Analyses and Optimization Methods of Legged Robots: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DESIGN and DEVELOPMENT of SIX-LEGGED ROBOT for MINE RESCUE SYSTEM 1, * 2 Katakam Prashanth , Dr
Science, Technology and Development ISSN : 0950-0707 DESIGN AND DEVELOPMENT OF SIX-LEGGED ROBOT FOR MINE RESCUE SYSTEM 1, * 2 Katakam Prashanth , Dr. K. Ankamma * Correspondence Author 1. Mr. Katakam Prashanth, 2nd M.Tech Student, Department of Mechanical Engg., MGIT, Gandipet, Hyderabad-75, India, [email protected] 2. Dr. K.Ankamma, Professor, Department of Mechanical Engg., MGIT, Gandipet, Hyderabad-75,email: [email protected] ABSTRACT: Underground mining is best with numerous problems such as ground movement (fall of roof/sides), inundation, air blast, etc.; apart from gas explosions and dust explosions that are restricted to coal mines. Whatever may be the cause and type of accident or the extent of damage caused, it is a horrendous task for the rescue team to reach the trapped miners. The accident/irrespirable zone contains increased levels of harmful gases like carbon dioxide and carbon monoxide and explosive gases like methane apart from a deficiency of Oxygen. The entire gallery or roadway is filled with dust and smoke, or water in case of inundation, hindering the visibility of rescue personnel. Thus, it is not an ideal situation for the rescue team to perform the operations. The first few hours after the disaster are the critical moments that could be the difference between life and death of the trapped miners. Hence, the ideal solution in such cases would be to deploy a wireless 6-legged robot equipped with various gas sensors, ultrasonic sensors, PIR sensor and vision system to aid visibility even in extremely low light conditions. This project reviews some notable examples from the past and highlights designing and developing a 6-legged robot meeting such requirements for mine rescue robots along with some limitations encountered in the design of such robots. -
Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet
robotics Article Design and Implementation of a Quadruped Amphibious Robot Using Duck Feet Saad Bin Abul Kashem 1,*, Shariq Jawed 2 , Jubaer Ahmed 2 and Uvais Qidwai 3 1 Faculty of Robotics and Advanced Computing, Qatar Armed Forces—Academic Bridge Program, Qatar Foundation, 24404 Doha, Qatar 2 Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350 Sarawak, Malaysia 3 Faculty of Computer Engineering Signal and Image Processing Qatar University, 24404 Doha, Qatar * Correspondence: [email protected] Received: 18 April 2019; Accepted: 27 August 2019; Published: 5 September 2019 Abstract: Roaming complexity in terrains and unexpected environments pose significant difficulties in robotic exploration of an area. In a broader sense, robots have to face two common tasks during exploration, namely, walking on the drylands and swimming through the water. This research aims to design and develop an amphibious robot, which incorporates a webbed duck feet design to walk on different terrains, swim in the water, and tackle obstructions on its way. The designed robot is compact, easy to use, and also has the abilities to work autonomously. Such a mechanism is implemented by designing a novel robotic webbed foot consisting of two hinged plates. Because of the design, the webbed feet are able to open and close with the help of water pressure. Klann linkages have been used to convert rotational motion to walking and swimming for the animal’s gait. Because of its amphibian nature, the designed robot can be used for exploring tight caves, closed spaces, and moving on uneven challenging terrains such as sand, mud, or water. -
© 2020 Alexandra Q. Nilles DESIGNING BOUNDARY INTERACTIONS for SIMPLE MOBILE ROBOTS
© 2020 Alexandra Q. Nilles DESIGNING BOUNDARY INTERACTIONS FOR SIMPLE MOBILE ROBOTS BY ALEXANDRA Q. NILLES DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Doctoral Committee: Professor Steven M. LaValle, Chair Professor Nancy M. Amato Professor Sayan Mitra Professor Todd D. Murphey, Northwestern University Abstract Mobile robots are becoming increasingly common for applications such as logistics and delivery. While most research for mobile robots focuses on generating collision-free paths, however, an environment may be so crowded with obstacles that allowing contact with environment boundaries makes our robot more efficient or our plans more robust. The robot may be so small or in a remote environment such that traditional sensing and communication is impossible, and contact with boundaries can help reduce uncertainty in the robot's state while navigating. These novel scenarios call for novel system designs, and novel system design tools. To address this gap, this thesis presents a general approach to modelling and planning over interactions between a robot and boundaries of its environment, and presents prototypes or simulations of such systems for solving high-level tasks such as object manipulation. One major contribution of this thesis is the derivation of necessary and sufficient conditions of stable, periodic trajectories for \bouncing robots," a particular model of point robots that move in straight lines between boundary interactions. Another major contribution is the description and implementation of an exact geometric planner for bouncing robots. We demonstrate the planner on traditional trajectory generation from start to goal states, as well as how to specify and generate stable periodic trajectories. -
SERVO MAGAZINE TEAM DARE’S ROBOT BAND • RADIO for ROBOTS • BUILDING MAXWELL June 2012 Full Page Full Page.Qxd 5/7/2012 6:41 PM Page 2
0 0 06 . 7 4 $ A D A N A C 0 5 . 5 $ 71486 02422 . $5.50US $7.00CAN S . 0 U CoverNews_Layout 1 5/9/2012 3:21 PM Page 1 Vol. 10 No. 6 SERVO MAGAZINE TEAM DARE’S ROBOT BAND • RADIO FOR ROBOTS • BUILDING MAXWELL June 2012 Full Page_Full Page.qxd 5/7/2012 6:41 PM Page 2 HS-430BH HS-5585MH HS-5685MH HS-7245MH DELUXE BALL BEARING HV CORELESS METAL GEAR HIGH TORQUE HIGH TORQUE CORELESS MINI 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts Torque: 57 oz-in 69 oz-in Torque: 194 oz-in 236 oz-in Torque: 157 oz-in 179 oz-in Torque: 72 oz-in 89 oz-in Speed: 0.16 sec/60° 0.14 sec/60° Speed: 0.17 sec/60° 0.14 sec/60° Speed: 0.20 sec/60° 0.17 sec/60° Speed: 0.13 sec/60° 0.11 sec/60° HS-7950THHS-7950TH HS-7955TG HS-M7990TH HS-5646WP ULTRA TORQUE CORELESS HIGH TORQUE CORELESS MEGA TORQUE HV MAGNETIC ENCODER WATERPROOF HIGH TORQUE 6.0 Volts 7.4 Volts 4.8 Volts 6.0 Volts 6.0 Volts 7.4 Volts 6.0 Volts 7.4 Volts Torque: 403 oz-in 486 oz-in Torque: 250 oz-in 333 oz-in Torque: 500 oz-in 611 oz-in Torque: 157 oz-in 179 oz-in Speed: 0.17 sec/60° 0.14 sec/60° Speed: 0.19 sec/60° 0.15 sec/60° Speed: 0.21 sec/60° 0.17 sec/60° Speed: 0.20 sec/60° 0.18 sec/60° DIY Projects: Programmable Controllers: Wild Thumper-Based Robot Wixel and Wixel Shield #1702: Premium Jumper #1336: Wixel programmable Wire Assortment M-M 6" microcontroller module with #1372: Pololu Simple Motor integrated USB and a 2.4 Controller 18v7 GHz radio. -
Jaime Bobadilla Molina.Pdf
c 2013 Jaime Leonardo Bobadilla Molina MINIMALIST MULTI-AGENT FILTERING AND GUIDANCE BY JAIME LEONARDO BOBADILLA MOLINA DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Doctoral Committee: Associate Professor Samuel T. King, Chair Professor Steven M. LaValle, Director of Research Professor Tarek Abdelzaher Assistant Professor Dylan A. Shell, Texas A&M University ABSTRACT Advances in technology have allowed robots to be equipped with powerful sensors, complex actuators, computers with high processing capabilities, and high bandwidth communication links. This trend has enabled the development of sophisticated algorithms and systems to solve tasks such as navigation, patrolling, coverage, tracking, and counting. However, these systems have to deal with issues such as dynamical system identification, sensor calibration, and computation of powerful filters for state-feedback policies. This thesis presents novel techniques for tackling the above mentioned tasks. Our methods differ from traditional approaches since they do not require system identification, geometric map building, or state estimation. Instead, we follow a minimalist approach that takes advantage of the wild motions of bodies in their environment. The bodies move within regions connected by gates that enforce specific flows or provide simple sensor feedback. More specifically, five types of gates are proposed: 1) static gates, in which the flow direction of bodies cannot be changed during execution; 2) pliant gates, whose flow directions can be changed by gate-body collisions; 3) controllable gates, whose flow directions can be changed by powered actuators and sensor feedback; 4) virtual gates, in which the flow is affected by robot sensing and do not represent a physical obstruction; and 5) directional detection gates that do not change the flow of bodies, but simply detect bodies’ transitions from region to region. -
Operational Requirements for Soldier-Robot Teaming
CAN UNCLASSIFIED Operational Requirements for Soldier-Robot Teaming Simon Banbury Kevin Heffner Hugh Liu Serge Pelletier Calian Ltd. Prepared by: Calian Ltd. 770 Palladium Drive Ottawa, Canada K2V 1C8 Contractor Document Number: DND-1144.1.1-01 PSPC Contract Number: W7719-185397/001/TOR Technical Authority: Ming Hou, DRDC – Toronto Research Centre Contractor's date of publication: August 2020 The body of this CAN UNCLASSIFIED document does not contain the required security banners according to DND security standards. However, it must be treated as CAN UNCLASSIFIED and protected appropriately based on the terms and conditions specified on the covering page. Defence Research and Development Canada Contract Report DRDC-RDDC-2020-C172 November 2020 CAN UNCLASSIFIED CAN UNCLASSIFIED IMPORTANT INFORMATIVE STATEMENTS This document was reviewed for Controlled Goods by Defence Research and Development Canada using the Schedule to the Defence Production Act. Disclaimer: This document is not published by the Editorial Office of Defence Research and Development Canada, an agency of the Department of National Defence of Canada but is to be catalogued in the Canadian Defence Information System (CANDIS), the national repository for Defence S&T documents. Her Majesty the Queen in Right of Canada (Department of National Defence) makes no representations or warranties, expressed or implied, of any kind whatsoever, and assumes no liability for the accuracy, reliability, completeness, currency or usefulness of any information, product, process or material included in this document. Nothing in this document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so using it or relying on it. -
Unmanned Vehicle Systems & Operations on Air, Sea, Land
Kansas State University Libraries New Prairie Press NPP eBooks Monographs 10-2-2020 Unmanned Vehicle Systems & Operations on Air, Sea, Land Randall K. Nichols Kansas State University Hans. C. Mumm Wayne D. Lonstein Julie J.C.H Ryan Candice M. Carter See next page for additional authors Follow this and additional works at: https://newprairiepress.org/ebooks Part of the Aerospace Engineering Commons, Aviation and Space Education Commons, Higher Education Commons, and the Other Engineering Commons This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. Recommended Citation Nichols, Randall K.; Mumm, Hans. C.; Lonstein, Wayne D.; Ryan, Julie J.C.H; Carter, Candice M.; Hood, John-Paul; Shay, Jeremy S.; Mai, Randall W.; and Jackson, Mark J., "Unmanned Vehicle Systems & Operations on Air, Sea, Land" (2020). NPP eBooks. 35. https://newprairiepress.org/ebooks/35 This Book is brought to you for free and open access by the Monographs at New Prairie Press. It has been accepted for inclusion in NPP eBooks by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Authors Randall K. Nichols, Hans. C. Mumm, Wayne D. Lonstein, Julie J.C.H Ryan, Candice M. Carter, John-Paul Hood, Jeremy S. Shay, Randall W. Mai, and Mark J. Jackson This book is available at New Prairie Press: https://newprairiepress.org/ebooks/35 UNMANNED VEHICLE SYSTEMS & OPERATIONS ON AIR, SEA, LAND UNMANNED VEHICLE SYSTEMS & OPERATIONS ON AIR, SEA, LAND PROFESSOR RANDALL K. NICHOLS, JULIE RYAN, HANS MUMM, WAYNE LONSTEIN, CANDICE CARTER, JEREMY SHAY, RANDALL MAI, JOHN P HOOD, AND MARK JACKSON NEW PRAIRIE PRESS MANHATTAN, KS Copyright © 2020 Randall K. -
Autonomous Horizons: the Way Forward Is a Product of the Office Air University Press 600 Chennault Circle, Bldg 1405 of the US Air Force Chief Scientist (AF/ST)
Autonomous Horizons The Way Forward A vision for Air Force senior leaders of the potential for autonomous systems, and a general framework for the science and technology community to advance the state of the art Dr. Greg L. Zacharias Chief Scientist of the United States Air Force 2015–2018 The second volume in a series introduced by: Autonomous Horizons: Autonomy in the Air Force – A Path to the Future, Volume 1: Human Autonomy Teaming (AF/ST TR 15-01) March 2019 Air University Press Curtis E. LeMay Center for Doctrine Development and Education Maxwell AFB, Alabama Chief of Staff, US Air Force Library of Congress Cataloging-in-Publication Data Gen David L. Goldfein Names: Zacharias, Greg, author. | Air University (U.S.). Press, publisher. Commander, Air Education and Training | United States. Department of Defense. United States Air Force. Command Title: Autonomous horizons : the way forward / by Dr. Greg L. Zacha- Lt Gen Steven L. Kwast rias. Description: First edition. | Maxwell Air Force Base, AL : AU Press, 2019. “Chief Scientist for the United States Air Force.” | Commander and President, Air University Lt Gen Anthony J. Cotton “January 2019.” |Includes bibliographical references. Identifiers: LCCN 2018061682 | ISBN 9781585662876 Commander, Curtis E. LeMay Center for Subjects: LCSH: Aeronautics, Military—Research—United States. | Doctrine Development and Education United States. Air Force—Automation. | Artificial intelligence— Maj Gen Michael D. Rothstein Military applications—United States. | Intelligent control systems. | Autonomic -
Paice MONITOR Market, Technology, Innovation Imprint
PAiCE MONITOR Market, Technology, Innovation Imprint Published by PAiCE Scientific Assistance iit – Institut für Innovation und Technik in der VDI / VDE Innovation + Technik GmbH Peter Gabriel Steinplatz 1 10623 Berlin [email protected] www.paice.de Authors Birgit Buchholz | 030 310078-164 | [email protected] Peter Gabriel | 030 310078-206 | [email protected] Dr. Tom Kraus | 030 310078-5615 | [email protected] Dr. Matthias Künzel | 030 310078-286 | [email protected] Stephan Richter | 030 310078-5407 | [email protected] Uwe Seidel | 030 310078-181 | [email protected] Dr. Inessa Seifert | 030 310078-370 | [email protected] Dr. Steffen Wischmann | 030 310078-147 | [email protected] Design and layout LoeschHundLiepold Kommunikation GmbH Hauptstraße 28 | 10827 Berlin [email protected] Status April 2018 PAiCE MONITOR Market, Technology, Innovation 4 PAiCE MONITOR Inhalt 1 Introduction . 6 2 The Robotics cluster – Service robotics for industry, services and end customers . .. 8 2.1 Market analysis .......................................................8 2.2 Start-up environment ..................................................10 2.3 State of the art .......................................................12 2.4 R&D developments ...................................................14 2.5 Projects of the Robotics cluster ..........................................17 BakeR – Modular system for cost-efficient, modular cleaning robots ................18 QBIIK – Autonomous, learning logistics robot with gripper system -
Gait Optimization for Multi-Legged Walking Robots, with Application to a Lunar Hexapod
GAIT OPTIMIZATION FOR MULTI-LEGGED WALKING ROBOTS, WITH APPLICATION TO A LUNAR HEXAPOD A DISSERTATION SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Daniel Ch´avez-Clemente January 2011 © 2011 by Daniel Chavez Clemente. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/px063cb7934 Includes supplemental files: 1. This video shows a simulation of the zero-interaction gait optimization for the ATHLETE robot. (DanielChavezSwaySimulation.wmv) ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Stephen Rock, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. J Gerdes I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Jean-Claude Latombe I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Terrence Fong Approved for the Stanford University Committee on Graduate Studies. -
Design and Integration of a Novel Robotic Leg Mechanism for Dynamic Locomotion at High-Speeds
Design and Integration of a Novel Robotic Leg Mechanism for Dynamic Locomotion at High-Speeds Vinaykarthik R. Kamidi Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Masters of Science in Mechanical Engineering Pinhas Ben-Tzvi, Chair Alexander Leonessa Tomonari Furukawa December 19, 2017 Blacksburg, Virginia Keywords: Legged Locomotion , Mechanism & Design Copyright 2017, Vinaykarthik R. Kamidi Design and Integration of a Novel Robotic Leg Mechanism for Dynamic Locomotion at High-Speeds Vinaykarthik R. Kamidi ABSTRACT Existing state-of-the-art legged robots often require complex mechanisms with multi-level controllers and computationally expensive algorithms. Part of this is owed to the multiple degrees of freedom (DOFs) these intricate mechanisms possess and the other is a result of the complex nature of dynamic legged locomotion. The underlying dynamics of this class of non-linear systems must be addressed in order to develop systems that perform natural human/animal-like locomotion. However, there are no stringent rules for the number of DOFs in a system; this is merely a matter of the locomotion requirements of the system. In general, most systems designed for dynamic locomotion consist of multiple actuators per leg to address the balance and locomotion tasks simultaneously. In contrast, this research hypothesizes the decoupling of locomotion and balance by omitting the DOFs whose primary purpose is dynamic disturbance rejection to enable a far simplified mechanical design for the legged system. This thesis presents a novel single DOF mechanism that is topologically arranged to execute a trajectory conducive to dynamic locomotive gaits. -
Design and Synthesis of Mechanical Systems with Coupled Units Yang Zhang
Design and synthesis of mechanical systems with coupled units Yang Zhang To cite this version: Yang Zhang. Design and synthesis of mechanical systems with coupled units. Mechanical engineering [physics.class-ph]. INSA de Rennes, 2019. English. NNT : 2019ISAR0004. tel-02307221 HAL Id: tel-02307221 https://tel.archives-ouvertes.fr/tel-02307221 Submitted on 7 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’INSA RENNES COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 602 Sciences pour l'Ingénieur Spécialité : « Génie Mécanique » Par « Yang ZHANG » « DESIGN AND SYNTHESIS OF MECHANICAL SYSTEMS WITH COUPLED UNITS » Thèse présentée et soutenue à Rennes, le 19.04.2019 Unité de recherche : LS2N Thèse N° : 19ISAR 06 / D19 - 06 Rapporteurs avant soutenance : Composition du Jury : BEN OUEZDOU Féthi WENGER Philippe Professeur des Universités, UVSQ, Versailles Directeur de Recherche CNRS, LS2N Nantes / Président DELALEAU Emmanuel BEN OUEZDOU Féthi Professeur des Universités, ENIB, Brest Professeur des Universités, UVSQ, Versailles