Hymenocallis, Sprekelia and Zephyranthes

Total Page:16

File Type:pdf, Size:1020Kb

Hymenocallis, Sprekelia and Zephyranthes ® Floriculture and Ornamental Biotechnology ©2012 Global Science Books Mexican Geophytes II. The Genera Hymenocallis, Sprekelia and Zephyranthes Ernesto Tapia-Campos1 • Jose Manuel Rodriguez-Dominguez1 • María de los Milagros Revuelta-Arreola1 • Jaap M. Van Tuyl2 • Rodrigo Barba-Gonzalez1* 1 Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. Biotecnología Vegetal, Av. Normalistas #800. Colinas de la Normal., Guadalajara Jalisco, C.P. 44270, Mexico 2 Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands Corresponding author : * [email protected]; [email protected] ABSTRACT Among hundreds of bulbous ornamental plants native to tropical and subtropical America, different genera from the Amaryllidaceae family such as Hymenocallis, Sprekelia and Zephyranthes present an enormous potential as ornamental crops. The genus Hymenocallis comprises over 60 species distributed from the north of Brazil to the south east of the United States; many of them are endemic to Mexico. The flowers are star shaped and white. The different species grow in a wide and contrasting diversity of habitats, near rivers and streams, on occasion completely submerged under water and sometimes in dry areas. The genus presents a complicated phylogeny, where in some cases it is difficult to distinguish species from hybrids. The genus Sprekelia is a monotypic genus native to Mexico; Sprekelia formosissima is cultivated as an ornamental pot plant in many countries. It presents solitary red flowers, their stems reaches up to 80 to 90 cm. The genus Zephyranthes comprises over 70 species distributed in tropical and subtropical America; different species are cultivated all over the world as an ornamental crop. The different species have beautiful flowers from white to yellow with various tints from lemon to sulphur and pink. In this review we will cover taxonomical, chromosomal and phenological aspects of these genera, with the aim of providing a reference of useful traits for breeding programs. _____________________________________________________________________________________________________________ Keywords: breeding, in vitro culture, ornamental, perspectives, taxonomy Abbreviations: BA, 6-benzyladenine; GA3, gibberellic acid; IBA, indole-3-butyric acid; ITS, internal transcribed spacer region; RFLP, restriction fragment polymorphism CONTENTS INTRODUCTION...................................................................................................................................................................................... 129 ORIGIN...................................................................................................................................................................................................... 130 HYMENOCALLIS ...................................................................................................................................................................................... 131 Biology and morphology....................................................................................................................................................................... 131 Hymenocallis ‘traditional’ classification................................................................................................................................................ 131 Hymenocallis propagation and culture................................................................................................................................................... 131 ZEPHYRANTHES ...................................................................................................................................................................................... 132 Biology and morphology....................................................................................................................................................................... 132 Zephyranthes propagation and culture................................................................................................................................................... 134 Zephyranthes reproduction .................................................................................................................................................................... 134 Zephyranthes breeding .......................................................................................................................................................................... 135 SPREKELIA ............................................................................................................................................................................................... 136 Biology and morphology....................................................................................................................................................................... 136 Sprekelia propagation and culture ......................................................................................................................................................... 136 Sprekelia breeding ................................................................................................................................................................................. 136 ALKALOIDS OF HYMENOCALLIS, SPREKELIA AND ZEPHYRANTHES ........................................................................................... 137 CONCLUSIONS........................................................................................................................................................................................ 137 ACKNOWLEDGEMENTS ....................................................................................................................................................................... 138 REFERENCES........................................................................................................................................................................................... 138 _____________________________________________________________________________________________________________ INTRODUCTION genera have been cultivated in some cases, for centuries; however, it is worthwhile to reconsider their potential as The Amaryllidaceae J. St.-Hil. is a cosmopolitan family ornamental plants and for their pharmaceutical importance (predominantly pantropical) of petaloid monocots (Meerow due to their alkaloid content. The aim of this work is to give et al. 1999). Its origin is western Gondwanaland in Africa, an insight to the origin of the genera, their culture and from where it radiated to Australia, Eurasia and America propagation techniques, and to focus attention on traits of (Huber 1969; Raven and Axelrod 1974; Meerow et al. ornamental importance of the Mexican species to set a base 1999). The genera Hymenocallis Salisb., Sprekelia Heister for their use in breeding programs. and Zephyranthes Herb. are components of terminal sub- clades whose higher diversity is present in Mexico. These Received: 26 January, 2011. Accepted: 20 December, 2012. Invited Review Floriculture and Ornamental Biotechnology 6 (Special Issue 1), 129-139 ©2012 Global Science Books Table 1 Mexican species of the genus Hymenocallis, their distribution in Mexico and some traits of ornamental interest. Species Distribution Traits of interest H. acutifolia (Herb. ex Sims) Sweet Wide distribution Narrow foliage, blooms from late summer through autumn H. araniflora T.M.Howard Sur Sinaloa, Nayarit Clusters of long-tubed, sweet-scented blooms, pale green to grayish foliage (Ogden 2007) H. astrostephana T.M.Howard Guerrero Costate leaves, two to five long-tubed flowers (Howard 2001) H. azteciana Traub. Jalisco, Nayarit, Zacatecas Spreading, long-stemmed or petiolated leaves with a satiny dusting of gray overlaying dark green. Small clusters of erect blooms (Ogden 2007) H. baumlii Ravenna Chiapas Erect green star-shaped leaves, ribbon-like flowers (Howard 2001) H. choretis Hemsl. C & SW. Mexico Large-cupped snowy blossoms, with orange pollen. Gray foliage (Ogden 2007) H. cleo Ravenna Chiapas Medium-sized white flowers, broad, glaucous, petiolated leaves (Howard 2001) H. clivorum Laferr Sonora Green stamens, long and thin tepals H. concinna Baker Jalisco Endangered species H. cordifolia Micheli Guerrero Heart-shaped petiolated leaves, umbels of small white flowers (Howard 2001) H. durangoensis T.M.Howard Durango Thick and short sepals. Blooms in early summer. Self-compatible. Endangered specie H. eucharidifolia Baker Guerrero, Oaxaca Broad, green hosta-like foliage. Snowy foliage held in up-facing groups of three or more H. galuca (Zucc.) M.Roem. C&SW Mexico Large-cupped upright snowy blossoms, with orange pollen with a ammonia or chlorine fragrance. Gray foliage (Ogden 2007) H. graminifolia Greenm Morelos Dwarf, glaucous leaves, fragrant flowers (Howard 2001) H. guerreroensis T.M.Howard Guerrero Endangered species H. harrisiana Herb C & SW Mexico Small upright flowers with good sized blooms H. howardii Bauml SW Mexico Small plant of glaucous foliage, blooms form mid-June through mid-July H. imperialis T.M.Howard San Luis Potosí, Hidalgo Wide, snowy petals. Blooms from late April and May. The bulbs are huge and the big leaves are spear-shaped. H. jaliscensis M.E.Jones Jalisco, Nayarit Big upright flowers (Borys et al. 2008) H. leavenworthii (Standl. & Michoacán Spreading long stemmed or petiolated leaves with a satiny
Recommended publications
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • Haemanthus Canaliculatus | Plantz Africa About:Reader?Url=
    Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus pza.sanbi.org Haemanthus canaliculatus | Plantz Africa Introduction In late summer or early autumn, after fires have swept through some of the swampy areas near the sea in the Hangklip area, you may be lucky enough to see the red paintbrushes of Haemanthus canaliculatus glowing brightly amongst the blackened remains of the vegetation. Description Description The bulbs are made up of a number of thick, fleshy, cream-coloured, overlapping, truncated bulb scales, arranged like a fan, with perennial fleshy roots. There are usually 2 (sometimes 1, 3 or 4) narrow smooth fleshy leaves up to 600 mm long, curved along 1 of 5 2016/12/14 03:51 PM Haemanthus canaliculatus | Plantz Africa about:reader?url=http://pza.sanbi.org/haemanthus-canaliculatus their length to form a channel. They are 5-27 mm wide, shiny green with reddish barred markings towards the base, especially on the lower surface. The smooth, thick, flattened, upright or curved flower stalks can be up to 200 mm long, 4-10 mm wide and are reddishpink to deep red, sometimes with deeper red spots especially near the base; 5-7 pointed, leathery bracts, called spathes, surround the 15-45 flowers clustered at the top of the stalk. The spathes and flowers are usually red but very occasionally may be pink. The flowers are topped with yellow anthers. The reddish berries are round and about 20 mm in diameter. Under natural conditions the flowering time is from February to March and the leaves usually appear after the flowers from May to December.
    [Show full text]
  • Boophone Disticha
    Micropropagation and pharmacological evaluation of Boophone disticha Lee Cheesman Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April 2013 COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCES DECLARATION 1 – PLAGIARISM I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research contained in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference section. Signed at………………………………....on the.....….. day of ……......……….2013 ______________________________ SIGNATURE i STUDENT DECLARATION Micropropagation and pharmacological evaluation of Boophone disticha I, LEE CHEESMAN Student Number: 203502173 declare that: 1. The research reported in this dissertation, except where otherwise indicated is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg.
    [Show full text]
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Rainlily, Zephyranthes Andhabranthus Spp
    ENH1151 Rainlily, Zephyranthes and Habranthus spp.: Low- Maintenance Flowering Bulbs for Florida Gardens1 Gary W. Knox2 What is a rainlily? Rainlily refers to any of about 70 species of Zephyranthes and Habranthus, all of which are flowering bulbs that share common names of rainlily, fairy lily, rainflower and zephyrlily. These small bulbs earned the name “rainlily” because they often flower within a few days after rainfall. From spring through fall, rainlily can produce flushes of star-shaped, trumpet-like flowers that are white, pink or yellow, depending on the species. Flowers of some new hybrids are in shades of peach, orange and red, and some have multi- colored flowers in striped or picotee patterns. Rainlily’s easy care, broad adaptability and beautiful, starry flowers make it ideal for gardens in Florida! Rainlily flowers in spring, summer or fall, depending on species and garden conditions. Each six-petalled, funnel- shaped flower is perched at the top of a stem that ranges in Figure 1. Atamasca rainlilies (Zephyranthes atamasca) in a home height from 2 inches to more than 12 inches. Zephyranthes garden. spp. have a single, upward-facing or slightly nodding flower Credits: Gary Knox, UF/IFAS on each stem, whereas Habranthus spp. flowers are held at Rainlily bulbs produce clumps of narrow, grass-like leaves an angle and occur in groups of two or three per stem. Each that range in length from a few inches to as long as 14 flower lasts just a day or two, depending on sunlight and inches. In the wild, rainlily bulbs adapt to seasonal dry temperature, but typically new flowers continually develop weather by losing leaves until rainfall resumes.
    [Show full text]
  • William Herbert (1778--1847) Scientist and Polymath, and His Contributions to Curtis's Botanical Magazine
    WILLIAM HERBERT (1778–1847) SCIENTIST AND POLYMATH, AND HIS CONTRIBUTIONS TO CURTIS’S BOTANICAL MAGAZINE Alison Rix ‘Hon. and Rev. W. Herbert, afterwards Dean of Manchester, in the fourth volume of the ‘Horticultural Transactions’, 1822, and in his work on the ‘Amaryllidaceae’ (1837, pp. 19, 339), declares that ‘horticultural experiments have established, beyond the possibility of refutation, that botanical species are only a higher and more permanent class of varieties’. He extends the same view to animals. The Dean believes that single species of each genus were created in an originally highly plastic condition, and that these have produced, chiefly by intercrossing, but likewise by variation, all our existing species’. [Preface to the third edition (1860) of On the Origin of Species,by Charles Darwin] The Hon. and Rev. William Herbert, often known as Dean Herbert, to whom Vol. 65 (1839) of Curtis’s Botanical Magazine was dedicated, was an exceptional polymath – a poet and classical scholar, linguist, reforming MP, clergyman – as well as amateur botanist and botanical artist. His best-known botanical work, illustrated with 48 of his own paintings, was the two volume work Amaryllidaceae, quoted above by Darwin. Although this extraordinary man counted botany as just one of his many interests, his output was prodigious; in addition to studying and breeding plants, such as Crocus, Gladiolus, Hippeastrum, Narcissus and Rhododendron, he also wrote and drew prolifically for journals such as Curtis’s Botanical Magazine and its rival publication, Edwards’s Botanical Register. In addition to Darwin, he corresponded with many other notable people, including Sir William Hooker and William Fox Talbot, and his letters paint a picture of a rather serious and industrious character.
    [Show full text]
  • Scaevola Taccada (Gaertn.) Roxb
    BioInvasions Records (2021) Volume 10, Issue 2: 425–435 CORRECTED PROOF Rapid Communication First record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) in southeastern Mexico Gonzalo Castillo-Campos1,*, José G. García-Franco2 and M. Luisa Martínez2 1Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa, Veracruz, 91073, México 2Red de Ecología Funcional, Instituto de Ecología, A.C. Xalapa, Veracruz, 91073, México Author e-mails: [email protected] (GCC), [email protected] (JGGF), [email protected] (MLM) *Corresponding author Citation: Castillo-Campos G, García- Franco JG, Martínez ML (2021) First Abstract record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) Scaevola taccada (Gaertn.) Roxb. is native of Asia and eastern Africa but has been in southeastern Mexico. BioInvasions introduced into the Americas as an ornamental urban plant. This paper reports, for Records 10(2): 425–435, https://doi.org/10. the first time, the presence of Scaevola taccada in natural environments from 3391/bir.2021.10.2.21 southeastern Mexico. Several populations of S. taccada were identified during a Received: 23 July 2020 botanical survey of the coastal dunes of the Cozumel Island Biosphere Reserve Accepted: 22 October 2020 (State of Quintana Roo, Mexico) aimed at recording the most common plant Published: 22 January 2021 species. Scaevola taccada is considered as an invasive species of coastal areas in this region. Evidence of its invasiveness is suggested by the fact that populations Handling editor: Oliver Pescott consisting of individuals of different size classes are found distributed throughout Thematic editor: Stelios Katsanevakis the island. Furthermore, they appear to belong to different generations since we Copyright: © Castillo-Campos et al.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Generic Classification of Amaryllidaceae Tribe Hippeastreae Nicolás García,1 Alan W
    TAXON 2019 García & al. • Genera of Hippeastreae SYSTEMATICS AND PHYLOGENY Generic classification of Amaryllidaceae tribe Hippeastreae Nicolás García,1 Alan W. Meerow,2 Silvia Arroyo-Leuenberger,3 Renata S. Oliveira,4 Julie H. Dutilh,4 Pamela S. Soltis5 & Walter S. Judd5 1 Herbario EIF & Laboratorio de Sistemática y Evolución de Plantas, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Av. Santa Rosa 11315, La Pintana, Santiago, Chile 2 USDA-ARS-SHRS, National Germplasm Repository, 13601 Old Cutler Rd., Miami, Florida 33158, U.S.A. 3 Instituto de Botánica Darwinion, Labardén 200, CC 22, B1642HYD, San Isidro, Buenos Aires, Argentina 4 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Postal Code 6109, 13083-970 Campinas, SP, Brazil 5 Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, U.S.A. Address for correspondence: Nicolás García, [email protected] DOI https://doi.org/10.1002/tax.12062 Abstract A robust generic classification for Amaryllidaceae has remained elusive mainly due to the lack of unequivocal diagnostic characters, a consequence of highly canalized variation and a deeply reticulated evolutionary history. A consensus classification is pro- posed here, based on recent molecular phylogenetic studies, morphological and cytogenetic variation, and accounting for secondary criteria of classification, such as nomenclatural stability. Using the latest sutribal classification of Hippeastreae (Hippeastrinae and Traubiinae) as a foundation, we propose the recognition of six genera, namely Eremolirion gen. nov., Hippeastrum, Phycella s.l., Rhodolirium s.str., Traubia, and Zephyranthes s.l. A subgeneric classification is suggested for Hippeastrum and Zephyranthes to denote putative subclades.
    [Show full text]
  • Relative Importance and Knowledge Distribution of Medicinal Plants in a Kichwa Community in the Ecuadorian Amazon
    Research Communications Relative Importance and Knowledge Distribution of Medicinal Plants in a Kichwa Community in the Ecuadorian Amazon Brian J. Doyle1*, Caroline M. Asiala1, and Diana M. Fernández2 1Department of Biology and Department of Biochemistry, Alma College, Alma, MI, USA. 2National Institute of Biodiversity, National Herbarium of Ecuador, Quito, Ecuador. *[email protected] Abstract Traditional knowledge, such as knowledge of the use of plants as medicine, influences how indigenous people manage forest resources. Gender and age-associated differences in traditional knowledge may impact forest resource management because of the traditional division of labor. We interviewed 18 men and 18 women between 9 and 74 years old in San José de Payamino, an indigenous community of the Kichwa ethnicity in the Ecuadorian Amazon, to determine if there are gender or age-associated differences in medicinal plant knowledge among the Payamino people and to identify the most important species from a sample of medicinal plants. Individuals were interviewed using a tablet that displayed images of 34 plants, which had been cited by traditional healers in the community. Quantitative analysis provided insight into the relative importance of plants in the sample as well as the distribution of medicinal plant knowledge among members of the community. The most important plants were Tradescantia zanonia and Monolena primuliflora. These plants should be considered candidates for further investigation. There was a positive correlation between age and knowledge of medicinal plants, but no significant difference between genders. Our results suggest that an interview method that relies on digital images can reveal differences in the importance of medicinal plants as well as provide insight into the distribution of traditional medical knowledge.
    [Show full text]
  • TELOPEA Publication Date: 13 October 1983 Til
    Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance.
    [Show full text]