COASTAL HAZARDS Too Many People Living Too Close to the Edge of a Rising Sea

Total Page:16

File Type:pdf, Size:1020Kb

COASTAL HAZARDS Too Many People Living Too Close to the Edge of a Rising Sea COASTAL HAZARDS Too Many People Living Too Close To The Edge Of A Rising Sea A Growing Challenge For The 21st Century This Report Is Part Of The Ocean On The Edge Series Produced By The Aquarium Of The Pacific As Products Of Its National Conference—Ocean On The Edge: Top Ocean Issues, May 2009 2 COASTAL HAZARDS Ocean on the Edge: Top Ocean Issues Making Ocean Issues Come Alive for the Public The conference brought together leading marine scientists and engineers, policy-makers, film-makers, exhibit designers, informal science educators, journalists and communicators to develop a portfolio of models for communicating major ocean issues to the public. This report is one of a series of reports from that conference. The reports include: Coastal Hazards, Marine Ecosystems and Fisheries, Pollution in the Ocean, and Critical Condition: Ocean Health and Human Health. There is also a series of briefer reports on film-making, kiosk messaging design, and communicating science to the public. All reports are available at www.aquariumofpacific.org COASTAL HAZARDS 3 4 COASTAL HAZARDS Acknowledgements Support for the “Ocean on the Edge Conference: Issues” held in May 2009, at Long Beach Top Ocean Issues” was provided by NOAA, Convention Center. Participants in the the National Science Foundation, Southern Coastal Hazards workshop session included: California Edison, SAVOR, the Long Beach Dr. Robert Dean, Dr. R. A. Dalrymple, Dr. Convention Center, and the Aquarium of the Conrad C. Lautenbacher, Jr., Dr. Jerry R. Pacific. Schubel, and Dana Swanson. Sandy Eslinger was the facilitator of the session. Leah Young We are grateful to the Conference’s National and Margaret Schubel were the rapporteurs. Advisory Panel that provided valuable guid- ance in selecting participants and in review- The report was reviewed by Dr. Orrin Pilkey, ing sections of this report. Members are listed William Sargent, Julie Thomas, Doug Harper, in Appendix A. and Adam Stein all of whom also provided text boxes to enhance the report. This report is based very loosely on the report, “Coastal Hazards” published by the National Academies in their Ocean Science Series which formed the starting point of discussion at the Aquarium of the Pacific’s Conference, “Ocean on the Edge: Top Ocean COASTAL HAZARDS 5 National Advisory Panel D. James Baker Tom Bowman John Byrne Michael Connor James Cortina Joseph Cortina Robert Dalrymple Lynn Dierking William Eichbaum John Falk Alan Friedman Martha Grabowski Mary Nichol William Patzert Shirley Pomponi William Reeburgh Jonathan Sharp 6 COASTAL HAZARDS Table of Contents Introduction . 9 Setting the Stage . 11 Sea Level .............................................................11 What’s Different? ......................................................12 The Big Unknown . .13 Like Politics, All Sea Level Rise is Local .....................................13 Increasing Vulnerability to Risk . 15 The Higher the Sea, The Higher the Risk....................................15 Areas at Greatest Risk ...................................................16 Atolls: The Canaries in the Mine ..........................................17 The Allure of the Coastal Zone . .18 Hurricanes and Other Coastal Storms: A Growing Threat . 21 Some Places and People are at Greater Risk Than Others . .24 How Will Global Climate Change Affect Hurricanes and Other Tropical Storms?..................................................24 Coastal Populations at Risk . 26 Adapting to a New Normal . 27 Policies to Nudge Us in the Right Direction . .27 Resilient Coastal Communities . .30 Inundation Maps . 31 The Roles of Science ....................................................35 The Roles of Engineering ................................................36 Closing Observations . 38 Appendix A . 40 Recommended Readings . 40 Appendix B . 41 Conference Participants .................................................41 COASTAL HAZARDS 7 8 COASTAL HAZARDS Introduction The Earth and the ocean are warming. Gla- In this brief document we explore sea level ciers and ice sheets are melting. The addi- rise and inundation—the causes and conse- tion of new water and the expansion of the quences, the prognosis for the future, and warming upper ocean are causing sea level what can be done to decrease vulnerability to rise—worldwide. This is nothing new. Sea and risk to make coastal communities more level has been rising since the end of the last resilient. We draw upon a large number of ice age, about 18,000 years ago. Throughout sources but two in particular: the NAS report, geologic time sea level has risen and fallen. It Coastal Hazards (2007) in the Ocean Sci- has been higher than today, and lower than ence Series; and the Proceedings from the today. The shoreline, and coastal ecosystems Sea Level Rise and Inundation Community including beaches, wetlands, mangrove for- Workshop (2010) sponsored by the National ests, and barrier islands have advanced and Oceanic and Atmospheric Administration retreated laterally with the rising and falling (NOAA) and the U.S. Geological Survey sea. For nearly all of human history, some (USGS) and facilitated by the Aquarium of 100,000-200,000 years, humans have moved the Pacific in December 2009.1 with the shoreline. But something is different now. More than half of the 6.8 billion people worldwide live near the coast. Hundreds of millions live in low-lying coastal areas. We have built houses, hotels, condominiums, office buildings, stores, factories …entire communities, in- cluding large cities, along with the infrastruc- ture—highways, railways, subways, water and wastewater treatment and distribution systems, and electric generating facilities— needed to support them, all at the edge of an increasingly restless sea. 1. Recommended readings are listed in Appendix A. COASTAL HAZARDS 9 10 COASTAL HAZARDS Setting the Stage Sea Level Sea level has been rising for the past 18,000- 20,000 years, since the end of the last ice age, but something is different now. Climate change is causing sea level to rise more rap- idly and the number of people, the number and value of structures, and the number of natural environments at risk, are far greater now than at any time in human history. Over the past century, sea level rose world- Source: Wikimedia Commons wide by about 7 inches. Over this century it may rise by 3 feet, 5 feet, or much more depending upon how much of the Greenland and Antarctic ice sheets melt.2 Both ice sheets are melting faster than scientists predicted just a few years ago. Even the lower bound of most sea level rise estimates will have cata- strophic impacts on low-lying coastal areas of the world that are home to about 10% of the world’s population. Sea level rise is driven by two processes as- sociated with global warming—the expansion of the ocean as it warms and the addition of new water from melting of glaciers and continental ice sheets. Over the past few de- cades the contributions from each have been roughly the same. But that will probably Source: Wikimedia Commons 2. IPCC 2009 COASTAL HAZARDS 11 Beach Erosion: Esplanade Drive in Pacifica, California change well before the end of this century as by storms. Oceanic storms of all kinds— from 1997 to 1998. Dur- more melt water is added to the ocean. hurricanes, typhoons, Nor’easters, and ing the 1997 to 1998 El cyclones—produce greater damage when For every degree Fahrenheit the upper ocean Niño season, California’s superimposed upon a higher standing sea, warms, it expands between 0.5 foot and 1 coastlines were hit by both because of greater damage from waves foot. For every foot it rises vertically, the sea major beach erosion caus- and particularly from increased storm surges. advances laterally. The inundation ranges ing millions of dollars in There is growing scientific evidence that from very little where the coast is made up damage. global warming is increasing the intensity of steep vertical cliffs such as along parts of and probably the frequency of tropical NASA/Goddard Space flight Center the west coast of the U.S. to several thousand storms—hurricanes and typhoons. Scientific Visualization Studio. feet where the coast is low-lying and gently sloping such as along the Gulf and Southeast What’s Different? coasts of the U.S. To exacerbate the problem, Sea level has risen and fallen throughout geo- both the Gulf and Southeast regions are sink- logic history. Continental ice sheets waxed ing so the effective rise of sea level in these and waned throughout the most recent Gla- regions is greater than the global average.3 cial Epoch, the Pleistocene, which extended from 1.8 million years ago to about 18,000 The rising sea is invading low-lying coastal years ago. The rise and fall of the sea in lands, eroding coastal cliffs and beaches, response to the retreats and advances of the intensifying coastal flooding, and invading great ice sheets was part of nature’s rhythm, coastal groundwater supplies. The effects of and part of the early human experience. the inexorable rise of the sea is punctuated Humans first appeared on the evolutionary 3. You can find predictions of sea level rise for individual properties by going to http://www.floodsmart.gov and typing in your address. 12 COASTAL HAZARDS Source of data modified from CLIMAP isotopic data summarized in chart is from Ice Ages by John Embris and Katherine Imbrie, 1979. stage between 100,000 and 200,000 years • If all of Greenland were to melt, global ago, and it took until about 200 years ago for sea level would rise 23 feet.4 the population to reach one billion. • The Western Antarctic Ice Sheet is the Since the end of the last ice age, sea level smaller of the two Antarctic Ice sheets, has been rising in response to the release of but is by far the more unstable and melt water from the retreating glaciers. It has could cause sea level to rise 16 feet by risen roughly 400 feet over that time with 2100 if it were to melt entirely.
Recommended publications
  • CONTROL of .ALLUVIAL RIVERS by STEEL JETTIES By
    CONTROL OF .ALLUVIAL RIVERS BY STEEL JETTIES by E. 1. Carlson and R. A. Dodge, Jr. A paper to be presented at The First Water Resources Engineering Conference of The American Society of Civil Engineers, Omaha, Nebraska, May 14-18, 1962 CONTROL OF ALLUVIAL RIVERS BY STEEL JETTIES by E. J. Carlsonl / and R. A. Dodge, Jr. 2 / SYNOPSIS Both field and laboratory studies were conducted to refine the methods used in the design of steel jetty fields for river aline- ment. A set of dimensionless friction head-loss curves, verified by model studies are developed and described. Using the developed curves and reconnaissance field data, a method is given for predict- ing the changes in a riverbed after the designed jetty field is installed. /Head, Sediment Investigations Unit, Hydraulics Branch, Division of Engineering Laboratories, Bureau of Reclamation, Denver, Colorado. 2 /Hydraulic Engineer, Hydraulics Branch, Division of Engineering Laboratories, Bureau of Reclamation, Denver, Colorado. INTRODUCTION Steel jacks and jetties have been used successfully by the Corps of Engineers, highway departments, railway companies, and others to prevent damage to riverbanks, levees, bridge abutments, and other structures. The Bureau of Reclamation and the Corps of Engineers are using them to stabilize the channel of the Rio Grande within the floodway in the Middle Rio Grande Valley. (1)1 / The individual jack unit consists of three angle irons, 12 or 16 feet in length placed at 90° angles in three planes and joined at their cen- ters, Figure 1. Wire is laced through the angle irons in a standard pattern to tie them together.
    [Show full text]
  • Dealing with Erosion: the Spectrum of Coastal Erosion Control Methods
    2ND ANNUAL CAPE COASTAL CONFERENCE Linking Science with Local Solutions and Decision-Making Dealing With Erosion: The Spectrum of Coastal Erosion Control Methods Greg Berman (Woods Hole Sea Grant & Cape Cod Cooperative Extension) Photo Credit: Ted Keon Climate Change Impacts In Coastal Environments 34 5 12 Coastal Adaptation On Cape Cod we manage at parcel scale http://www.ipcc.ch/ipccreports/sres/regional/index.php?idp=223 The Spectrum of Coastal Erosion Control Methods Why protect properties……..? Town of Brewster example The Facts The Implications Value = $333,000,000 (don’t want takings) Only ~1% of properties To keep the same revenue, ~3% of town area the tax rate would go from 8.18 to 9.06 but they make ~10% of the real estate taxes or ~$300 per household The Spectrum of Coastal Erosion Control Methods • Do nothing 1. Will system recover by itself? 2. How far is the structure from the water? 3. Grandfathering protects structures (not lawn) before August 10, 1978 Photo Credit: Ann McNichol The Spectrum of Coastal Erosion Control Methods • Do nothing • Vegetation Plant Natives: Root systems stabilize. Take up water. Break the impact of raindrops or wave-splash. Slow down runoff Remove Invasive The Spectrum of Coastal Erosion Control Methods • Do nothing • Vegetation • Re-grade The Spectrum of Coastal Erosion Control Methods • Do nothing Horizontal • Vegetation • Re-grade • Managed retreat V E R T I C A L The Spectrum of Coastal Erosion Control Methods • Do nothing Photo Credit: Ted Keon • Vegetation • Re-grade • Managed retreat • Beach
    [Show full text]
  • Beach Nourishment Effects Østerstrand Fredericia - Denmark 2017
    Beach Nourishment Effects Østerstrand Fredericia - Denmark 2017 Juni 2020 Project Building with Nature (EU-InterReg) Start date 01.11.2016 End date 01.07.2020 Project manager (PM) Ane Høiberg Nielsen Project leader (PL) Per Sørensen Project staff (PS) Henrik Vinge Karlsson Time registering 402412 Approved date 26.06.2020 Signature Report Beach nourishment effects – Østerstrand, Frederica, Denmark Author Henrik Vinge Karlsson and Per Sørensen Keyword Beach nourishment, Nourishment design, Coastal protection, Building with nature, BWN, Fredericia, Østerstrand. Distribution www.kyst.dk, www.northsearegion.eu/building-with-nature Referred to as Kystdirektoratet (2020), Beach nourishment effects – Østerstrand, Frederica; Lemvig. 2 Beach Nourishment Effects Contents 1. Introduction ................................................................................................. 5 1.1 Description of Study site .............................................................................................................................5 1.2 Division of study stretch..............................................................................................................................7 1.3 Description of Nourishment ......................................................................................................................7 1.4 Research design ..............................................................................................................................................8 1.4.1 Research questions..............................................................................................................................................................................................................................................9
    [Show full text]
  • Mitigation of Channel Shoaling at a Sheltered Inlet Subject to Flood Gate Operations
    Journal of Marine Science and Engineering Article Mitigation of Channel Shoaling at a Sheltered Inlet Subject to Flood Gate Operations Laura Lemke * , Matthew S. Janssen and Jon K. Miller Coastal Engineering Research Group, Davidson Laboratory, Stevens Institute of Technology, Hoboken, NJ 07030, USA; [email protected] (M.S.J.); [email protected] (J.K.M.) * Correspondence: [email protected] Received: 30 September 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: A comprehensive case study of Keansburg Inlet (New Jersey, USA) is presented with the objective of evaluating inlet management alternatives and assessing the influence of an operational flood gate on channel shoaling. The goal of the research is determining the most effective strategy for minimizing the frequency of maintenance dredging. This study compares the effectiveness of (1) traditional structural solutions; (2) modified dredging templates; and (3) assesses the influence of the flood gate operations during conditions representative of a typical year. Alternative analysis is completed using a coupled hydrodynamic–wave model (Delft3D-Flexible Mesh (FM)) with Real Time Control to simulate morphological changes. The model was calibrated and evaluated using collected field data. Water levels are reproduced within 6% of the spring tide range with lag times less than 20 min. The model results and observations suggest sediment transport is dominated by wave action with pronounced variations in dominant wave direction. The results indicate that changes to the operational dredging, or what the authors have termed broadly as “adaptive dredging techniques”, appear to deliver the most promising improvement. Model results suggest that the current operational procedures of the flood gate do not significantly alter the channel infilling rates and patterns during typical (i.e., non-extreme event) conditions.
    [Show full text]
  • Impacts of Long Jetties Construction on Shoreline Change at the Western Coast of the Gulf of Thailand
    Article Impacts of Long Jetties Construction on Shoreline Change at the Western Coast of the Gulf of Thailand Nathamon Phanomphongphaisarn.1,2,a, Chaipant Rukvichai1,b, and Butsawan Bidorn1,2,c,* 1 Department of Water Resource Engineering, Chulalongkorn University, Bangkok, Thailand 2 WISE Research Unit, Chulalongkorn University, Bangkok, Thailand E-mail: [email protected], [email protected], cbutsawan.p @chula.ac.th (Corresponding author) Abstract. Pranburi Jetties, a pair of long jetties with a length of 800 m and 860 m, have been constructed at the Pranburi River inlet, located on the western coast of the Gulf of Thailand since 1999 to stabilize the river mouth. The purposes of this study were to evaluate the responses of shoreline due to the construction of Pranburi Jetties, and the accuracy of the One-Line model (OLM) on predicting the shoreline change due to construction. Based on the shoreline positions retrieving from aerial photographs and satellite imagery during 1967- 2018, the difference in shoreline evolution before and after the construction of the jetties was evaluated using ArcGIS and Digital Shoreline Analysis System. The predicted shorelines using the One-Line model were compared with the image-analyzed shorelines for evaluating the accuracy of the model. The results indicated that the construction of Pranburi Jetties had caused the shoreline accretion at the vicinity of the jetties with the maximum accretion of up to 300 m in 2018. The land growth of 16.2 and 9 ha took place at the northern and southern coasts, respectively. The percentage of errors between the predicted and the image- analyzed shoreline varied from 2 to 13,000 percent with an average of 250 percent.
    [Show full text]
  • Large Scale Impacts of Jetties and Training Walls - Experience on the Australian East Coast
    LARGE SCALE IMPACTS OF JETTIES AND TRAINING WALLS - EXPERIENCE ON THE AUSTRALIAN EAST COAST Angus Gordon, Coastal Zone Management and Planning, [email protected] Alexander Nielsen, Advisian Worley Group, [email protected] INTRODUCTION The erosion has continued due to both the realignment of Entrance jetties and training walls have instigated the beach and the net loss of sand blown into the dunes fundamental perturbations to coastal and estuary of Newcastle Bight (Gordon & Roy, 1977). This has processes at several locations on the Australian eastern resulted in the requirement to construct a rock revetment seaboard inducing long term changes to foreshore to protect Mitchell Street and the village (Figure 2). More alignments, tidal current velocities, tidal plane elevations recently it has been necessary to undertake beach and marine ecologies with significant consequences, nourishment to offset the on-going coastal recession. some having been realised only recently. This paper presents examples of long-term impacts of entrance jetties and training walls on coastal and estuary processes, gleaned from experience on the NSW coast. COASTALPROCESSES On coastlines with high transport rates of littoral drift, jetties have trapped sand inducing erosion on down-drift beaches at the Tweed River (Delft 1970) and Coffs Harbour (Lord & van Kerkvoort 1981). Another less-appreciated impact of jetties on coastal alignments has been the changes they can induce in near-shore wave patterns that, in turn, will re-align ocean Figure 1 - Left: Entrance to Newcastle Harbour (circa foreshores significantly (Miller & Nielsen 1995, Klein et al. 1850). Right: Present-day entrance with MEPBAY 1850 2003, Gordon 2011).
    [Show full text]
  • 2.2 State Risk Assessment
    Chapter 2: RISK ASSESSMENT | State Risk Assessment | Cultural Resources Summary » Wildfire 2.2 State Risk Assessment Requirement: 44 CFR §201.4(c)(2)(i): The risk assessment shall include… (i) An overview of the type and location of all natural hazards that can affect the State, including information on previous occurrences of hazard events, as well as the probability of future hazard events, using maps where appropriate; The spatial distribution of the facilities within hazard zones is not easily viewed on a statewide map. Therefore, maps depicting hazard zones and facilities within those zones have only been created at the regional scale. Those maps can be found in section 2.3, Regional Risk Assessments. Oregon Natural Hazards Mitigation Plan | September 2020 163 Chapter 2: RISK ASSESSMENT | State Risk Assessment | Coastal Hazards Summary » Wildfire 2.2.1 Coastal Hazards The Pacific Northwest (PNW) coast of Figure 2-29. Erosion at The Capes Oregon is without doubt one of the most Condominiums, Oceanside, Oregon dynamic coastal landscapes in North America, evident by its long sandy beaches, sheer coastal cliffs, dramatic headlands and vistas, and ultimately the power of the Pacific Ocean that serves to erode and change the shape of the coast. It is these qualities along with its various natural resources that have drawn people to live along its narrow shores. However, coastal communities are increasingly under threat from a variety of natural hazards that all come together along the coastal strip. These include wave-induced coastal erosion (both short and long term), wave runup and overtopping (wave-induced flood hazards), inundation Notes: The Capes, a multi-million dollar condominium of homes by wind-blown sand, coastal complex constructed on an old Holocene dune field landslides, earthquakes, and potentially adjacent to Oceanside.
    [Show full text]
  • Bakers Haulover Inlet Management
    Bakers Haulover Inlet Management 2019 National Conference on Beach Preservation Technology – St. Augustine, Florida T. K. Blankenship, P.E., Yong Chen, Ph.D., P.E., Nina Piccoli, MsC. - Moffatt & Nichol Paul Voight, P.G. Miami-Dade DERM February 7, 2019 Presentation Outline • Inlet Management Plan – Developing & Updating IMP • Bakers Haulover Inlet (Location, history) • Beach Management Challenges • Sediment Budget • Alternatives • Next steps towards IMP Bakers Haulover Inlet – Location Map Port Everglades Bakers Haulover Inlet Government Cut Inlet Management Plan – Florida Statutes Section 161.142, F.S. – • The Legislature finds it is in the public interest to replicate the natural drift of sand which is interrupted or altered by inlets to be replaced and for each level of government to undertake all reasonable efforts to maximize inlet sand bypassing to ensure that beach- quality sand is placed on adjacent eroding beaches. Such activities cannot make up for the historical sand deficits caused by inlets but shall be designed to balance the sediment budget of the inlet and adjacent beaches and extend the life of proximate beach- restoration projects so that periodic nourishment is needed less frequently. Inlet Management Plan • All FDEP Inlet Management Plans https://floridadep.gov/water/beaches- inlets-ports/content/strategic- planning-and-coordination#imp Bakers Haulover Inlet - History 1940 Year BHI modifications 1927 1925 The BHI was constructed along with two short rock rubble jetties. All protective structures along BHI were destroyed by a 1926 hurricane. Permits were issued for the reconstruction of BHI which provided 1927 for the construction of two sheet pile jetties. The integrity of the coastal structures (bulkheads and groins) was compromised due to corrosion and abrasion.
    [Show full text]
  • Impacts of Jetty Construction on the Wave Heights Off the Kiashahr Lagoon S
    Impacts of jetty construction on the wave heights off the Kiashahr lagoon S. A. Azarmsa,1∗ M. Esmaeili,2 and A. Karami Khaniki3 1Faculty of Marine Sciences, Tarbiat Modares University, Gisha, Tehran, Iran 2Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran 3Soil Conservation and Watershed Management Research Center, Tehran, Iran ∗Corresponding author: [email protected] Coastal managers and ecologists are confronted with tasks to estimate wave heights in the Kiashahr sea area, since hydrodynamic factors can profoundly impact this environment. In this study, wind data and an empirical wind wave predicting model were used to estimate deepwater wave characteristics in the Kiashahr sea area; while a numerical model was used to determine wave characteristics in shallow waters. Wave heights were also determined and compared at different stations before and after construction of 2 jetties at the lagoon mouth to evaluate their efficiency in wave height reduction. Results revealed that wave height is in the range of 0.8 to 1.2 m at Sefid Rud river mouth. Significant wave height reduction in the range of 0.15 to 1.2 m occurred at the entrance of the lagoon due to construction of the jetties. This attenuation of wave energy may result in some impacts on the ecosystem health of Kiashahr lagoon such as increased sedimentation, reduction in flushing rates, dumping of garbage and consequently, more pollution. Keywords: wind, Caspian Sea, Iran Introduction into a bay with broad entrance to the sea and exposed it to more energetic waves, similar to the situation Sustainable management of aquatic ecosystems in the 1950s.
    [Show full text]
  • Chapter 3 EM 1110-2-1100 HISTORY of COASTAL ENGINEERING (Part I) 30 April 2002
    Chapter 3 EM 1110-2-1100 HISTORY OF COASTAL ENGINEERING (Part I) 30 April 2002 Table of Contents Page I-3-1. Ancient World ............................................................ I-3-1 I-3-2. Pre-Roman Times ........................................................ I-3-1 I-3-3. Roman Times ............................................................ I-3-3 I-3-4. Modern Age .............................................................. I-3-4 I-3-5. Civil Engineer Era ........................................................ I-3-5 I-3-6. United States Army Corps of Engineers .................................... I-3-6 I-3-7. Coastal Engineering in the United States .................................. I-3-10 a. Nineteenth century projects ................................................ I-3-10 b. Nineteenth century coastal engineering ...................................... I-3-11 c. Early coastal development and shore protection ................................ I-3-12 d. Early 20th century beach development and the Engineering Advisory Board on Coastal Erosion ......................................................... I-3-13 e. American Shore and Beach Preservation Association ........................... I-3-13 f. The Board on Sand Movement and Beach Erosion .............................. I-3-15 g. The Beach Erosion Board ................................................. I-3-15 h. BEB focus on basic research ............................................... I-3-16 i. Dalecarlia reservation and World War II ....................................
    [Show full text]
  • Deconstructing a Jetty to Rectify the Downdrift Erosion
    Journal of Sustainability Science and Management eISSN: 2672-7226 Volume 15 Number 2, February 2020: 79-88 © Penerbit UMT DECONSTRUCTING A JETTY TO RECTIFY THE DOWNDRIFT EROSION CHERDVONG SAENGSUPAVANICH Faculty of International Maritime Studies, Kasetsart University, Sri Racha Campus, 199 Moo 6 Sukhumvit Rd., Tungsukla, Sri Racha, Chonburi, 20230, Thailand. *Corresponding author: [email protected] Abstract: A jetty is a coastal structure constructed across the surf zone to prevent sediment deposition at a river mouth. It creates updrift accumulation and downdrift erosion. Deconstructing the jetty may restore the situation but create another problem. This study used the Cha-am beach in Thailand to simulate future shoreline positions under different scenarios. The main tool used in the study was the software package LITPACK. The calibrated simulations showed that, if no action was taken, the updrift part of the beach would be widened by as much as 130 m in 25 years but the downdrift side of the jetty would experience severe coastal erosion. Deconstructing the jetty would alternate the outcome. The area where the erosion was foreseen along the downdrift shoreline would not occur anymore. The sediment once intercepted by the jetty would move to pass the inlet. However, the updrift shoreline would adjust its alignment, eroding existing houses and other buildings. While jetty deconstruction would restore the downdrift part of the beach, it would at the same time destroy some properties along the updrift section. Removing the jetty may experience great social resistance. Decision- makers should be equipped with adequate information and coastal engineering can provide some necessary inputs.
    [Show full text]
  • SUPPLEMENT Revised Final Environmental Assessment
    SUPPLEMENT To the Revised Final Environmental Assessment Columbia River at the Mouth, Oregon and Washington Rehabilitation of the Jetty System at the Mouth of the Columbia River Clatsop County, Oregon, and Pacific County, Washington May, 2013 Supplemental EA, South Jetty Foredune Augmentation Related to Rehabilitation of Jetty System at MCR Table of Contents: 1. Introduction .......................................................................................................................................... 1 2. Brief Description of Project History and Need ...................................................................................... 2 3. Revised Preferred Alternative ............................................................................................................... 5 3.1. Updated Details for South Jetty Foredune Augmentation ........................................................... 6 3.2. Updated Construction Access, Storage and Staging Areas ......................................................... 11 4. Affected Environment ......................................................................................................................... 14 4.1. Aquatic Resources ....................................................................................................................... 14 4.1.1. Surrounding Water Resources ............................................................................................ 14 4.1.2. Wetlands ............................................................................................................................
    [Show full text]