nology demonstration and (ii) scientific investigations. The CLUPI instrument is being developed by a Swiss– The technology demonstration comprises the entry, de- French consortium supported by the Swiss Space Office and scent, and landing of a payload on the surface of Mars the French Space Agency CNES under the PI (Principal (ExoMars 2016); surface mobility with a rover; access to Investigator) leadership of Jean-Luc Josset with Frances the subsurface to acquire samples; and sample preparation, Westall and Beda Hofmann as Co-PIs. The science team Downloaded by 85.26.12.50 from www.liebertpub.com at 10/09/18. For personal use only. distribution, and analysis (ExoMars 2020). The scientific consists of scientists from Europe, Canada, and Russia who investigations are aimed at the search for signs of past and offer a broad range of expertise, including biosignature rec- present life on Mars, the study of how the water and geo- ognition, geology, microbiology, and geomorphology, as well chemical environments vary with subsurface depth (up to a as technical aspects related to CLUPI operations. few meters) (ExoMars 2020), and the analysis of martian The following sections describe the CLUPI science ob- atmospheric trace gases and identification of their sources jectives and performances, design, and operations, as well (ExoMars 2016). as its development status and planned science validation The ExoMars Rover has a nominal mission duration of activities. 218 sols (approximately seven Mars months). The rover is equipped with a drill for subsurface sample collection. It 2. CLUPI Science Objectives and Performances also includes the Pasteur suite of instruments: PanCam 2.1. Science objectives (panoramic camera; two wide-angle cameras, WACs; and a high-resolution camera, HRC), CLUPI (Close-Up Imager), CLUPI is a camera system designed to acquire high- ISEM (infrared spectrometer for ExoMars), WISDOM (a resolution, color close-up images of outcrops, rocks, soils, ground-penetrating radar), ADRON (a neutron detector for drill fines, and drill core samples. The visual information determining subsurface hydration), Ma_MISS (Mars Mul- obtained by CLUPI will be similar to what geologists would tispectral Imager for Subsurface Studies), MicrOmega (Vis- obtain by visual observation and by using a hand lens. IR imaging spectrometer for mineralogy studies), RLS CLUPI will acquire images of rock and unconsolidated (Raman Laser Spectrometer), and MOMA (Mars Organic materials, including dust, regolith, and float rocks (i.e., un- Molecule Analyzer). attached rocks) with fields of view (FOVs) ranging from CLUPI INSTRUMENT ONBOARD ESA EXOMARS ROVER 597 1.9 · 1.3 cm at 10–cm distance from the target (7 mm/pixel CLUPI color images will be indispensable for identifying resolution) to, for instance, 104.4 · 44.4 cm at 500-cm dis- visible minerals. While geochemical mineral identification tance (resolution 394 mm/pixel) since CLUPI can focus to will be made on powdered core samples, thus losing context infinity. These images will provide visual information of and original grain shape and size, CLUPI will provide im- structure and texture of the abovementioned materials and, ages of the minerals within their original context, enabling specifically, of in situ rocks to establish rock type, facies, the grains to be observed within their matrix, as well as and context stratigraphy in the area of study with the pri- other features of importance for interpreting the nature of a mary aim of interpreting the environment of formation/ rock and its mode of formation, such as the textural rela- deposition of the rocks and thus the potentially habitable tionship of specific grain types to other types, frequency of paleoenvironment. The CLUPI images will complement occurrence of certain grain types, variability in grain size and those provided by PanCam (Coates et al., 2017), thus giving shape, and the
Recommended publications
  • Planetary Science Division Status Report
    Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine.
    [Show full text]
  • Exomars Schiaparelli Direct-To-Earth Observation Using GMRT
    TECHNICAL ExoMars Schiaparelli Direct-to-Earth Observation REPORTS: METHODS 10.1029/2018RS006707 using GMRT S. Esterhuizen1, S. W. Asmar1 ,K.De2, Y. Gupta3, S. N. Katore3, and B. Ajithkumar3 Key Point: • During ExoMars Landing, GMRT 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2Cahill Center for Astrophysics, observed UHF transmissions and California Institute of Technology, Pasadena, CA, USA, 3National Centre for Radio Astrophysics, Pune, India Doppler shift used to identify key events as only real-time aliveness indicator Abstract During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, Correspondence to: S. W. Asmar, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The [email protected] Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real-time aliveness indicator to European Space Agency Citation: mission operations during the critical EDL stage of the mission. Esterhuizen, S., Asmar, S. W., De, K., Gupta, Y., Katore, S. N., & Plain Language Summary When planetary missions, such as landers on the surface of Mars, Ajithkumar, B. (2019). ExoMars undergo critical and risky events, communications to ground controllers is very important as close to real Schiaparelli Direct-to-Earth observation using GMRT. time as possible. The Schiaparelli spacecraft attempted landing in 2016 was supported in an innovative way. Radio Science, 54, 314–325. A large radio telescope on Earth was able to eavesdrop on information being sent from the lander to other https://doi.org/10.1029/2018RS006707 spacecraft in orbit around Mars.
    [Show full text]
  • Water, Habitability, and Detectability Steve Desch
    Water, Habitability, and Detectability Steve Desch PI, “Exoplanetary Ecosystems” NExSS team School of Earth and Space Exploration, Arizona State University with Ariel Anbar, Tessa Fisher, Steven Glaser, Hilairy Hartnett, Stephen Kane, Susanne Neuer, Cayman Unterborn, Sara Walker, Misha Zolotov Astrobiology Science Strategy NAS Committee, Beckmann Center, Irvine, CA (remotely), January 17, 2018 How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres How Earth-like must an exoplanet be for this to work? Seager et al. (2013) How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres Oxygen on Earth overwhelmingly produced by photosynthesizing life, which taps Sun’s energy and yields large disequilibrium signature. Caveats: Earth had life for billions of years without O2 in its atmosphere. First photosynthesis to evolve on Earth was anoxygenic. Many ‘false positives’ recognized because O2 has abiotic sources, esp. photolysis (Luger & Barnes 2014; Harman et al. 2015; Meadows 2017). These caveats seem like exceptions to the ‘rule’ that ‘oxygen = life’. How non-Earth-like can an exoplanet be (especially with respect to water content) before oxygen is no longer a biosignature? Part 1: How much water can terrestrial planets form with? Part 2: Are Aqua Planets or Water Worlds habitable? Can we detect life on them? Part 3: How should we look for life on exoplanets? Part 1: How much water can terrestrial planets form with? Theory says: up to hundreds of oceans’ worth of water Trappist-1 system suggests hundreds of oceans, especially around M stars Many (most?) planets may be Aqua Planets or Water Worlds How much water can terrestrial planets form with? Earth- “snow line” Standard Sun distance models of distance accretion suggest abundant water.
    [Show full text]
  • Mars Express Going Gyroless - Impact on Science Operations Systems
    EPSC Abstracts Vol. 12, EPSC2018-1048, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Mars Express going Gyroless - Impact on science operations systems C.Muñiz Solaz (1), A.Cardesin (1), J.Marin-Yaseli de la Parra (1), M.Costa i Sitjà (1), D.Merritt (1), M.Castillo (1), M.G.Breitfellner (1), E.Grotheer (1), P.Martin(1), F. Nespoli (1), M.Kueppers(1), G.Buenadicha(1), B. Geiger (1), D.Titov(2) (1) ESA European Space Astronomy Centre (ESAC), Camino bajo del Castillo s/n, Urb. Villafranca del Castillo, P.O. Box 78, 28691 Villanueva de la Cañada, Madrid, Spain ([email protected] / T: +34-91-8131349) (2) European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk ZH, Netherlands Abstract tions of its gyroscopes, thereby extending the mission lifetime. MEX was never designed to fly without its Mars Express was originally designed to explore Mars gyros continuously available, therefore an AOCS up- for a period of 1 Martian year. The mission has been grade was necessary to avoid an end of mission fore- very successful and has been extended in several oc- cast in early 2019. This software update not only af- casions and today it has been flying for more than fects the spacecraft operations but also the science op- 15 years. Due to its long lifetime in space the gy- erations, including procedures and planning processes. ros had started to degrade, and a decision was made The Science Ground Segment (SGS) team, located to extend the spacecraft lifetime by developing a new at the European Space Astronomy Centre (ESAC) near AOCS software to allow for switching off the gyros Madrid (Spain), is responsible for the generation, co- during an extended part of the operations, thereby re- ordination and maintenance of the overall scientific ducing the duty cycle of the IMUs.
    [Show full text]
  • Pancam: a Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission
    Sixth International Conference on Mars (2003) 3029.pdf Pancam: A Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission. J.F. Bell III1, S.W. Squyres1, K.E. Herkenhoff2, J. Maki3, M. Schwochert3, A. Dingizian3, D. Brown3, R.V. Morris4, H.M. Arneson1, M.J. Johnson1, J. Joseph1, J.N. Sohl-Dickstein1, and the Athena Science Team. 1Cornell University, Dept. of Astronomy, Ithaca NY 14853-6801; [email protected] , 2USGS Branch of Astrogeology, Flagstaff AZ 86001, 3JPL/Caltech, Pasadena CA 91109, 4NASA/JSC, Code SR, Houston TX 77058. Introduction: One of the six science payload ele- both cameras consist of identical 3-element symmetri- ments carried on each of the NASA Mars Exploration cal lenses with an effective focal length of 42 mm and Rovers (MER; Figure 1) is the Panoramic Camera a focal ratio of f/20, yielding an IFOV of 0.28 System, or Pancam. Pancam consists of three major mrad/pixel or a rectangular Field of View (FOV) of components: a pair of digital CCD cameras, the Pan- 16°× 16° per eye (Figures 3,4). The two eyes are sepa- cam Mast Assembly (PMA), and a radiometric cali- rated by 30 cm horizontally and have a 1° toe-in to bration target [1]. The PMA provides the azimuth and provide adequate parallax for stereo imaging (Figure elevation actuation for the cameras as well as a 1.5 5). The camera FOVs have been determined relative to meter high vantage point from which to image. The the adjacent wide-field stereo Navigation Cameras, and calibration target provides a set of reference color and the Mini-TES FOV.
    [Show full text]
  • EDL – Lessons Learned and Recommendations
    ."#!(*"# 0 1(%"##" !)"#!(*"#* 0 1"!#"("#"#(-$" ."!##("""*#!#$*#( "" !#!#0 1%"#"! /!##"*!###"#" #"#!$#!##!("""-"!"##&!%%!%&# $!!# %"##"*!%#'##(#!"##"#!$$# /25-!&""$!)# %"##!""*&""#!$#$! !$# $##"##%#(# ! "#"-! *#"!,021 ""# !"$!+031 !" )!%+041 #!( !"!# #$!"+051 # #$! !%#-" $##"!#""#$#$! %"##"#!#(- IPPW Enabled International Collaborations in EDL – Lessons Learned and Recommendations: Ethiraj Venkatapathy1, Chief Technologist, Entry Systems and Technology Division, NASA ARC, 2 Ali Gülhan , Department Head, Supersonic and Hypersonic Technologies Department, DLR, Cologne, and Michelle Munk3, Principal Technologist, EDL, Space Technology Mission Directorate, NASA. 1 NASA Ames Research Center, Moffett Field, CA [email protected]. 2 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), German Aerospace Center, [email protected] 3 NASA Langley Research Center, Hampron, VA. [email protected] Abstract of the Proposed Talk: One of the goals of IPPW has been to bring about international collaboration. Establishing collaboration, especially in the area of EDL, can present numerous frustrating challenges. IPPW presents opportunities to present advances in various technology areas. It allows for opportunity for general discussion. Evaluating collaboration potential requires open dialogue as to the needs of the parties and what critical capabilities each party possesses. Understanding opportunities for collaboration as well as the rules and regulations that govern collaboration are essential. The authors of this proposed talk have explored and established collaboration in multiple areas of interest to IPPW community. The authors will present examples that illustrate the motivations for the partnership, our common goals, and the unique capabilities of each party. The first example involves earth entry of a large asteroid and break-up. NASA Ames is leading an effort for the agency to assess and estimate the threat posed by large asteroids under the Asteroid Threat Assessment Project (ATAP).
    [Show full text]
  • Rivista Elettronica Di Diritto, Economia, Management
    Rivista elettronica di Diritto, Economia, Management Numero 1 - 2021 Parte prima: Atti del convegno “Cooperazione spaziale internazionale: limiti e prospettive”, organizzato il 12 gennaio 2021 dal Centro Studi Geopolitica.info in collaborazione con UnitelmaSapienza, CEMAS Sapienza e con il patrocinio scientifico di Fondazione Roma Sapienza. Inquadra il QR-CODE per il download degli altri numeri Parte seconda: articoli sul PNRR, identità e profilo, customer della Rivista satisfaction, outsourcing per l’archiaviazione dei documenti informatici, diritto di accesso ad internet o al ciberspazio, smart contratcts, cloud, regolazione e competizione, lavoro agile o smartworking e protezione dei dati personali. FONDATA E DIRETTA DA DONATO A. LIMONE I ISSN 2039-4926 Direttore responsabile Donato A. Limone Comitato scientifico Estanislao Arana García, Catedrático de Derecho administrativo de la Universidad de Granada (Spagna); Piero Bergamini (Comitato Direttivo del Club degli Investitori di Torino); Francesco Capriglione (professore di diritto degli intermediari e dei mercati finanziari, Luiss, Roma); Mario Carta (Professore di diritto dell’Unione europea dell’Università degli Studi di Roma Unitelma Sapienza); Enzo Chilelli (esperto di sanità e di informatica pubblica); Claudio Clemente (Banca d’Italia); Fabrizio D’Ascenzo (professore ordinario, preside della Facoltà di Economia, Univer- sità “La Sapienza”); Angelo Del Favero (“Health and Welfare School”, Università degli Studi di Roma “Unitelma Sapienza”); Luigi Di Viggiano (Università del Salento; esperto di scienza dell'amministrazione digitale); Jorge Eduardo Douglas Price, ordinario di Teoria generale del diritto; Direttore del Centro di Studi Istituzionali Patagónico (CEIP), Facoltà di Giurisprudenza e Scienze Sociali dell'Università Nazionale di Comahue (Argentina); Vincenzo Mongillo (ordi- nario di diritto penale, Università degli studi di Roma, Unitelma Sapienza); Maria Rita Fiasco (consulente, Vice Presidente Assinform); Donato A.
    [Show full text]
  • Argops) Solution to the 2017 Astrodynamics Specialist Conference Student Competition
    AAS 17-621 THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE (ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS SPECIALIST CONFERENCE STUDENT COMPETITION Jason A. Reiter,* Davide Conte,1 Andrew M. Goodyear,* Ghanghoon Paik,* Guanwei. He,* Peter C. Scarcella,* Mollik Nayyar,* Matthew J. Shaw* We present the methods and results of the Astrodynamics Research Group of Penn State (ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in order to determine its mass and volume and to map and characterize its surface. This data would prove useful in determining the necessity and usefulness of future missions to the asteroid. The mission was designed such that a balance between cost and maximizing objectives was found. INTRODUCTION Asteroid (469219) 2016 HO3 was discovered recently and has yet to be explored. It lies in a quasi-orbit about the Earth such that it will follow the Earth around the Sun for at least the next several hundred years providing many opportunities for relatively low-cost missions to the body. Not much is known about 2016 HO3 except a general size range, but its close proximity to Earth makes a scientific mission more feasible than other near-Earth objects. A Request For Proposal (RFP) was provided to university teams searching for cost-efficient mission design solutions to assist in the characterization of the asteroid and the assessment of its potential for future, more in-depth missions and possible resource utilization. The RFP provides constraints on launch mass, bus size as well as other mission architecture decisions, and sets goals for scientific mapping and characterization.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
    Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect.
    [Show full text]
  • Exploration of Mars by the European Space Agency 1
    Exploration of Mars by the European Space Agency Alejandro Cardesín ESA Science Operations Mars Express, ExoMars 2016 IAC Winter School, November 20161 Credit: MEX/HRSC History of Missions to Mars Mars Exploration nowadays… 2000‐2010 2011 2013/14 2016 2018 2020 future … Mars Express MAVEN (ESA) TGO Future ESA (ESA- Studies… RUSSIA) Odyssey MRO Mars Phobos- Sample Grunt Return? (RUSSIA) MOM Schiaparelli ExoMars 2020 Phoenix (ESA-RUSSIA) Opportunity MSL Curiosity Mars Insight 2020 Spirit The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export‐controlled information. Mars Express 2003-2016 … First European Mission to orbit another Planet! First mission of the “Rosetta family” Up and running since 2003 Credit: MEX/HRSC First European Mission to orbit another Planet First European attempt to land on another Planet Original mission concept Credit: MEX/HRSC December 2003: Mars Express Lander Release and Orbit Insertion Collission trajectory Bye bye Beagle 2! Last picture Lander after release, release taken by VMC camera Insertion 19/12/2003 8:33 trajectory Credit: MEX/HRSC Beagle 2 was found in January 2015 ! Only 6km away from landing site OK Open petals indicate soft landing OK Antenna remained covered Lessons learned: comms at all time! Credit: MEX/HRSC Mars Express: so many missions at once Mars Mission Phobos Mission Relay Mission Credit: MEX/HRSC Mars Express science investigations Martian Moons: Phobos & Deimos: Ionosphere, surface,
    [Show full text]
  • Range Resolution Enhancement of WISDOM/Exomars
    Range resolution enhancement of WISDOM/ExoMars radar soundings by the Bandwidth Extrapolation technique: Validation and application to field campaign measurements Nicolas Oudart, Valérie Ciarletti, Alice Le Gall, Marco Mastrogiuseppe, Yann Herve, Wolf-Stefan Benedix, Dirk Plettemeier, Vivien Tranier, Rafik Hassen-Khodja, Christoph Statz, et al. To cite this version: Nicolas Oudart, Valérie Ciarletti, Alice Le Gall, Marco Mastrogiuseppe, Yann Herve, et al.. Range resolution enhancement of WISDOM/ExoMars radar soundings by the Bandwidth Extrapolation tech- nique: Validation and application to field campaign measurements. Planetary and Space Science, Elsevier, 2021, 197 (March), pp.105173. 10.1016/j.pss.2021.105173. insu-03114236v2 HAL Id: insu-03114236 https://hal-insu.archives-ouvertes.fr/insu-03114236v2 Submitted on 28 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Planetary and Space Science 197 (2021) 105173 Contents lists available at ScienceDirect Planetary
    [Show full text]