<<

UNIVERSITY OF KANSAS MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY U: NO. 70

^. A f^\/A c? r-> Herp L 69 F553 981

Sexual Size Differences in

By Henry S. Fitch

UNIVERSITY OF KANSAS LAWRENCE 1981 \Aerp.

UNIVERSITY OF KANSAS PUBLICATIONS MUSEUM OF NATURAL HISTORY

The University of Kansas Publications, Museum of Natural History, beginning with volume 1 in 1946, was discontinued with volume 20 in 1971. Shorter research papers formerly published in the above series are now published as Occasional Papers, Museum of Natural History. The Miscellaneous PubHcations, Museum of Natural History, began with number 1 in 1946. Longer research papers are pub- lished in that series. Monographs of the Museum of Natural History were initiated in 1970. All manuscripts are subjected to critical review by intra- and extramural

specialists; final acceptance is at the discretion of the Director.

Institutional libraries interested in exchanging publications may obtain the Occa- sional Papers and Miscellaneous Publications by addressing the Exchange Librarian, University of Kansas Library, Lawrence, Kansas 66045. Individuals may purchase separate numbers of all series. Prices for all publications of the Museum may be obtained from the PubHcations Secretary, Museum of Natural History, University of Kansas, Lawrence, Kansas 66045. The University of Kansas Museum of Natural History

Miscellaneous Publication No. 70

February 27, 1981

Sexual Size Differences in Reptiles

By

Henry S. Fitch

Museum of Natural History and Department of Systematics and Ecology University of Kansas Lawrence, Kansas 66045

I (|;l;/.l;Y

',ii!.,(Uil/,l','/Ofl^ ^'^ ' ::M/liUM)0' .1'/'

University of Kansas Lawrence 1981 ,FB53

University of Kansas Publications, Museum of Natural History

Editor: E.O.Wiley Managing Editor: Joseph T. Collins

Miscellaneous Publication No. 70 pp. 1-72; 9 figures

Published February 27, 1981

Museum of Natural History University of Kansas Lawrence, Kansas 66045 U.S.A.

Printed by University of Kansas Printing Service Lawrence, Kansas CONTENTS

INTRODUCTION 1

ACKNOWLEDGEMENTS 2

METHODS AND MATERIALS 2

RESULTS 5

Ontogenetic Change 6

Geographic Variation 7

Annotated Systematic List 11

Testudines 11

Squamata : Sauria 13

Squamata : Serpentes 21

Crocodyha 31

DISCUSSION 32

LITERATURE CITED 42

APPENDIX I 53

APPENDIX II 67

)

INTRODUCTION

The kinds of vertebrates that have Mammalian groups that consistently males and females of just the same aver- have females larger include vespertilio- age size are a minority. More often one nid , rabbits (leporids), three families sex or the other is larger. There are of baleen whales, lobodontine seals, and varying degrees of size difference, with cephalophine and neotragine antelopes. a relatively large number of kinds hav- These diverse groups seem to have no ing only slight sexual differences and common traits such as polyandry, relatively few kinds having major differ- strongly developed female aggression, ences between the sexes. The present development of female weapons, or fe- study was undertaken to clarify these male dominance or matriarchy, that relationships in reptiles. would account for the larger size of Sexual size differences are better females. known in other groups of vertebrates Presumably the mean adult size of than in reptiles. In fishes and amphib- each and the size relationships ians females are usually larger than of its sexes are the products of a com- males, but there are noteworthy excep- plex of selective pressures that change tions. In both and mammals males through time. Optimum adjustment to are usually larger than females. In birds available food, shelter, and other en- the most outstanding exceptions are the vironmental factors is involved. Some raptors, both Falconiformes and Strigi- selective factors that might cause one formes, in which females are larger in sex or both sexes to deviate from modal varying degrees (Hill, 1944; Amadon, adult size are: 1) need for the male to 1959). However, those raptorial birds dominate potential mates and/or rivals; that are mainly carrion-eaters or insecti- 2) need for the female to alter her re- vores tend to have similar sized sexes, productive strategy; 3) need for the spe- and the size difference is greatest in those cies to reduce intraspecific (intersexual) kinds that take relatively large prey. In competition for food and perhaps for these predators the female takes larger other resources. Each species, in its kinds of prey, on the average and as unique ecological niche, has presumably a result the pair jointly occupying a been influenced by its own peculiar set territory, utilizes a wider range of prey of selective pressures. which facilitates the securing of suffi- The present study is a preliminary cient food, particularly during the critical attempt to show general trends of sexual period when nestlings are being fed. size differences in living species of the

In accipitrine hawks Reynolds ( 1972 class Reptilia, and to determine causes showed that the small male provides and correlations for them. Most previous prey for the female during incubation studies (e.g., Klauber, 1943; Shine, and for the nestlings during the early 1978b) have not undertaken to show the stages of their growth, allowing the fe- amount of sexual size difference, but male to spend her time at the nest, pro- have merely stated that one sex or the tecting the brood against extremes of other was the larger. No survey for the weather and predators; in the late stages group as a whole has been made hereto- of nestling growth, when the nestlings' fore, but a number of authors have in- need for food is maximal, the female is dicated sexual size differences in indi- active in hunting, and provides relatively vidual species. In the iguanid large prey items. genera Ariolis and Sceloporus I deter- In mammals 84 species of 12 orders mined sexual size differences for a large and about 30 families are known to have number of species (Fitch, 1976, 1978) females larger than males (Ralls, 1976). and indicated various ecological factors MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY that affected them; Schoener (1970) and Hidalgo, Tsutomu Hikida, John B. Iver- Schoener and Schoener (1971a, 1971b) son, D. R. Jackson and R. Franz, Michael Hkewise determined sexual size relation- V. Plummer and D. B. Farrar. Alan E. ships in many species of Antillean Anolis. Leviton kindly advised me concerning However, my present study is a prelimi- the correct names of various Asiatic nary one because all figures obtained species. W. E. Duellman kindly made are in need of revision and/or refine- available his measurements of Ecua- ment. Some data are based on inade- dorian and , including sub- quately small samples. Literature rec- stantial series of many species from ords are sometimes based upon different Santa Cecilia and other localities in kinds of data, hence widely disparate the Amazon Basin. These are indi- figures have been obtained for the same cated in Appendix I by the abbrevia- kind of in a few instances. As tion "WED ms." data have accumulated, it has become evident that the sexual size difference of METHODS AND MATERIALS a species is subject to variation in time Data pertaining to sexual size differ- and space, and perhaps cannot be rep- ences collected during the resented adequately by a single figure. were course of field studies of several dozen local ACKNOWLEDGMENTS populations, in Kansas, Mexico and Costa Rica, and by examining museum The data that are the basis for this specimens in the University of Kansas report were accumulated in the course Museum of Natural History, the Univer- of field work and museum studies over sity of California Museum of Vertebrate a 30-year period. W. Frank Blair (Uni- Zoology, the American Museum of Nat- versity of Texas, Texas Natural History ural History and the University of Texas Collection), Charles M. Bogert (Ameri- Natural History Museum. Also, figures can Museum of Natural History), W. E. for many species were obtained from Duellman (University of Kansas, Mu- published literature. Most publications seum of Natural History), and Robert C. contained pertinent information on only Stebbins (University of California, Mu- one or a few species but some had rela- seum of Vertebrate Zoology) kindly per- ti\'ely large amounts of information. mitted examination of specimens in the Much information about African snakes collections under their care. Many per- was obtained from Laurent (1956, mostly sons assisted me in capturing the maxima), FitzSimons (1962, maxima measured alive in the field, and in other only), and Pitman (1974, maxima only). ways; special thanks are due to Anthony Likewise M. Smith (1943) presented A. Echelle, Alice Fitch Echelle, Chester much information about Indian snakes W. Fitch, David C Fitch, Virginia R. (maxima only) as did Wright and Wright Fitch, Robert R. Fleet and Robert W. (1957) for North American species (max- Henderson. My wife, Virginia R. Fitch, ima and minima). Useful papers on en- also helped me in various stages of gath- tire herpetofaunas were those of Fuhn ering and analyzing the data and prepar- and Vancea (1961) for Romania (means), ing the manuscript. Richard Shine shared Dixon and Soini (1975 and 1977) for with me the early planning of the study. Amazonian (maxima and minima), Richard A. Seigel kindly contributed Duellman (1978) for Amazonian Ecuador unpublished data concerning sizes in and Hoogmoed (1973) for Surinam Malaclemys, Lawrence E. Hunt likewise (means for some). Two exceptionally contributed measurements for two kinds useful papers were those of Kopstein of Anniella. The following authors gen- (1941) on Malayan snakes and Schwaner

erously made available material from ( 1980 ) on Samoan skinks and geckos, their unpublished manuscripts: Hugo both providing large series of individual SEXUAL SIZE DIFFERENCES IN REPTILES measurements for many species. Ernst Differences between the sexes in specific and Barbour (1972) provided the source gravity and in bodily proportions, which of much information on turtles. Infor- might affect the accuracy of relative mation on specific groups of reptiles was weight calculations based on linear obtained from the works of Blanchard measurements, are probably of minor (1921) on king snakes (with individual significance in most instances. Rela- measurements), Dixon and Huey (1970) tively few authors have recorded actual on South American geckos of the weights for reptiles, but such data are PhyUodactyhis (means), and Klauber highly desirable. (1937) on rattlesnakes (means) and espe- Determining the lower limits of adult cially Schoener (1970) and Schoener and size was critical. In females, pregnancy Schoener (1971a and 1971b) on West or production of yolked follicles was Indian anoles (means). considered adequate proof of sexual ma- Male and female size was compared turity. Likewise in males production of in the species studied by averaging all sperm was a valid criterion. However, the adult measurements available for in practice it was often not possible to each sex. For snakes, lizards and croco- check live animals or museum specimens dilians the measurements used were for eggs or sperm. Instead, the develop- those of snout-to-vent (S-V) in nearly all ment of various secondary sexual char- instances, but a few figures from the acters were relied upon. Also, the maxi- literature were based on total lengths in- mum size for each sex and the size dis- cluding tail. Tails are relatively longer tribution of a series were taken into in male reptiles than in females, so in- account in deciding upon the minimum clusion of the tail measurement would size to be included as adults. Inasmuch increase the apparent sexual size differ- as small (younger) adults were usually ence in kinds having relatively large much more numerous than large (older) males but would reduce or nullify it in adults whose cohorts had been reduced kinds having relatively large females. by normal mortality factors, the curve Many authors indicated total lengths for for each series tended to be skewed, individual specimens, and the ratio of with mean nearer the lower end. Even tail length to total length. In such in- a small change in the minimum size in- stances I calculated snout-vent length cluded might have had important effect for each specimen by subtracting tail on the mean. length, assuming its tail ratio was the The following abbreviations have same as the mean for the series, but been used: doubtless with loss of precision. Some SSD = sexual size difference authors showed the lengths S-V of in- = female-to-male ratio dividuals or classes in histograms with- FMR

out presenting actual figures; I undertook The latter was the linear measurement to convert data from these graphs to the of snout-vent length, or shell length al- original figures. In turtles the length ways expressed as a per cent; for ex- measurements used were those of the ample male S-V = 350 mm, female S-V carapace for most species and those of = 400 mm, FMR = 400/350 = 114; or, the plastron for some others. as a second example, male S-V = 400 Females of different species mm, female S-V = 360 mm, FMR = 360/ investigated ranged from about % to 2^2 400 = 90. The figure for FMR has in all times mean male length. Since bulk instances been rounded to the nearest increases as the cube of linear dimen- whole number. sions, it is implied that females weighed Under Results such figures, based on from about one-fourth to about 15 times averages for series of adult males and as much as their male counterparts. females, are presented for many species. MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

These figures, obtained from a variety of sources, mostly from published litera- ture, represent four degrees of reliability. The most reliable are those figures based on the means of large statistical series (sometimes several hundred). Such rec- ords are distinguished in the lists by having both the name of the species and the figure representing its FMR set in bold face. Less reliable are figures based on means from fewer than ten measure- ments for either sex. These are distin- guished by the symbol x following the FMR figure. Thirdly, there are figures based on the FMR for the modes, when the author had indicated only the maxi- mum and minimum measurements for adults of each sex. For example: male S-V = 250 to 350 mm (mode 300), fe- male = 300-400 (mode 350), FMR = 350/ 300 = 117. Such records are designated by the letter "m" following the FMR figure. Even less reliable are ratios ob- tained from maximum measurements for each sex. Such figures are included only where it is believed that the author measured a substantial series of each sex, but often the number of specimens was not mentioned. Eliminating all such instances would haxe assured more con- sistent trends, but also would have elimi- nated many important groups for which no information was available otherwise. In order to axoid a spurious impression of accuracy, the actual FMR figures ob- tained from maximum measurements have not been presented, but instead a code has been substituted, as follows:

FMR > 135: SEXUAL SIZE DIFFERENCES IN REPTILES

examined (sometimes with no indication lished by various authors were combined of its sex). Herpetologists have been to average for FMR. prevented from fully utilizing size in A series of specimens showing a sex- systematic studies by the dogmatic con- ual size difference usually has more dif- viction that in reptiles growth is "in- ference between the maxima than be- determinate." Actually the genetic size tween the means, that is, the difference differences between species and subspe- between the male and female means cies could, in my opinion, provide some tends to be magnified in the maxima. of the most useful taxonomic characters. The trend of relationship between means In general, adult size in a reptile species and maxima are shown in Table 1. Even is more variable than it is in a or if the means are just the same, one sex mammal, but less so than in a fish. Adult or the other may grow to a larger max- size tends to be relatively homogeneous imum size. in turtles and lizards, less so in snakes; but within each of these groups there is RESULTS much difference between families, gen- large era and species in homogeneity of adult The amount of data obtained bearing sexual size size. on differences in rep- tiles has revealed some significant trends In the annotated systematic listing, within and between various taxonomic under Results, binomials are used (re- groups. Also it has raised many prob- gardless of subspecies) when only one lems that are not readily answered. For population of a species was sampled, or most reptile species knowledge of life for the nominate subspecies if other pop- history and ecology is still insufficient to ulations of the species are listed sepa- interpret SSDs in terms of reproductive rately. strategies, r and K selection or other ap- The maximum sizes listed in the ap- propriate concepts. pendices include few "world records" if Ontogenetic changes in sexual size any. They merely represent the largest differences are revealed for several spe- male and female in the particular series cies. For several others, geographic vari- utilized, and almost inevitably larger ation in SSD is shown. In some cases specimens will be found if they are not SSD can be strongly correlated with be- already known. havioral or reproductive traits or with Although most FMR figures were ob- climatic preferences. tained from random samples of adults, Table 1 shows FMR figures for 30 there were several important exceptions. species of turtles, lizards and snakes for The figures for many West Indian anoles, which large series of adults were avail- from Schoener (1970) and Schoener and able. It compares various other param- Schoener (1971a and 1971b) were based eters with the FMR means, showing that on the one-third of the adults of each in most instances the mode, median, and sex that were the largest in each sample. means for the 10 largest of each sex The figures for Conant's (1969) Mexican (or 5 largest, or 3 largest) approximate Nerodia were based on the 10 largest the series mean, but the ratio of maxi- male and female measurements is males and females of each sample. In mum more variable. Except where otherwise a few instances, disregarding trinomials indicated, by asterisk, the species in and minor geographic variants, I aver- Table 1 are those measured by me in aged the maxima for several geograph- field studies of live animals or in studies ical populations to obtain series (e.g., a of museum specimens. Schwartz, 1970). In a few instances as Excluding those 548 taxa for which for the several African snakes the maxi- only maximum measurements for each mum measurements for each sex pub- sex were available, 770 kinds of reptiles MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY were checked for size difference between a few kinds, but figures are less refined the sexes. Twenty-five had males and fe- than could be desired. Although some males of approximately the same size, studies were based on large-scale mark- 371 had females averaging larger than ing of individuals, the survivors in the males, and 374 had males averaging older age groups were generally so few larger than females. For the whole that their means were subject to fairly group average female size was 104% of wide margins of error. male size (66%-248%). The usual trend seems to be growth at comparable rates in juveniles of both Ontogenetic change sexes, with divergence in size at adoles-

cence, and little change in SSD during Sexual size differences are discussed the period of slowing growth after aver- throughout most of this paper as if they were constant and species-specific. On- age adult size is attained. Table 2 shows togenetic changes have been shown for male and female sizes (S-V) in successive

cent). Table 1. FMR ( = ratio of female length to male length expressed as per SEXUAL SIZE DIFFERENCES IN REPTILES annual age classes of seven reptile spe- from 87.5 to 100.1. There is not a clear- cies including one lizard and six kinds cut latitudinal gradient, but in all six of of snakes. the more northern populations (north of In the account of Alligator mississip- latitude 35°) FMR exceeds 93 (x = 95.7) piensis based on a large scale field study whereas in the four more southern pop- by Chabreck and Joanen (1979), it is ulations FMR is consistently less than 93 shown that juvenile males grow faster (x = 90.0). Nussbaum and Diller (1976), than females, and although there is some who studied the northernmost popula- slowing of growth at adolescence, adult tion in north-central Oregon, found that males continue to grow faster than adult male aggression was little developed, females. Hence, in the oldest alligators compared with that of more southern SSD is extreme. populations. The nine populations rep- Ernst (1977) presented figures on the resented in the lower half of Table 3 sizes of adult Clemmys muhlenhergii of are from various islands in the Gulf of different ages that seemed to indicate California. Their sexual size dimorphism little change in the size ratio of the is comparable to that of mainland popu- sexes as the turtles grew older. In series lations. Both in having males relatively that were 6, 7, 8, 9, 10 and 11 years of large in insular populations and in hav- age the female-to-male size ratios were, ing males relatively larger in southern respectively, 93, 92, 93, 93, 94 and 93 than in northern populations, Uta stans- per cent. Both sexes increased in size huriana follows trends that are wide- by 31% from the 6- to 11-year-old class. spread in lizards. There to 17 were 10 turtles of each sex Cnemidophorus tigris is another in each year class, except 11-year-olds wide-ranging, polytypic lizard species with 4 males and 7 females. and samples from the northern and In the large Neotropical iguanid, southwestern parts of the range showed Basiliscus hasiliscus, both sexes grow at the sexes to be approximately equal in approximately the same rate for nearly size with males averaging slightly larger. a year, to about 2.5 times hatchling size However, in samples from the southeast- of 42 mm (S-V). Thereafter, approach- ern part of the range, south-central New ing adolescence, the females grow more Mexico (Medica, 1967) and Reeves slowly than males. In the oldest basilisks County, Texas (Fitch, 1970) males aver- (6+ years) female to male ratio has de- aged markedly larger than females creased to about 72% ( cJ 229 mm, 9 165) (FMRs 87 and 94). but SSD is less in some localities (Van Table 5 shows sexual size differences Devender, 1978). in geographic populations of Chrysemys

picta. This wide-ranging species is typi- Geographic variation cal of many freshwater turtles in having Polytypic species have shown geo- females much larger than males, the graphic change in the size ratio of the latter maturing at relatively small size early sexes in every case tested, and it may and age. In this table, for each population, be speculated that such change is the the length (plastral) shown rule. Several examples are presented in is the minimum at sexual maturity, rather Tables 3 to 5. Uta stanshuriana, being than the adult average, as in most other abundant and widespread, provides one instances. Although no well defined gra- of the best examples, and the data for dient is discernible, there seems to be a 19 local populations are compared in general trend toward having relatively Table 3. The first 10 populations are much larger females in the southern from the western United States and Mex- half of the United States than in the ico from 45° N in Oregon to 28°20' N northern half. Extreme size differences in west-central Sonora, and FMRs range in the sexes results from early sexual MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

S fa fa fa

E 1 W a > t c ^ m

S fa

B

-^

ffi SEXUAL SIZE DIFFERENCES IN REPTILES maturity in males— at a minimum age of Iverson (ms) studied SSD in the Mex- only two years whereas females require ican mud turtle, Kinosternum hirtipes. at least four years. In more northern re- In a sample of 306 adult males and 237 gions male maturity is delayed until adult females FMR was 92.3. However, somewhat larger size is attained, at four the species has many discrete popula- or five years, and female maturity re- tions isolated from each other in separate quires six to ten years. drainage basins and differing in various

Table 3. Geographic Variation in Sexual Size Ratios in Uta stansburiana. FMR (Female to male length ratio per cent) 10 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Table 5. Relative Lengths of Males and Females of Chrysemys picta at Sexual Maturity. SEXUAL SIZE DIFFERENCES IN REPTILES 11

Schoener (1970) and Schoener and pentina 100 X, Chersina angulata , Schoener (1971a, 1971b) have published Chrysemys picta 139, Clemmys guttata figures for many populations, in sym- 100, C. marmorata 100 m, C. muhlen- patry and allopatry, showing varying de- bergii 107, Deirochelys reticularia 194 m, grees of character displacement. For Emydoidea blandingii 95, Emys orbicu- each species I arbitrarily selected one laris 106 m, EretmocJielys imbricata 104 FMR figure when several were available, m, Geochelone elephantopus ephippium to include in Appendix I and the anno- 82, G. e. vicina 99, G. pardalis +++, G. tated list. SSD in anoles is further dis- p. babcocki +, G. radiata 93 x, Gopherus cussed below in the annotated list. agassizii 92, G. polyphemus 106 m, Grap- temys barbouri 195 m, G. geographica Annotated Systematic List 196, G. kohni 182 m, G. nigrinoda 143 m, G. oculifera 184 m, G. ouachitensis 167, list various In the following the G. pseudogeographica 169, G. pulchra groups of reptiles are treated in the usual 248 m, Homopus areoJatus ++, H. bou- sequence. Under each major systematic lengeri X, H. femoralis ++, Kinixys bel- group, genera and species are listed liana +, K. b. nogueyi X, K. erosa , alphabetically, with a figure or symbol K. homeana X, Kinosternon bauri 101 x, indicating of each species, followed FMR K. b. palmarum 121 m, K. flavescens 98, by brief comments on the trends within K. subrubrum 118 m, K. s. hippocrepis the group, possible explanations for and 100, Lepidochelys olivacea +, Macro- them. The groups first tested were fam- chelys lacertina 86, Malaclemys terra- ilies but some were combined into larger pin 158 m, M. t. centrata 144 .x, M. t. systematic units or divided. Data were tequesta 141, Malacothoerus tornieri ++, obtained for relatively few kinds of tur- Psammobates oculifer +, P. tentorius tles, hence there is only one list for the + +++, P. t. verroxi ++, Pseudemys order Testudines, but there are many concinna 117 m, P. floridana 139, P. /. lists for the order Squamata and its main "siiwanensis" 143 m, P. /. texana +, P. subdivisions, the snakes and lizards. In rubriventris 116 x, P. scripta 140, P. s. the large ophidian family, , troosti 108 m, Rhinoclemys annuJata +, 24 subfamily units are separately listed, R. areoJata +, R. fiinerea — , R. nasuta +, because substantial series of species R. pulcherrima +, R. p. incisa 117 x, were available in some, with distinctive R. p. manni ++, R. p. rogerbarbouri trends setting them off^ from other sub- +++, R. punctidaria +, R. p. diademata families. Similarly, the large family +++, R. rubida , R. r. perixantha +, is divided into seven subfam- Stemotherus carinatus 98, S. minor 105, ily units to treat with the 226 taxa for S. odoratus 105, Terrapene Carolina 91 x, which definite figures are avail- FMR T. coahuila 93, T. ornata 102, Testudo able. I follow Etheridge 1965, (1964, graeca 97 m, T. kleinmanni +, Trionyx 1966) in the iguanid subfamilies recog- muticus 158, Trionyx spiniferus emoryi nized, except that I have also included 236 m, T. s. ferox 168, T. s. pallidus "crotaphytines" and "phrynosomines" not 182 m. formally designated by Etheridge but The FMR samples, representing 50 implied by him in dissociating Crota- taxa (all cryptodiran) averaged 129.8 ± phytus and Phrynosoma from the scelo- 5.68. Females were larger in 70%, males porine genera. Both are sufficiently dis- in 22% and sexes were equal-sized in 8%. tinctive in the trends of their SSD to most striking aspect of these merit separate treatment. The figures is the relatively large size of females in most species, and especially Testudines in those of highly aquatic habits. In Chelonia mydas 106 m, Chelydra ser- those kinds having the males larger, the 12 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY difference is usually small, and most such lar\^ae 1.9% (59). No significant relation- species have terrestrial tendencies. Al- ship was evident between prey size and though precise figures are not available turtle size, nor between prey size and for any pleurodiran, Roze (1964) wrote sex of turtle. of the giant South American river turtle Males are larger than females in the Podocnemis expansa that adult females tortoises Geochelone species and Go- averaged about two feet in shell diam- pherus agassizii, the box turtle Terra- eter, males about IM, hence FMR prob- pene Carolina, the emydids Clemmys ably approximates 133. Relative large muhlenbcrgii and Emydoidea hiandingii, female size is most extreme in the the chelydrids, Chclydra serpentina and emydid genus Graptermjs. In G. puJchra Macrochelys lacertina, and the kinoster- of Alabama adult male size is 80-120 mm, nid, Kinosternon favescens. In all of whereas adult females are 212-285 mm these and in many other kinds of turtles (Shealy, 1976). Males mature in their male aggression is known to occur. Har- third or fourth year, but females require less (1978) summarized the literature on about 14 years to mature. In soft-shelled agonistic beha\'ior in turtles. Eleven ac- turtles the SSD is almost as great. Plum- counts pertained to Terrapcne and 11 mer (1977) found FxVIR of 158 in Trionijx others to testudinids (Chersine, Geo- muticus. Associated with this great size chelone, Gopherus); 8 were of chelydrids, difference there was striking difference in 8 were of Clemmys, 5 were of kinoster- habits and behavior. Males spent more nids (Kinosternon, Sternotherus), 4 were time in basking and tended to keep in of cheloniids (Chelonia, Eretmochehjs), 2 shallow water in relatively small home were of Chrysemys, 2 were of Trionyx ranges, but in contrast the large females and 1 was of Graptcmys. spent their time in deep water in the Male combat is prominent in some ri\'er, relatively main channel of the with species in which the sexes are nearly the long movements upstream and down- same size, or in which the female is a stream. (ms) stud- Plummer and Farrar little larger. In Chelonia mydas Booth ied food habits of T. from the muticus and Peters (1972) described attacks on stomach contents of 105 adults of this the mating male by "attendant" males. same population. The diet of males was In captive turtle groups, including found to be more diverse than that of tortoises, box turtles, and Clemmys in- females, and significantly different nu- sculpta, males are known to form domi- merically and volumetrically. Approxi- nance hierarchies. Agonistic behavior mately 71% of the food volume taken by consists of biting and ramming. Threat- females consisted of aquatic organisms, ening posture, rapid approach, hissing, of which larvae of the trichopteran Hy- and odors including those of the feces, dropsyche were by far the most numer- reinforce dominance. Dominant males ous, whereas approximately 67% of the may inhibit the feeding and mating ac- food volume taken by males consisted tivities of other males. Under natural of terrestrial items. The most important conditions turtles are not known to have items for males, in order of decreasing polygynous mating systems, and males volume, were: mulberries 34.3% (48), rarely, if exer, maintain discrete terri- Cottonwood seeds 15.3% (892), trichop- tories. teran larvae 10.4% (456), dipterans 6.3% It should be noted that much differ- (139), beetles 4.2% (206), fish 1.7%, lepi- ent FMRs have been obtained for the dopterans 1.2% In contrast, the most (9). same species of turtles in a few instances important items for females were: tri- when two or more authors have pub- chopteran larvae 43.7% (2430), fish 20.1%, lished different sets of figures. For in- mulberries 16.3% (28), crayfish 4.9% (7), stance, for Chelydra serpentina an FMR beetles 2.3% (17) and ephemeropteran of approximately 100 is indicated both SEXUAL SIZE DIFFERENCES IN REPTILES 13 from White and Murphy's (1973) plastral dacnicolor 102, S. rosaurae X, S. semasi- measurements and Christiansen and ops 110, TarentoJa americana — , T. mau- Burken's (1979) carapace measurements, ritanica 84, Thecadactylus rapicaudus whereas Mossiman and Eider's (1960) 106 X. carapace measurements of a Quebec pop- Among 43 species of geckos tested, ulation indicate FMR of 88. For Kino- FMR ranged from 84 to 115, and aver- sternum subrubrum Mahmoud's (1967) aged 101.9. Males were larger in 13 figures indicate of whereas FMR 100 species; females were larger in 26, and Iverson's (1979a) indicate FMR of 118. It the sexes were equal in four. Eleven of needs to be determined how much such these geckos were members of the large differences reflect geographic actually or genus Phyllodactylus and in all but one ontogenetic variation vs. authors' biases of these males and females averaged in collecting, or in their criteria for set- nearly equal in size. The exception was ting the lower limits of adults of each P. lepidopygus having a FMR of 115. sex. The remaining 32 species of geckos were in 15 genera representing Europe, , Squamata: Sauria Asia, Australia and South and Central America. The species having relatively GECKONIDAE. Aristelliger george- largest males, Tarentola mauritanica , ensis A. hechti , A. Jar , A. (FMR 84) and Eublepharis angramainyu praesignis , Coleodactylus amazoni- (FMR 89) are from the temperate-zone cus 105, Coleonyx brevis X, C. elegans climate of Spain and , whereas most X, C. mitratus X, C. variegatus 107, C. v. of those with relatively large females utahensis 114, Cosymbotus platurus 99, were from equatorial regions. Cyrtodactylus malayanus 109, C. pubis- culus 110, Eublepharus angramainyu 89 Geckos are known to maintain terri- X, Garthia dorbignyi X, G. penai X, tories, with visual cues and vocalizations playing important roles. Gecko japonicus , G. vittatus X, Males are more Gehyra australis 104 x, G. oceanica 97, aggressive, and in some instances there G. variegata 99 x, Gonatodes albogularis is dimorphism, with males more conspic- 100, G. annularis 101 x, G. concinnatus uously marked. Large males would seem 99 X, G. humeralis 106 m, Hemidactylus to have a selective advantage in defend- frenatus 96, H. mabouia 106 m, H. turci- ing territories and securing mates. Espe- cus 106, Heteronotia binoei 108, Lepido- cially where there is a relatively short dactylus lugubris 102 x, Lygodactylus and concentrated, and therefore stressful angolensis X, L. capensis X, L. picturatus breeding season, large size might confer selective advantage. Oviparity is the — , Pachydactylus punctatus +, F. tuber- rule (except in New Zealand) with a two- culosus — , Palmatogecko rangei ++, clutch Peropus mutilatus 99, Phelsuma lati- egg (or one egg, in sphaerodacty- lines and a few small geckonines). The cauda , P. lineata , P. madagas- carensis —, Phyllodactylus angustidigi- hatchlings are relatively large. Large tatis 95, P. europaeus 98 x, P. gerrhopygus hatchlings probably have better chances 98, P. inaequalis 100, P. interandinus of survival than small ones. Doubtless 105, P. johnwrighti 103, P. kofordi 102, there is selective pressure for females to P. lepidopygus 115, P. microphyllus 100, produce larger young, counteracted by P. reissi 97, P. tuberculosus 102 m, P. selection for light weight, in these small ventralis 100, Pseudogonatodes guianen- scansorial lizards dependent on their cling sis 102 X, Ptenopus garrulus 101 x, Sphae- digital lamellae to to surfaces that vertical. rodactylus argivus 99, S. argus 113, S. are sometimes smooth and a. bartschi 106, S. cinereus X, S. copei IGUANIDAE. This is a large and astreptus X, S. c. pelates X, S. c. websteri diverse family of lizards, mostly of the X, S. lewisi 108, S. oxyrhinus 111, S. o. Western Hemisphere. They range from i

14 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY small to large. They are vision-oriented, limifrons 99 (Pan.), A. lineatopus 69, A.

and there are usually special display lionotus 85, A. lividus , A. loijsiana 89 organs in the males, less developed or X, A. luciae , A. lucius 84, A. mega-

lacking in the females. The displays pholidotus 98, A. mestrei , A. monti- are stereotyped and species -typical, and cola , A. nebulosus 100, A. nigro-

serve both in territorial aggression and lineatus 94, A. nubilus , A. occultus

defense and in courtship. Most iguanids 100, A. oculatus , A. o. cabritensis

are oviparous but several genera of , A. 0. montanus , A. o. ivinstoni basiliscines, sceloporines, phrynosomines , A. olssoni 91, A. opalinus 82, A. and tropidurines have some viviparous ortoni 96 x, A. pachypus 101, A. penta- species. Average clutch size ranges from prion 81 x, A. peraccae 93 x, A. petersi just one in anolines to several dozen in +, A. pinchoti 90, A. poecilopus 96 x, large mainland iguanines. A. polylepis 93, A. poncensis 87, A. por- Anolinae. Anolis aeneus 71, A. ahli catus 72, A. pulchellus 80, A. punctatus 88 x, A. boulengeri , A. allisoni 74, A. allogus 75, p. 103 m, A. quer-

A. alumina —, A. alutaceus 92, A. an- corum 89, A. quadrioceUifer , A. gusticeps 88, A. aquations 89 x, A. argil- richardi 81, A. ricordi suJ)solans X, A. r.

laceus 81, A. attenuatus 95, A. auratus viculus — , A. rodriguezi 101, A. roquet

104 X, A. a. sipaliwinensis 104, A. haleatus 77, A. rubribarbis , A. rupinae

, A. sabanus , sagrei , A. b. litorisilva , A. b. multi- A. 73, A. s. stejncgeri siruppus —, A. b. scelestus , A. ba- 79, A. semilineatus 86, A. sericeus A. smaragdinus x, horucoensis southerlandi , A. bara- 90, 78 A. subocularis A. stratulus 86 x, A. honae — , A. barker , A. bimaculatus 76, 71, A. biporcatus 102, A. biscutiger 106, taylori 79, A. trachyderma 115, A. A. bombiceps 110 m, A. bourgaei 103, tropidogaster 96, A. tropidolepis 99, A. bremeri 70 x, A. brevirostris 89, A. A. tropidonotus 81, A. uniformis 98, A. capito 106, A. carolinensis 79, A. car- valencienni 86, A. villai 89, A. vittigerus penteri 105 x, A. chlorocyaneus 76, 125 x, A. wattsi 87, A. icoodi 87 x, A. christophei 92, A. chrysolepis 105, Chamaeleolis chamaeleonides 99, Enya- A. coelestinus 78, A. concolor 74, A. lioides laticeps 108 m, Enyalius biline- cooki 70, A. crassulus 88 x, A. cris- atus ++, E. boulengeri +, E. catenatus tatellus 79, A. cuprous 88, A. c. hoff- X, E. iheringii ++, Polychrus marmora- manni 97, A. c. macrophallus 82, A. c. tus 124 X, Urostrophus ornatus X. spilomelas 84, A. cuprinus 73, A. cuvieri Because the lizards of the genus Ano- 92, A. cybotes 77, A. damulus 110 x, A. lis are numerous in species and often distichus 87, A. d. biminiensis 90 x, A. extremely abundant, much information

doJichocephalus sarmenticola , A. d. has accumulated concerning their sexual

portusahis , A. dollfusianus 94, A. size relationships. Schoener (1967) noted equestris 93, A. evermanni 74, A. ex- that in Anolis conspersus, isolated from

tremus , A. frenatus 82, A. fuscoau- other species on Grand Cayman Island

ratus 108, A. /. kugleri 102 x, A. gadovii of the West Indies, males are much 89, A. garmani 75, A. gemmosus 94, A. larger than females, and are able to take grahami 68, A. g. aquarum 73, A. gund- larger prey items of different kinds, with

lachi 69, A. hendersoni 84, A. h. ravidor- the result that there is partial partition-

mitans — , A. heteropholidotus 109 x, A. ing of food resources between the sexes,

homolechis 78, A. h. cuneus , A. h. and the potential carrying capacity of

jubor , A. h. oriens , A. h. the is increased. Later, Schoener

quadrioceUifer , A. humilis 105, A. (1970) discerned consistent patterns in intermedius 99, A. isthmicus 89 x, A. the size relationships of insular West kemptoni 104, A. krugi 79, A. lemurinus Indian species of Anolis of which there 104, A. limifrons 103 (Costa Rica), A. are several score. He found that wher- SEXUAL SIZE DIFFERENCES IN REPTILES 15 ever a small island is inhabited by a single species, that species is small-sized (often 40-70 mm snout-vent), with males much larger than females. Thus the rela- tionships found in A. conspersus were repeated in many other species. On is- lands that had two or more species, char- acter displacement in size occurred to varying degrees. Depending on the ex- tent of habitat overlap, species occurring in sympatry were altered from their size relationships in allopatric situations, be- coming less similar, with SSD reduced so that size overlap with competing spe- cies was minimized. Schoener found that in solitary kinds, the males col- lectively are larger than the males on the island having the richest anole fau- nas. With increasing species diversity, the species size distribution of males irregularly decreases in median, but in- creases in range of skewness. He found greater SSD in larger species. In a later study of mainland anoles I found (Fitch, 1976) correlation between climate and SSD; species living in rela- tively aseasonal climates of tropical rain forests or cloud forests tended to have the sexes nearly equal in size, or else the females were larger, but species liv- ing in sharply seasonal climates with drought or cold limiting reproduction to a concentrated short and stressful breed- ing season had males much larger than females (Table 6). In Anolis species, SSD has a range

Table 6. Mean Female to Male Ratios (FMR) in Anolis. 16 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY in California differs from G. ivislizenii in lizard charged another that had ap- being largely insectivorous, in being ter- proached, bit it, and secured a hold, and ritorial, and in having relatively large the two fought intermittently for an hour males. and 10 minutes until they were separated Iguaninae. Amblyrhynchus cristatus by the obser\'er. Fighting consisted of 85, Conolophtts subcristatus 91 x, Cte- biting, scratching, and thrusting move- nosaura similis 80, Cyclura carinata ments of the head by which the oppo- 82, C. cornuta 92, C. cychlura 93, C. nent was jabbed with the occipital horns. pinguis 86, Dipsosaurus dorsalis 95, En- Presumably the combatants were males, yaliosaurus clarki 93, Iguana iguana 91, but their sex was not determined. De- Sauromalus obesus 92. spite this isolated observation, it seems These mostly large to giant-sized, clear that display and combat behavior mainly herbivorous and mainly tropical are relatively weak in Phrynosoma com- iguanids all have males larger than fe- pared with those in most other iguanids. males. Several of them have been sub- The horned lizards are largely myrmeco- jects of intensive ecological and behav- phagous. They are relati\'ely slow-mov- ioral studies, which have indicated the ing and rely on their cr>'ptic patterns following characteristics: there is a short and to a lesser extent on their spines for and concentrated annual breeding sea- protection. Most of the species, includ- son; males are highly territorial, but ing cornutum, coronatum, modestum, many are subordinates that are denied platyrhinos, and solare are oviparous, but territories because they cannot compete douglassi and orbiculare are live-bearers. with the dominant adults. Subordinate Broods in both the egg-laying and live- males are often adolescents or small bearing species tend to be large com- adults that have not yet attained their pared with those of other iguanids of prime. Reproducti\'e females may be similar size. It is noteworthy that in all crowded together in harems, or may be seven species inxestigated, females are spaced because of mutual intolerance larger than males, thus deviating from much weaker than that prevailing among the usual trend in iguanids. the males. The latter fight fiercely at ScELOi'ORiXAE. CalHsaurus draco- times, but most often rely on their stereo- noides 89, C. d. rhodostictus 90, Hol- typed displays to threaten or discourage brookia maculata 108, H. m. approxi- potential rivals. mans 93 x, Sceloporus adleri 92, S. bul- Phrynosomixes. Phrynosoma cornu- leri 97, S. chrysostictus 95, S. clarki 92, tum 107, P. coronatum 102 X, P. doug- S. c. boulengeri 81, S. cozumelae 87, S. x, x, S. lassi 110, P. modestum 112 x, P. orbicu- cyanogenys 105 S. formosus 103 graciosus 104, S. "gracilis" 103, S. lare 103 .x, P. platyrhinos 106, P. solare g. g. 108. vandenburgianus 95, S. grammicus 96, S, insignis 92, S. jarrovi 91, S. lundelli The horned lizards are aberrant - 105 X, S. magister 84, S. malachiticus 95, nids. Males lack bright colors and spe- S. megalepidurus 99, S. merriami 95, S. cial display organs. Territoriality seems m. annulatus 95, S. mucronatus 95, S. to be lacking and display is weakly de- nelsoni 87, S. occidentalis 106, S. o. bi- veloped. Whitford and Whitford (1973) seriatus 107, S. olivaceus 111, S. orcutti found that individuals of P. cornutum 90, S. pictus 98 .X, S. poinsetti 86, S. pyro- often mo\'ed more than 100 meters in cephahis 85 x, S. scalaris 111, S. s. aeneus a day and frequently approached within 99, S. s. bicanthalis 106, S. siniferus 86, one meter of another indi\'idual. Ordi- S. smaragdinus S. spinosus S. tae- narily when such lizards became aware 93, 99, of each other, there was head bobbing niocnemis 97, S. teapensis 93, S. torqua- and mutual retreat. In an exceptional tus 99 X, S. undulatus 110, S. u. conso- instance observed on 19 July 1972, one brinus 101, S. u. elongatus 112, S. u. , ,

SEXUAL SIZE DIFFERENCES IN REPTILES 17

erythrocheilus 110, S. u. garmani 107, S. L. p. scalaris , L. p. tarachodes , u. hyacinthinus 107, S. u. tristichus 107, L. p. trujilloensis , L. raviceps klin- S. utiformis 93 x, S. variabilis 81, S. vir- kowskii 89 x, L. r. uzzelli 82, L. sierrae gatus 112, S. woodi 106, Uma inornata 66, L. stictigaster 83, L. vinculum — , L.

79, U. notata 79, U. scoparia 86, Uro- V. altavelenus — , anomalus saurus ornata 97, Uta antigua 92, U. 91 X, L. archeforus 91, L. a. sarmentiori mearnsi 96, U. nolascensis 93, U. palmeri 94 m, L. constanzae — , L. fuscus —, L.

91, U. squamata 93, U. stansburiana 87. kingii 92, L. lemniscatus — , L. magel-

This is a large group of xeric adapted, lanicus X, L. monticola X, L. nigroviridis mostly ground living (or scansorial), me- — , L. pictus X, L. platei , L. tenuis X, dium- to small-sized iguanids that are Plica plica X, Plica umbra 91 m, P. u. best represented in southwestern North ochrocoUaris 97 m, Strobilurus torquatus America. Males are usually larger than +, Tropidurus albemarlensis 79, T. a. females, but there are many exceptions, barringtonensis 84, T. bivittatus 78, T. especially in the large genus Sceloporiis. delanonis 76, T. duncanensis 89, T. grayi T. habeli In most there is strongly developed sex- 116, 79, T. icae 87, T. occipitalis ual dichromatism with males having 81, T. pacificus 87, T. peruvianus 86, T. bright colors that function in aggressive salinicola 92, T. stolzmanni 71, T. talarae displays. These colors are most often 78, T. theresiae X, T. thoracicus 87, T. concentrated on the sides of the ventral torquatus 80 x, Uracentron azureum X, surface, where they are concealed when U. a. guentheri X, U. a. werneri X, U. the animal is at rest, flattened against faviceps 70 x, Uranoscodon supercili- the substrate. In some species display osa X. colors and behavior are largely lacking, In diis South American and West and males do not maintain territories. Indian subfamily males tend to be much In an earlier report (Fitch, 1978) I have larger than females (Fig. 1), and have discussed SSD in the genus Sceloporus. display coloration and behavior well de- Those kinds having relatively large fe- veloped in connection with territoriality males were found to be characterized and courtship. An unexplained excep- by a relatively large brood, single annual tion to this trend is Tropidurus grayi of brood, small body size (< 60 mm S-V) Charles Island in the Galapagos, having and range in the Temperate Zone more females larger. often than by the opposite conditions. AGAMIDAE. Agama agama 86 m, With few exceptions, most kinds of Sce- A. agilis 87, A. atra , A. atricollis 89 x, loporus having females larger than males A. cyanogaster , A. hispida 95 x, A. h. occur in the United States, north of lati- aculeata —, A. kirki —, A. mossambica tude 30°, whereas most kinds having , A. pallida 109, A. planiceps — 30° males larger occur south of latitude A. tuberculata 93, Amphibolurus macu- in southern Texas, Mexico or Central losus 91, Calotes versicolor — , Draco America. melanopogon 106, D. quinquefasciatus Tropidurinae. Ctenohlepharis nigri- 102, Goniocephalus modestus — , Japa-

ceps , Leiocephalus astictus 85, L. lura swinhonis 95, Leiolepis belliana —

harhonensis , L. h. aureus , L. Moloch horridus 113, Phrynocephalus

h. heatanus , L. h. oxygaster , ornatus X, P. scutellatus 105 m, Pliysig-

L. cubensis 77, L. exotheotus 84, L. gigas nathus concinnus , Salea anamallay-

72, L. lunatus , L. /. arenicolor , ana , S. horsfieldi .

L. I. melaenacelis X, L. /. thomasi , L. The agamids are active, diurnal, visu- macropus felinoi 70 m, L. painhasileus ally oriented lizards of Africa, Asia and 78 X, L. paraphrus 76 x, L. personaius Australia. Nearly all are oviparous. Vari-

, L. p. actitis , L. p. agraulus ous ecological studies of agamid species

— , L. p. hudeni — , L. p. mentalis — (Harris 1964, Mitchell 1973, Waltner 18 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

70 80 90 100 no 120 FMR (% FEMALE TO MALE LENGTH S-V)

Fig. I. Comparison of FMR in subfamilies of iguanid lizards; tropidurines and anolines especially tend to ha\'e relatively large males.

1978) have demonstrated that most aga- are temporary, as in many kinds of mids are highly territorial, with sexual iguanids. The clutch in Draco is usually dimorphism and special display organs only two to four eggs. The Australian in the male. Mitchell (1973) described myrmecophagous desert agamid, Moloch the mating system in AmphiI)oJurus mac- horridus has relatively large females ulosus in which only certain large and (FMR 113). It is solitary, non-territorial, dominant males develop bright colors nomadic, and slow-moving, relying on and maintain territories; others remain its spines and cryptic coloration for pro- dull colored and passive and spend rela- tection. It produces relatively large tively little time aboxe ground. Waltner clutches (Pianka and Pianka, 1970). In

(1978) observed male display and fight- all these traits it is remarkably conver- ing in Agama tuberculata. He found gent with the North American iguanid FMR slightly lower (92.7) in a popula- horned lizards (Phrynosoma). tion at low altitude (having a relatively CHAMAELEONIDAE. Chamaeleo long active season and probably pro- adolffriederici X, C. anchietae +++, C. ducing two clutches) than at medium bitaeniatus 101 x, C. b. ellioti ++, C. b. altitude in the Himalayas where the graueri X, C. chapini ++++, C. dilepis season of activity was relatively short 107 X, C. d. idjwiensis +, C. etiennei 109 with only one clutch per year. Smith X, C. gracilis X, C. ituriensis +, C. john- (1935) described male display and fight- stoni X, C. namaquensis 106, C. oiveni ing in flying lizards (Draco). The males X, C. pumilis 107, C. quilensis 120, C. have distensible dewlaps and also have roperi +, C. rudis X, C. senegalensis ++, lateral patagia supported by the elon- Rhampholeon spectrum X. gate ribs, used as wings to support the In this mainly African group special- animals' weight in gliding but also hav- ized for arboreal existence, the males ing bright colors used in display. These are territorial and may have special or- lizards are often found in pairs and it gans such as horns developed for fight- has been suggested that they are mo- ing. Nevertheless available figures indi- nogamous but perhaps the associations cate that females are larger than males, , ,

SEXUAL SIZE DIFFERENCES IN REPTILES 19 sometimes by a wide margin. There are dichromatism, and males have wider both oviparous and viviparous species. heads with more massive jaw muscles. Broods are large in both, but especially Males are aggressive and quarrelsome. the former, which may produce clutches FMR averaged 95.1 ± 1.45 in 32 kinds, of several dozen eggs. and 22% had females that averaged ANGUIDAE. Anguis fragilis +, An- larger than males. In Lacerta the range niella geronimensis 94, A. pulchra 102 x, of SSD was found to be unusually large, Diploglossus costatus —, D. curtisd — from 116 and 112 in L. pratincola and

D. occiduus , D. stenurus , D. L. vivipara to 82 in L. taurica. warreni — , Gerrhonotus monticolus 94, TEIIDAE. Alopoglossus atriventris G. moreleti 93 x, G. multicarinatus 98, 106 m, A. copii 111 x, Ameiva ameiva 95, m. Ophisaurus attenuatus G. webbii 98, A. auberi 83, A. chaitzami — , A. festiva 95, Wetmorena haetiana mylica X, W. 86, A. quadrilineata 97 m, A. undulata h. surda X. 84, A. u. amphigramma X, A. u. gaigeae

In these serpentiform lizards the sexes , A. u. hartwegi , A. u. parva — are similar in most respects, but in Ger- A. u. podarga , Arthrosaura kockii rhonotus and Ophisaurus the males have 107, A. reticidata 86 m, Bachia flavescens wider head and bulging temporal mus- {= cophias 108 x, vermiforme 99 m), B. cles, and the strong jaws serve for fight- trinasale 104 x, Callopistes maculatus —, ing in the breeding season. It is prob- Cercosaura oceUata 103 m, Cnemidopho- ably significant that females are larger rus bacatus 92 x, C. calidipes 91 x, C. than males in the more subterranean deppei 93, C. d. infernalis — , C. guttatus kinds such as European "slow worm," 93 X, C. g. flavolineatus , C. hypery- Anguis. thrus 97, C. inornatus 104, C. lemniscatus

LACERTIDAE. Acanthodactylus 79, C. lineatissimus 89, C. /. duodecim- cantoris 87, Aporosaura anchietae 90 m, lineata , C. parvisocius 91, C. sacki Eremias argus +, E. arguta 93 m, E. 93 m, C. sexlineatus 101, C. tigris 94, Iphisa elegans 100 x, Kentropyx cal- breviceps — , E. burchelli +, E. capensis caratus —, E. guttulata 99 x, E. lincoocelluta X, 97, K. pelviceps 96 m, K. striatus 89, x, E. luguhris 96 x, E. namaquensis 90 x, Leposoma guianensis 103 L. parie- E. savagei 98, E. undata X, Ichnotropis tale 105, 85, N. cochranae +, N. ecpleopus 93, N. rudis bivittata — , I. capensis 95, 7. squamulosa

X, N. strangulatus — , N. tatei — , 95 X, Lacerta agilis 108 m, L. a. cherso- Opipeu- ter xestus nensis 100 m, L. melisellensis 88, L. +, PhoUdobolus affinis —, P. muralis 102 m, L. m. maculiventris 99 m, macbrydei X, P. montium ++, P. pre- frontal Prionodactylus argulus 100, L. pratincola 116 m, L. sicula 90, L. s. +, P. manicatus 123 x, Proctoporus bolivi- alveaoi 92 m, L. s. ciclopica 94 m, L. s. anus 106, Ptychoglossus brevifrontalis medemi 88 m, L. taurica 82 m, L. tili- 111 m, Tretioscincus agilis 107, Tupi- querta — , L. t. eiselti 91 x, L. t. maresi

nambis nigrolineatus . 90 X, L. t. pardii — , L. trilineata 105, L. t. media 103, L. vauerseUi 102 x, L. viridis The teiids are oviparous New World 93, L. V. chlornota 92 x, L. vivipara 116 lizards of varied habits and small to large m, L. wagleriana 92 m, L. tr. antoninoi size. Most are tropical. Ameiva, Cnemi- 87 X, L. u). jnaritlinensis 88 m, Meroles dophorus, Kentropyx, Tupinambis and a cuneirostris 91 m, Nucras delalandii X, few other genera comprise the macro-

N. tessellata —, Scapteira knoxi — , Tropi- teiids, relatively large, active, primarily dosaura gularis X. terrestrial types, whereas the microteiids The active, diurnal, Afro-Eurasian are small and many are secretive, fos- lizards of this family are all oviparous sorial, or arboreal. Active competition with the single exception of Lacerta with fighting, for prospective mates, vivipara. There is often some sexual food, shelter, or other resources is com- 20 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY mon in macroteiids, but is not known Clutches tend to be larger in the Tem- to occur in microteiids. In the latter the perate species which oviposit only once females are most often the larger (12 of or a few times annually, but smaller in 18 species, mean FMR 103). tropical kinds that breed throughout the

Figures are available for 20 species annual cycle or a major part of it. The of macroteiids and in all but t^vo, males need to produce large clutches would were the larger, FMR averaging 92 for in turn select for large body size in the the entire group (Fig. 2). Macroteiids females.

are diurnal. Chasing and fighting are SCINCIDAE. Ablepharus kitaibelii prominent aspects of behavior wherever 115 m, A. smitJiii X, A. icahlbergii 111 x, population densities are high. In most Brachijmeles gracilis 93 m, Cryptoble- instances those activities seem not to pharus boutoni 102, Emoia adspersa 101, involve territorial defense, as many in- E. atrocostata 97, E. haudini X, E. cya- dividuals may share the same small area, nura 99, E. lawesii 102, E. nigra 94, E. with overlapping ranges. Fighting prob- samoensis 94, Eumeces brevirostris 104 x, ably establishes dominance or priority E. copei +, E. dugesi X, E. egregius 106, in mating. E. fasciatus 99, E. gilberti 90, E. g. can-

Macroteiids conform to a widespread cellosus 97, E. g. placerensis 95, E. g. trend in that the lowest FMRs are all rubricaudatus 102, E. inexpectatus 98, of tropical species, whereas tlie two spe- E. latiscutatus 98, E. obsoletus 102, E. cies having the females larger than males ocJwteremic 102 x, E. septentrionalis 101 both inhabit the Temperate Zone. X, E. skiltonianus 101, E. s. utahensis 104,

70 80 90 100 110 120 FMR (% FEMALE TO MALE LENGTH S-V)

Fig. 2. Comparison of FMR in teiids and lacertids; most microteiids differ from most macroteiids and lacertids in having relatively large females. ,

SEXUAL SIZE DIFFERENCES IN REPTILES 21

Leiolopisma rhomboidalis 100, Lipinia CORDYLIDAE. Cordylus capensis noctua 101, Lijgosorna graueri +, L. X, C. coeruleopunctatus X, C. giganteus kilimense +, L. luberoensis —, L. solo- X, C. jonesi +, C. jordani X, C. polyzonus monis — , Mahuija haijoni 105 x, M. +, C. tropidosternum X, C. vandami +, brachypoda 101 x, M. biiettneri 120 x, C. warreni ++, Gerrhosaurus flavigularis M. capensis X, M. lacertiformis +, M. X, Platysaurus capensis X, P. guttatus —, mabouya 112, M. m. alliacea 106 x, M. P. intermedius — , P. mitchelli X, Pseudo- maculata 96, M. maculilabris 98, M. me- cordylus microlepidotus X, P. wilhelmi galura +++, M. miiUifasciata 94 m, M. occidentalis 108 x, M. perroteti — , M. These armored African lizards usu- punctata 88, M. quinquetaeniata ++, M. ally live in rocky places. Cordylus is q. margaritifer 88 x, M. q. obsti X, M. viviparous. Seemingly the group as a rudis X, M. sparsa 87, M. spilogaster 104, whole has females larger than males with

M. striata 101, M. s. chimbaiva +, M. s. some exceptions to this trend in Platy- ellenbergi X, M. sulcata +, M. varia 106 saurus and Pseudocordylus. X, M. variegata 111 x, Ophiomorus per- VARANIDAE. Varanus acanthurus sicus 119 X, O. rathmai 112 x, O. tridacty- 87 X, V. komodensis . The moni- lus 103 X, Riopa anchietae ++, R. sunde- tors range from small size up to the valli X, Scincella lateralis 105, S. reevesi three meters of the giant Komodo dragon ++, Scincus hemprichii , S. mitratus lizard. All are oviparous. The larger 79 X, S. scincus 85, Sepsina tetradactyla kinds are formidable predators. Male ++, Sphenomorphus cherriei 100, S. fighting has been observed in various megaspila +, Typhlosaurus garipensis species. The two species for which size 106, T. lineatus 105. data are available indicate that males are Of 52 skinks for which definite FMRs markedly larger than females. are available, 31 had females larger, 19 had males larger and 2 had nearly equal- Squamata: Amphisbaenia sized sexes (Fig. 3). FMR ranged from AMPHISBAENIDAE and TROGO- 79 to 120, mean 101.0 ^ 1.15. Both NOPHIIDAE. Amphisbaena alba Eumeces and Mabiiya were found to be 103, A. fuliginosa 97 Blanus cinereus divided between species having the male m, 100, Trogonophis x. larger and those having the female tciegnianni 98 larger, but the latter group was some- The few figures available for these what more numerous. In secretive and wonnlike reptiles indicate that the sexes burrowing skinks especially (Ophio- are approximately the same size. There

morus and Typhlosaurus), there is a is no mention of sexual size difference in tendency for females to be relatively the many papers by Gans and others on large, and presumably male rivalry and amphisbaenians. combat is less developed among those kinds that spend most of their time Squamata: Serpentes underground. Among those kinds with

subterranean tendencies, clutch size is Serpentes. (Henophidia). reduced sometimes to only one egg, but ACROCHORDIDAE. Acrochordus egg size is correspondingly large. javanicus ++++. XANTUSIIDAE. Xantusia henshawi

111, X. h. bolsoni +. In the gecko-like, ANILIDAE. Anilius scytale -f-l-++. viviparous granite night lizard the sexes BOIDAE. Candoia aspera ++++, are similar in appearance but females C. carinata 137, Charina bottae 112 x, are markedly larger. Probably both C. b. utahensis 122 x, Corallus caninus sexes maintain territories. There are two +, C. enydris X, Epicrates angulifer young at a birth. +++, E. cenchria 114 x, E. fordii — 22 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

60 70 80 90 100 110 FMR (% FEMALE TO MALE LENGTH S-V)

Fig. 3. Comparison of FMR trends in several families of lizards; in most species of iguanids, males are larger than females, whereas skinks tend to have relatively large females.

E. gracilis X, E. striatus —, Eryx conicus in Python mohirus. Four males confined ++++, E. johni +, Python sehae with a female fought frequently. Fight- ++++, Tropidophis haetianus X, T. ing consisted of crawling over the oppo- nigriventris +. nent, gouging him with the erected pel- UROPELXroAE. Rhinophis drum- vic spurs, and biting. As a result of such mondhayi ++++, R. philippinus —. encounters the males arranged them- XENOPELTIDAE. Xenopeltis uni- selves in a social hierarchy. Mating suc- color ++. cess was highly correlated with success In these primitive snakes, the heno- in combat and position in the hierarchy. phidians, of five families, including tlie As the breeding season waned, combat highly aquatic Acrochordus, and the ceased. Combat has been reported in somewhat fossorial anilids, uropeltids, one other boid, the arboreal Sanzinia xenopeltids and Charina, it seems to be madagascariensis (Carpenter et al., 1978). the general rule that the females are larger. In some of them the size differ- Serpentes (Scolecophidia). ence between the sexes is large. These TYPHLOPIDAE. Typhlops angolen- snakes are ecologically diverse. Most of sis adolfi 125, T. a. duhius 136 .x, T. a. the kinds listed are viviparous. Barker iraci 141 .x. et al. (1979) have described male combat The figures for this African species +

SEXU.\L SIZE DIFFERENCES IX REPTILES 2.3

indicate that in the wormlike blind and Tachymenis. In examining extensive snakes, as in most other fossorial rep- series of Conophis, Wellman (1963) found tiles, females are substantially larger females to be larger in C. lineatus dunni than males. and C. pulcher but found males to be

larger in C. /. lineatus, C. I. concolor, and Serpentes (). C. vittatus.

COLUBRID.\E. This is by far the For 14 alsophiines a mean FMR of largest family of hving snakes. Figures 120.64 = 6.61 was obtained. are a\ailable for 202 taxa classed as Ap.\RALL.\cnN-AE. pol- colubrids; in 71f of these, females were ylepis -f-r-r-^, A. unicolor 150 x, A. found to be larger than males, in 4? the ventrimaculatus -r+, Aparallactus capen- sexes were approximateh" equal and in sis -r. A. guentheri +, A. jacksoni X, A.

2o'c males were larger. The colubrids lunulatus 131 x, A. modestus 120 .x, A. are so diverse ecologically that few gen- ubangensis ++, A. ulugurensis X, Micre- eral statements apply well to the group laps boettgeri -f++-l-, Miodon christy as a whole. +++, M. collaris -r++, A/, c. graueri +, Relationships among the host of col- Xenocalamus mechowi -f+++, X. sa- ubrid genera and species are still poorly biensis +-r. The available e\idence in- understood and existing classifications dicates that females are larger, often by are controversial. For convenience in a wide margin, in the snakes of this discussing SSD in colubrids. they are .African subfamih^. di\ided into subfamily groupings, fol- ATR.\crASPix.\E. Atractaspis bibroni X. — lowing the system presented by Smith, 111 A. congica , A. dahomeyensis — Smith and Sawin (1977). , A. irregularis 110 x. A. microlepi- Alsophiixae. Arrhyton dolichurum dotus — , A. 771. fallax X, A. m. — micropholis . . A. taeniatum +, A. vittatum — , A. V. landoi +, Atracfus "species A" -f, These "false \ipers" ha\e onh- re- A. badius -f +, A. carrioni 142 x, A. elaps cently been reallocated as colubrids. 111, A. latifrom +++, A. major HI, A. They resemble viperids in having long, multicinctus 110 .x, A. occipitoalbus 126 folding poison fangs and a fairh" potent X, A. resplendens +, A. roulei ++, Clelia . Neither sex is consistently larger rustica 97 .x, Farancia ahacura 165 m, F. but in some the sexes are approximately a. reimuardti 159 m, F. er>trogramma equal, while the maximum size attained is 149, Oxyrhopus meJanogenys 115 .x. O. greater in females of some kinds and petola 118, O. trigeminus ++++, Tachy- in males of others. menis chilensis assimilis 87 x, T. c. me- BoiGix.\E. Ahaetulla mycterizans Janura 106 x, T. peruWana 93, Uromucer ++++, A. nasuta +++-r, A. prasina cateshyi ++, JJ. c. insulaevaccirum 122 X, A. pulverulenta ++++, +++, U. c. frondicator + ++, U. c. hario- blandingii +, B. ceylonensis +++, B. latus ++, U. c. inchausteguii ++++, U. cyanea ++—, B. cynodon -!-+, B. den- c. pampineus +-f-l-. drophila 96 x, B. jorsteni —, B. gokool + These Xew World and mainl\' trop- B. multimaculata +++, B. ochracea -f ical colubrids are a diverse assemblage, B. pulverulenta 106 x, B. trigonata -f with a wide range of sizes, , and Crotaphopeltis degeni X. C. hotam strategies of feeding and reproduction. boeia 105, Dipsadoboa duchesnei

Some are highly prolific; eggs a\erage D. clongata , D. unicolor 84 x. more than 30 per clutch in both species These are Asiatic and African rear- of Farancia. Females are larger than fanged snakes, mostly of arboreal habits. males in most, and attain maximum rela- In the Asiatic Ahaetulla and Boiga fe- tive size in Farancia. However, males males are larger than males, but in the may be larger than females in Clelia African Crotaphopeltis the sexes are ,

24 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY nearly equal-sized and in Dipsadohoa grahamiae X, S. hexalepis 90 m, S. h. males are larger. mojavensis 84 m, S. h. virgultea 91 m, . fuliginosus S. lemniscata 97, S. mexicana 87, Spalero- + +++, B. lineatus 140 x, B. oliva- sophis clifFordi 107, S. diadema ++. ceus X, ornata ++, G. smijthii The snakes of this almost cosmopoli- X, G. tholloni +++, aurora tan subfamily are medium-sized or large, +++, L. inornatus ++++, Lycodono- active, diurnal, and with few exceptions morphus laevissimus +++, L. leleupi are egg-layers. Some are constrictors; +++, L. rufulus +++. some are arboreal but most are terres- In these African "house snakes" and trial. They differ from the majority of "swamp snakes" females average much snakes in tending to have males larger larger than males. than females, but there is much differ- Calamarinae. Calamaria agamen- ence between genera and species in this sis 118, C. gervaisi 126 x, C. leuco- regard. Among 37 taxa males were gaster +, C. linnaei ++, C. lumbricoidea larger in 23, sizes were equal in 3 and 115, C. modesta ++, C. multiplicata 126, females were larger in 11. In these 37 C. pavimentata 116 x, C. septentrionalis taxa for which substantial series were ++, C. uniformis +, C. virgulata 116, a\ailable FMR averaged 96.0 ± 1.40. In Trachischium fuscum ++++, T. guen- the North American racer. Coluber con- theri +++, T. laeve ++++. strictor, females are considerably larger In these small, secretive or fossorial than males (FMR 110), but in some of Oriental snakes, females average con- the Old World species of Coluber the sistently larger than males. opposite relationship applies, FMR 71 in C. jugularis, and 77 in C. viridiflavus CoLUBRiNAE. Argyrogeua fasciolata xanthurus. Probably male aggression or X, elegans X, Chironius cari- combat occurs to some degree in all of natus — , C. fuscus — , Coluber constrictor these snakes. It has been known since 110, C. jugularis 71 m, C. karelini ++, ancient times in at least the aesculapian C. ravergieri —, C. spinalis 126 x, C. Elaphe longissima; the caducis ventroniaculatus — , C. viridiflavtis 86 x, which s\mbolizes the medical profes- C. v. xanthurus 77, Coronella aus- sion, is a representation of male combat triaca 102, C. hrachyura — , Drymoluber in this species (FMR 87). Rigley (1971: dichrous 74, Elaphe climacophora 102, 65) first described male combat under E. conspicillata 100 x, E. dione 103 x, natural conditions in Elaphe obsoleta. E. flavolineata 104 x, E. helena + + ++, Two of the snakes were lying with their E. hodgsoni , E. longissima 86 m, E. tails and posterior parts of their bodies obsoleta 96, E. porphyriaca 100 x, E. intertwined while the anterior parts were quadrivirgata 92, E. radiata 108 x, E. swa\ing and looping. Each seemed to taeniura ++, Elapoides fuscus 110, be stri\ing to hold down and press Gongylosoma baliodeira 108, Gonysoma against the ground the head and fore- oxycephala +, Leptophis ahaetulla 91, body of the opponent. Stickel, Stickel Liopeltis calamaria ++, L. frenatus — and Schmid (1980) observed male com- L. rappi X, L. scriptus X, L. stoliczkae twice in their 22-year study of a rat —, Lytorhynchus diadema — , Mastico- snake population. There was spiral phis lateralis 106, M. taeniatus 95 m, M. twisting of the bodies as each snake t. ruthveni 96 m, Meizodon coronatus +, seemed to be striving to keep its head in M. semiornatus +4-+, Opheodrys aesti- a superior position and force its oppo- vus 100 m, O. major 83 x, O. muJticinctiis nent to the ground. Once the aggressor , O. vernalis 101 x, melano- leucus affinis 104, P. m. catenifer 95 m, bit the other snake. One encounter P. m. deserticola 91, P. m. sayi 101, Ptyas lasted three minutes and the other 45 korros 92, P. mucosus 94, Salvadora minutes. One of the same snakes was SEXUAL SIZE DIFFERENCES IN REPTILES 25 involved in both encounters. Bogert and aged 114.32 ± 2.85. To my knowledge, Roth (1966) described male combat in male combat or rivalry has not been the gopher snake (Pituophis melano- recorded in any dipsadine. leuciis). DisPHOLiDiNAE. DisplioUdus typus Dasypeltinae. Dasypeltis atra + ++, 102 X, Telescopus dhara ++++, T. D. fasciata ++, D. scahro 117 x. semianmdatus 128 x, Thelotornis capen- sis 100 X, T. kirtlandi +. The African egg-eaters differ from These are ar- boreal African rear-fanged snakes, other snakes in morphological features the boomslangs, associated with their specialized feeding large-eyed snakes and twig snakes. Females larger habits. Their relationships are uncertain. tend to be than males. Females are relatively large. Geodipsanae. Geodipsas depressiceps DiPSADiNAE. Carphophis vermis 117, 116 X, Psammodynastes ptdverulentus Coniophanes hipunctatus ++++, C. 109 X. fissidens 114, Diadophis punctatus 111, The mock vipers and their relatives Dipsas catesbyi 96, D. pavonina —, are rear-fanged terrestrial Old World D. variegata X, Ficimia oUvacea 95 x, snakes. Females are larger than males. Ficimia quadrangularis 95, Geophis In Psammodynastes there is color di- hrachijcephalus 117 m, G. hoffmanni 132 morphism in the sexes. m, G. nasalis 105 m, G. rhodogcister 124 Homalopsinae. Cerberus rhynchops m, G. semidoliatus 129 m, Gyalopion 118 -x, Enhydris chinensis +, E. bocourti canum 106, Hypsigleno torquata +++, -f +++, E. enhydris 109, £. plumbea +, Imantodes cenchoa 109 x, Leptodeira Fordonia leucobaJia 119 x, Homalopsis annulata 108, L. a. ashmeadi ++, L. a. buccata 109. cussiliris +++, L. a. rhombifera ++, L. frenata ++, L. nigrofasciata +, L. pohj- These heavy-bodied viviparous rear- sticta ++, L. punctata +, L. septentri- fanged snakes occur in freshwater or estuarine habitats of southeastern Asia onalis +++, L. s. ornata +++, Pseustes poecilonotus +, Rhadinea brevirostris —, and the Indo-Australian Archipelago. R. calligaster +++, R. decorata +, R. They have usually been placed in a fam- flavilata 112, R. fulvittis +, R. gaigeae ily separate from the Colubridae. Fe- ++, R. hesperis +++, R. laureata ++, males are consistently larger than males.

Sibon dimidiata , S. nebulata X, Hydropsinae. Helicops angulatus

S. n. leucomelas X, S. sanniola — , Sdjyno- + + . Like other groups of aquatic snakes, morphus mikani ++, S. ventrimoculatus this Neotropical genus has females larger +, Tantilla gracilis 126, T. melanoceph- than males. ala +, T. planiceps 94 m, Tretanorhinus Lampropeltinae. Cemophora coc- nigroluteus 141, Trimorphodon biscu- cinea 79 x, Lampropeltis calligaster 91, tatiis lambda 130 x, T. b. vandenburghi L. getulus 87, L. g. boylii 95, L. g. hol- 127 m, T. b. hjrophanes +. brooki 88, L. multicincta 112 m, L. py- The dipsadines are New World romelana 91 m, L. trianguJum 88 x, L.

snakes that are mostly medium-sized or t. elapsoides 88 x, L. t. syspila 97, Rhino-

small, nocturnal and/or secretive-fos- cheilus lecontei 87 m, R. I. "clarus" 91 m,

sorial, predatory on invertebrates such R. /. tessellatus — , Stilosoma extenu- as earthworms, slugs, snails, and soft- aiiim 104 m. In these oviparous North bodied , or on frogs, and in a few American constrictors males are usually cases, on lizards or small snakes. Most larger than females (FMR averaged 91.5 are tropical. All are oviparous. Females ± 1.90 for 13 taxa). Male competition were found to be larger than males in and combat has been noted in various 16 of the 19 species for which series kinds of king snakes. An excellent ac-

were available, but Sibon is an excep- count of fighting in L. calligaster was tion to this general trend. FMR aver- that of Moehn (1967). Two males were ,

26 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY found engaged in a "combat dance." 152 m, N. rhomb ifera 111, N. r. blan- They were captured and caged together, chardi 120, N. r. werleri 162, N. sipedon and fighting continued intermittently 132, N. s. insularum 108 m, N. s. pleuralis over a period of days. It involved rear- 124 m, N. taxispilota 117 m, N. valida ing and attempting to throw down the 135, N. V. celaeno 109, N. v. isabelleae opponent with coiling and jerking move- 142, N. V. thamnophisoides 121, Opistho- ments, but also involved pursuit and tropis latouchi +, Pseiidoxenodon mac- vicious biting. rops — , P. nothus — , Regina alleni 106 Lycodontinae. Dinodon favozona- m, R. grahami 120, R. rigida 134 m, R. tum 83 X, D. orientale 100 m, D. rufo- septemvittata 114, Rhabdophis auricu- zonatum 96 x, Lijcodon aulicus +, L. lata +, R. a. myersi ++, R. chrysarga jara +, L. subcinctus +, L. travancori- 106, R. himalayana + +++, R. nigro- cus +. cincta X, R. nuchalis ++++, R. sub- These are nocturnal, oviparous, Asi- miniata 122, R. tigrina 120, Rliabdops atic snakes; Dinodon species average con- bicolor -f , Seminatrix pygaea 110, Store- siderably larger than those of Lycodon. ria dekayi texanum 120, S. d. victa 120, The limited data available indicate that S. occipitomaculata 118, Thamnophis the females are larger in Lycodon, but brachystoma 112 m, T. butleri 109, T. males tend to be larger in Dinodon. couchi 132 m, T. c. gigas 134 m, T. c. Lycophidunae. varie- hammondi 136 m, T. c. hydrophilus 130 gatum +, L. capense 133 x, L. laterale X, m, T. cyrtopsis 146 m, T. elegans 118 m, L. ornatum +++, L. semianmde X, T. e. biscutatus 138 m, T. e. terrestris capensis ++, M. poensis 106 m, T. e. vagrans 122, T. eques 115 x, ++++, M. savorgnanii ++, M. stenoph- T. marcianus 126 m, T. ordinoides 125, thalmus ++++, Natriciteres oJivacea T. proximus 110, T. radix 108 m, T. rufi- 125 X. punctatus ++, T. sauritus 118, T. sirtalis 114, T. s. parietalis 123, T. s. pickeringi The wolf snakes, file snakes and 124, Tropidoclonion lineatum 122, Vir- marsh snakes of tliis subfamily are Afri- ginia striatula 116, V. valeriae 124, Xeno- can and tend to nocturnality and to liz- chrophis cerasogaster 153 x, X. piscator ard- or frog-eating habits. To varying 135, X. punctulata -f+, X. vittata 124, degrees the females are larger than the Xylophis perroteti males. ++. This large subfamily of holarctic . Amphiesma beddomei colubrids, including the water snakes, ++, A. craspedogaster -\-, A. khasiensis garter snakes and their relatives, are ac- +, A. modesta +++, A. monticola ++, tive, diurnal or nocturnal, and many A. platyceps — , A. popei X, A. pryeri have aquatic or wetland habitats. They ++, A. sauteri 116 x, A. sieboldi + ++, are mostly medium-sized or small, and A. stolata 133, A. venningi +, A. vibakari feed on a variety of vertebrate and in- X, A. xenura X, Aspidura copi +, A. vertebrate prey, but especially on fish. trachyprocta ++ ++, Atretium schisto- In general, members of this group are sum 120 X, Balanophis ceylonensis — "r-selected," with rapid development, Clonophis kirtlandi 110 m, Haplocercus large clutches or litters and rapid pop- ceylonensis X, Macropisthodon plumbi- ulation turnover. All species in the nine color +++-I-, M. rudis 139 m, Natrix North American genera are live-bearers, annularis 138, N. natrix 114 m, N. n. whereas the much more diverse Asiatic sicula 115, N. percarinata 136 .x, N. tes- species are oviparous, with the single sellata 103 m, N. trianguligera 118, Nerodia cyclopion 124 m, N. erythro- exception of Natrix annularis. Regard- gaster bogerti 107 x, N. e. transversa 115, less of these differences, it is a general rule that females are larger but Pseu- N. fasciata 116 m, N. f. clarki ++++, IV. is In /. confluens 132 m, N. f. pictiventris doxenodon an apparent exception. SEXUAL SIZE DIFFERENCES IN REPTILES 27

63 taxa for which definite figures were avaihible, FMR averaged 122.05 ^ 1.52 (Fig. 4). It averaged 122 for 20 kinds of Thamnophis (Table 7) and 124 for 13 kinds of Nerodia. In various natricines mating aggregations have been observed, with complete lack of male rivalry. Sev- eral males may simultaneously court the same female, their massed bodies form- ing a "snake ball." With no rivalry or combat between males, large male size would confer no selective advantage, but large size in the female enables her to produce a relatively large clutch or litter. Primiparous females are much smaller and less prolific than others, but successive broods become progressively larger as the female gains in bulk.

Table 7. Mean Female to Male Ratios (FMR) in Thamnophis. 28 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

"flying snakes" of southeastern Asia, and Xenodontinae. Heferodon nasicus the green snakes and tree snakes of 125 .X, Xenodermus javanicus 111. Africa. All are active and arboreal, feed- These small colubrids of southeastern ing on lizards and sometimes on birds. Asia are predatory on frogs and inverte- Females are larger than males. brates. Females are larger than males. PsAMMOPHiiNAE. HemirhagerrJiis no- Xenodermatinae. AchaJinus spinalis totaenia 105 x, Psammophis angolensis 116 m, H. pJatyrhinos 107 m, Leima- +, P. crucifer X, P. jallae , P. punctu- dophis reginae 112, L. taeniurus 105 x, latus — , P. schokari 77 m, P. sibilans 82, Liophis miliaris 124, Xenodon rabdo- P. sulytaeniatus — , Psammophylax tritae- cephalus ++, X. severus 96. These are niatus 93 x, Rhamphiophis acutus 87 x. small to large New World snakes that The African bark snakes, sand snakes, feed largely on toads, frogs and inverte- and skaapstekers of this group are brates. The few available records sug- mainly terrestrial and diurnal rear- gest that females are usually larger than fanged colubrids. Seemingly males are males, or if males are larger the disparity substantially larger than females in most is small. members of the group, especially in the ELAPIDAE. Aspidelaps scutatus +, genus Psammophis. Bungariis bungaroides , B. can- PseudASPiNAE. Duherria lutrix 118 x, didus — , B. fasciatus — , B. multicinctus D. rhodesiana +++, D. variegata —, B. tcalli — , Calliophis calligaster —, Prosijmna amhigua 117 x, P. ++++, C. c. gemianulus —, C. joponicus , bivittata -I--I--I--I-, P. iani ++, P. lineata C. maclcUandi +++, C. maculiceps 4-+, — , P. sundevallii + + ++, Pseudaspis Dendroaspis angusticeps X, D. jaimesoni cana X. +, D. pohjlepis X, Elapsoidea guentheri

This African subfamily includes the X, E. loveridgei — , E. I. collettii +, E. diminutive, viviparous slug-eaters, water semiannulata X, Uemichatus hemichatus snakes, the fossorial shovel-nosed snakes, ++ ++, Laticauda colubrina + +++, L. and the large, viviparous, -eating laficauda ++, Maticora intestinalis 99 x, . Of the latter, FitzSimons Micrurus alleni ++, M. fulvius 134, M. ". (1962) wrote that . . males have been f. tenere 119, M. langsdorffi +, M. nigro- observed to fight fiercely and gnash each cinctus + + + , M. spixii , Naja other severely with their teeth." How- Jiaje — , N. melanoleuca 85 x, iV. mossam- ever, the entire group seems to be char- bica X, N. naja 99, .V. n. samarensis -I-, acterized by relatively large females. N. nigricollis 102 x. SoMORiNAE. Sonera episcopa 100, S. Although the Australian protero- michoacanensis 104 x, S. semiannulata glyphs are no longer considered elapids, 99. the group still includes highly diverse In these small and secretive North genera of American, African and Asiatic American snakes, the FMR is near par- snakes, and may be polyphyletic. Within ity; either females or males may be the group, medium to large size and slightly larger. Male combat has been snake-eating habits are common. All ex- described in S. episcopa by Kroll (1971). cept Hemichatus are oviparous. In He- In a group of the snakes captured in michatus FMR is especially high, and mid-March and confined together, fight- for the group as a whole the usual con- ing was observed on 17, 19 and 20 dition seems to be that of having the March. It involved biting an opponent females larger. The Asiatic coral snakes and intertwining with him, and was as- and kraits, Bungarus and Calliophis, are sociated with mating. Males were ob- exceptions, having males larger than fe- served to interrupt their courtship to males. The primitive oviparous seasnakes attack a second male that approached or "sea kraits" of the genus Laticauda the pair. are now considered elapids not closely .

SEXUAL SIZE DIFFERENCES IN REPTILES 29

related to hydrophiine seasnakes (Smith were females. Means for the 30 largest et al, 1977). In Laticauda females are of each sex were utilized to calculate larger than males. FMR of 118.

HYDROPHIIDAE. This family is OxYURANiNAE. Acanthophis antarc- now construed to include not only the ticus 131, Austrelaps superbus 92, Caco- true sea snakes (hydrophiines) but also phis kreftii 112, C. harriettae 125, C. the primitive terrestrial Australian pro- squamulosus 129, Hemiaspis signata 99, teroglyphs that have formerly been con- Notechis scutatus 99, Pseudechis por- sidered elapids (oxyuranines; Smith et al., phryriacus 95, Urechis gouldi 83, Vermi- 1977). The two subfamilies are much cella annulata 139. different ecologically, and their repre- The Australian proteroglyphs, per- sentatives are therefore listed and dis- haps more than any other snakes, are cussed separately. noted for male combat. Worrell (1964) Hydrophunae. Astrotia stokesii described this behavior as follows: Enhydrina schistosa 111 x, Hy- +++, Coinciding witli the mating season is drophis hrookei X, H. caerulescens —, the spectacular wrestling of the males H. cyanocinctus ++, H. jasciatus —, H. .... One or more males may pursue each other over rocks, through klossi +, H. lapemoides X, H. mammil- creeks and scrub, twining around each other, laris X, H. ohscurus +, H. ornatus —, wrestling and crawling frenziedly about H. spiralis +, H. stricticollis X, H. tor- the bush, flattening the grass as they quatus 97 x, Kerilia jerdoni 103 x, La- writhe, and stopping occasionally to pemis curtus 100, Microcephalus cantoris lift their forebodies high, swaying nervously. +-f, M. gracilis +, Pelamis platurus 118,

Praescutata viperina — , Thalassophis It is significant that of the species anomalus — checked, only those of the small secre- The sea snakes are medium-sized tive Cacophis and Vermicella and the to large viviparous, marine, fish-eaters. sluggish, viperlike Acanthophis were Compared with terrestrial snakes they found to have females larger than males. are less prolific, having only one or two Male combat has not been observed in young at a birth in some instances. Even these two genera, and probably does not

in the tropical climates where most oc- occur. Shine ( 1980c) emphasized the cur, there is a brief annual breeding sea- viperlike appearance, behavior, and re- son. Large-scale mating aggregations productive and feeding strategy of the have been observed (Smith, 1943). Ap- Australian death adder as a case of parently mating is promiscuous in these evolutionary convergence. aggregations. There are no records of VIPERIDAE. Atheris nitschei ++, male competition or combat. A. squamiger 113 x, Bitis arietans 93,

Of the 20 species for which informa- B. caudalis X, B. cornutus , B. gabon- tion is available, five apparently have ica +4-, B. nasicornis +++, B. pauci- males larger than females, five have the squamata -f, B. peringueyi +-(-, Causus sexes about equal and 10 have females defilipii X, C. lichtensteini 115 x, C. larger than males. Large series are avail- lineatus +, C. resimus +, C. rhombeatus able to compare sizes of the sexes only 95 X, Cerastes cerastes 120 x, Echis cari- in Enhydrina schistosa, Lapemis curtus nata 129 m, E. colorata 98, Pseudoceras- and Pelamis platurus. In the latter spe- tes fieldi 108 x, Vipera ammodytes 118 cies Kropach (1975) found a mean length m, V. berus 108, V. latastei 90 .x, V. super- S-V of 452 mm in 359 males and 481 mm ciliaris +, V. ursini 110, V. xanthina 95. in 391 females, FMR 109, but the series These are venomous front-fanged included immatures as well as adults. snakes of Africa and Eurasia. Most are Kropach also listed the lengths of 100 of heavy-bodied and slow-moving, securing the largest individuals and found 70 their prey by ambush and the venomous 30 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY bite. For 13 species FMR averaged 107 cola ++++, T. okinavensis 99, T.

(90-129). Most species have females puniceus 139 .x, T. purpureomaculatus larger than males, and most are vivipar- ++++, T. stejnegeri 109 x, T. strigatus ous, producing medium to large litters. +, T. tokarensis , T. trigonocephalus Relatively large size of the female makes + +++, T. ivagleri X. possible the production of large litters. The pit vipers are now generally con- However, there is male combat in vipers, sidered to be a subfamily of the Viperi- and in fact males of Vipera berus are dae. These New World and Asiatic sole- known to be territorial. In a study of noglyphs are mostly medium-sized to the diminutive V. ursini, Bruno (1967a) large, heavy-bodied and slow-moving found that FMR increased from 104 in ambush hunters, predatory on verte- Yugoslavia to 105 in Italy and 110 in brates. They rely on potent venom to France. The Yugoslavian vipers were subdue the prey. Most are live-bearers, found to be the largest and the Italian but a few Asiatic species of Agkistrodon were the smallest. St. Girons (1978) and Trimeresurus as well as the Neo- noted that the sexes are about the same tropical Lachesis are oviparous. In most size in Vipera aspis and probably in V. species of Trimeresurus females are kaznakovi, whereas males are the larger markedly larger than males, but males in V. ammodijtes and females are larger are larger than females in 24 of 25 kinds in V. berus, V. seoanei and V. ursini. of rattlesnakes. The exception is Cro- All these are small vipers of cold and talus cerastes in which FMR is 103 and temperate climates of Europe and Asia. for the entire group FMR averages 87.6 CROTALIDAE. Agkistrodon ocutus ± 1.19 (Table 10). Females are relatively +, A. blomhoffi brevicaudus X, A. b. small in C. mitchelli pyrrhus (77) and siniticus X, A. caliginosus X, A. cognatus C. viridis nuntius (78) whereas in C. —, A. contortrix 94, A. hahjs 112 x, A. molossus nigrescens the ratio is near himalayanus X, A. piscivorus 96, A. rho- parity (99). There is no obvious corre- dostoma +++, A. saxatilis — , Bothrops lation with body size, nor with climate. atrox 115, B. bilineatus + ++, B. lans- Rival male rattlesnakes approach each bergi 101, B. nasutus 96, B. neuwiedii X, other, rear with their ventral surfaces B. pidcher 153 x, B. punctatus 144 x, in contact, and with sudden jerky mo- B. schlegelii 111, Crotalus atrox 91, C. tions each attempts to throw down its cerastes 103, C. durissus 88, C. d. ter- opponent. The larger and heavier snake rificus 97, C. enyo 92, C. horridus 94, is usually the winner but sometimes only

C. lepidus 82 x, C. 1. klauberi 85, C. luca- after a prolonged bout; the loser with- sensis 87, C. mitchelli 94, C. m. pyrrhus draws from the encounter and leaves the 78, C. m. stephensi 88, C. molossus 91, area. Large size in the male would seem C. m. nigrescens 84, C. pricei 82, C. to confer selective advantage. Whether ruber 84, C. scutulatus 88, C. tigris 82, some species of rattlesnakes are more in- C. triseriatus 90, C. viridis 92, C. v. con- clined to rivalry and combat than others color 88, C. v. helleri 80, C. v. lutosus is still unknown. 90, C. v. nuntius 78, C. v. oreganus 87, In the copperhead Agkistrodon con- Hypnale hijpnale ++, H. tcaJli —, Sis- tortrix and the cottonmouth A. piscivo- trurus catenatus 92, S. ravtis exiguus 76 rus, the FMRs 93 and 96 were similar X, Trimeresurus albolabris 161 x, T. can- to those found in rattlesnakes. Both toris 4-+++, T. elegans X, T. erythrurus these species are known to have a com- ++++, T. favomaculatus ++++, T. bat dance, similar to that of rattlesnakes flavoviridis 89, T. gramineus + ++, T. except in details. Whether the same ap- jerdoni ++, T. kaulbacki +, T. labialis plies to the Asiatic species is not known, +, T. macrolepis + + ++, T. malabaricus but published figures on maximum sizes +++, r. microsquamatus X, T. monti- indicate that in some of them the fe- SEXUAL SIZE DIFFERENCES IN REPTILES 31 males are the larger including A. blom- available. Staton and Dixon (1977) in a hoffi siniticus, A. acutus and A. hahjs. study of Caitnan crocodylus observed Males are the larger in A. hahjs cognatus, instances of coitus in which males ap- A. saxatilis and A. blomhoffi brevicaudus, peared to be 1.7 to 2.5 m in length and while in A. caliginosus the sexes seem to females 1.2 to 1.5 m. However, Brazaitis be equal. In the Asiatic Hijpnah walli (1973) noted that in the small Alligator males are the larger. In the Neotropical sinensis the female is larger than the Bothrops and the Asiatic Trirneresurus male. Presumably this was mentioned females are usually much larger than because it is the exception, and size re- males. lationships of the sexes were not indi- cated for other kinds of crocodilians in Crocodylia Brazaitis' review.

CROCODYLIA. Alligator mississip- Crocodilians are known to maintain piensis 82, Crocodylus niloticus 85. territories, and male aggression and com- bat are common. Garrick and Lang The alligator was studied in Louisi- (1977) compared social behavior in Alli- ana by Chabreck and Joanen (1979) from gator mississippiensis, Crocodylus acutus 2500 young captured, marked and re- and C. niloticus. They found that in all leased, and 218 recoveries, some after three species combat between males con- attainment of adult size. The data indi- testing for dominance precedes the es- cated that in both sexes growth con- tablishment of mating territories. Voice tinued long after sexual maturity, but at is prominent in social behavior. Both reduced rates, slowing earlier and more sexes "bellow," especially in the breed- abruptly in the female. The following ing season. The bellowing alligator is average total lengths in meters were cal- usually in the water. The sound is ac- culated or projected: companied by stereotyped movement 10-year-olds males 2.55 females 2.10 witli raising of the head and arching of 20-year-olds males 3.50 females 2.55 the tail, and, in the male, eversion of oldest males 4.2 females 2.73 the submaxillary gland. Bellowing sig- At the age of ten years, both males nals the presence and location of the in- and females were sexually mature but dividual as a member of a social group still growing rapidly; at age 20 females (Garrick, Lang and Herzog, 1978). Ter- were near their maximum size but males ritorial males dominate the breeding were still capable of substantial gain. groups. In A. mississippiensis alpha FMR was 82 for 10-year-olds, 73 for 20- males have been observed to interrupt year-olds and 65 for the oldest. The lat- courtship of subdominants. Females ter is one of the lowest FMR figures show submissive behavior in the pres- recorded for reptile species. ence of territorial males but may form Cott (1961) indicated the following dominance hierarchies among them- total lengths and weights for mature selves. They move freely from one Crocodylus niloticus: male's territory to another. Selective factors which might tend Males (14) 3.416 m (3.073-3.743) 170.8 kg (115.8-240.0) to increase female size in crocodilians Females (50) 2.911 m (2.600-3.192) are: (1) large clutch size, and the need

104.2 kg ( 70.2-146.2) to increase the capacity of the female; Cannibalistic on the de- In this crocodile SSD is large, but less (2) for mater- than in Alligator mississippiensis. Prob- pendent young, and the need includ- ably males are substantially larger than nal defense against other adults, females in most crocodilians, with simi- ing males. Factors which might select lar trends of widening SSD with advanc- for increased male size are direct com- ing age, but definite figures are not petition for females, or for breeding ter- 32 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY ritories, and the existence of social general trend are found and these aid hierarchies. Stress associated with breed- in identifying some of the factors which ing and competition for mates is intensi- were the basis for natural selection pro- fied because it is concentrated in a ducing sexual size differences. Rivalry relatively short breeding season in all and aggression in males promote selec- species. tion for large individuals of that sex; selection for large clutches or litters, DISCUSSION and for relatively large neonates may result in selection of relatively large Extensive sampling, comparing sizes females. of the sexes in many species of reptiles, has demonstrated SSD to be extremely The seven reptile species noted as labile within the class. Females ranged having the lowest FMRs, 70 or less (min- in size from just over one-fourth to about imum 66) are all insular West Indian 15 times male bulk in a virtual con- iguanids, Anolis (5 species) and Leio- tinuum. Within each of the main groups, cephahis (2 species). It has already been turtles, lizards and snakes, also, was shown under the discussion of Anolis, found a wide range of SSD, and to a that relative size of females averages lesser degree the same statement applied markedly smaller in the insular species to families, subfamilies and genera than in those of the mainland. This con- (Tables 8 to 11). Even individual species dition is associated with generally high proved to have important differences in population densities, light predation SSD from one population to another, pressure, and intense intraspecific com-

and seemingly SSD is highly susceptible petition in the insular species. Diver- to selective pressure bringing about gence in sizes of the sexes alleviates evolutionary change. Also, direct en- intraspecific competition for food (Schoe- vironmental influences may alter SSD. ner, 1967).

In turtles and snakes it is most com- One of the seven species with lowest mon for females to exceed males in aver- FMR, Anolis lineatopus (FMR 69) of age size, whereas in lizards the opposite Jamaica has been the subject of an in- relationship is more common. However, tensive ecological study (Rand, 1967). in each group many exceptions from the These findings are of special interest

Table 8. Distribution Of FMR Percentages Within The Turtles, Lizards, Snakes And Major Families Of These Groups. SEXUAL SIZE DIFFERENCES IN REPTILES 33 because A. lineatopus is suspected to be ture males may compete with similar representative of various other lizards sized females for territories. Also, they that have relatively large males and may be treated as females by courting small females in its social system and adult males, but invariably flee from the reproductive strategy. As in other anoles, male's approach. On the average males the females lay one egg per clutch, but use larger and higher perches than do oviposition is frequent and breeding oc- other individuals. Although displays usu- curs throughout the year. Hatchlings ally sen^e to maintain territorial spacing, are intolerant of each other and from rival males fight fiercely at times. Com- the start they space themselves and de- bat usually involves threatening ap- fend territories. Howe\^er, they avoid proach, sparring, and biting with jaws adults and are subject to cannibalistic interlocked. Usually one combatant is predation. Individuals of both sexes and thrown from perch to ground. Combats all sizes are territorial, but agonistic be- usually are brief and do not result in havior is directed mainly against similar- serious injury to either participant. sized individuals. Hence, territories may Forty-four additional species of rep- overlap extensively. An adult female tiles were found to have notably low may have several mutually exclusive ju- FMRs in the range from 71 to 80. These veniles living within her territory. Small included seven species of snakes (Cro- lizards avoid larger ones, and are gen- talus, Coluber, Cemophora, Drijmoluher, erally ignored or sometimes briefly Psammophis, Sistruriis) but were mostly chased by them. A male's territory may lizards. The latter included a skink encompass those of several females and (Scinctis) and a teiid (Cnemidophorus) he may mate with them regularly. Males but otherwise were all iguanids, espe- spend much of their time in territorial cially species of Anolis (15 insular, 5 display. One male observed for an en- mainland), Leioceplialus (4 insular) and tire day displayed on the average, every Tropidurus (4 insular, 3 mainland), but

3.5 minutes. However, there is little pre- also including Uma (2) and Ctenosaura copulatory display or courtship. Females (1). are individually recognized. Mating oc- For some of these species habits are curs when an approached female is re- little known, but a few have been sub- ceptive and does not move away to jects of intensive field study. In an early avoid the male. Nonreceptive females study of Anolis sagrei (FMR 79) in Cuba, flee and escape tlie male easily. Imma- Evans (1938) described territoriality and

Table 9. Distribution Of FMR Percentages Within Major Subfamilies Of Iguanid Lizards And Colubrid Snakes. 34 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY male fighting. He found a social system in which dominant adult males main- tained large territories supporting vari- ous other categories of individuals in- cluding juveniles, breeding females, and subordinate males. Michael (1972) stud- ied the ecology of Anolis carolinensis (FMR 79) in eastern Texas. He found that most females begin to ovulate in the season following their own hatching. Although males attain sexual maturity early, when they are less than a year old, still relatively small, and lacking full development of their secondary sexual

Table 10. Mean Female to Male Ratios (FMR) For Species In Various Genera Of Lizards And Snakes. SEXUAL SIZE DIFFERENCES IN REPTILES 35 schokari (FMR 79) may be suspected. ingly forcible copulations, including Social interactions between snakes are homosexual matings with subordinate or much less often observed than those of defeated males, are fairly common. It lizards. Aggressive behavior has been may be significant in this connection reported in relatively few kinds but per- that the male is the larger in the ma- haps occurs in many others. Presumably jority of lizard species, whereas the re- those males that are most aggressive and verse is true in the majority of snakes most successful in vanquishing rivals in and turtles. the combat dance are also most success- Predation may be an important in- ful in mating, but this relationship has hibition to the development of male not actually been demonstrated in field combat and the evolution of relatively studies. large males. In discussing sexual size The possibility of males siring off- differences in amphibians. Shine (1979) spring by forcible mating may have led wrote that to selection for larger size in the male. ... a major factor in the evolution of Even a small difference in size between male combat may be the participant's the sexes with the male larger and vulnerability to predation. Fighting

stronger, might greatly increase the pos- frogs are exposed to predators . . . and one might expect combat to be most sibility of rape. In a species having the common in species that are at little risk. female larger, she would tend to domi- Risk should be lowest in species with nate and intimidate the male; he could large body size or chemical de- not overpower her and rape would fenses .... scarcely possible. Thornhill be (1980) Presumably the same factors affect sex- the theory that large has developed male ual size ratios in reptiles. In snakes, size has evolved in species, in- many especially, male fighting and relatively cluding to make rape possible. humans, large male size are characteristic of for- that sexual di- He rejected the idea midably venomous kinds—rattlesnakes morphism in related to an humans was and their near relatives, and the Aus- evolutionary history in the which preva- tralian oxyuranines. Although none of lent mating system was harem polygyny, these snakes is free from predation, they ". but . . regardless of the prevalent mat- are certainly much less vulnerable than ing system in evolutionary his- human non-venomous types, and hence can in- tory, larger males were favored because dulge in fighting with reasonably low of likelihood of successful the increased risk of predation. Male fighting and rape if they failed to compete success- relatively large male size is also con- fully for parental resources." spicuous in the crocodilians, giant rep- In both snakes and turtles the highly tiles which as adults are generally secure altered body form renders copulation from predation. difficult, and even though the male suc- In lizards, on the contrary, male ceeded in overpowering the female, he fighting and relatively large male size might not be able to accomplish intro- is common and occurs mostly in kinds mission. In both groups female coopera- that are not large or formidable and tion seems essential for consummation lack noxious qualities— lacertids, teiids of courtship to occur. A female tortoise and iguanids (especially anolines and may frustrate the male's attempts merely tropidurines) that are highly vulnerable resting her shell the substrate in- by on to predation. A common trait of these stead of standing, and a female snake species is that they are active, agile and must raise her tail causing the cloaca to swift. A combat or chase may be almost gape for the male's hemipenis to be in- instantaneous, and exposure to predation

serted. In contrast, lizards accomplish is thereby minimized for any single en- copulation much more readily. Seem- counter. Likewise, in snakes, several of 36 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY those that have relatively large males and 20 turtles (Fig. 5). All the turtles and are known or presumed to have are emydids and trionychids. Species of male combat are relatively innocuous the genera Graptemys and Triomjx were but fast-moving kinds, Coluber and found to have FMRs much higher than Psammophis. in any other reptils. The snakes include A group of 120 species (87 lizards, a boid, 2 typhlopids, 17 natricines, 4 31 snakes, 2 turtles) were found to have alsophiines, 7 other miscellaneous colu- FMRs in the range 81-90, that is, with brids, 2 oxyuranines and 2 crotalids. males substantially larger than females. The group with somewhat smaller In this group, 60 were iguanids in 10 FMRs, in the range 121 to 130, was genera, but Anolis was by far the best found to include 30 snakes and only represented, with 33 species. Other liz- 2 lizards, the latter both rainforest igua- ards were geckonids (2 genera), agamids nids, Anolis vittigerus and Polychrus (1 genus), teiids (4 genera), lacertids (3 murmoratus. The snakes included a boid, genera) and skinks (3 genera). The 31 a typhlopid, a viperid, 2 oxyuranines, 12 snakes belonged to 13 genera of colu- natricines, 4 dipsadines, and 9 other mis- brids, elapids and crotalids; Crotalus cellaneous colubrids. In the FMR range with 13 species and Lampropeltis with 111 to 120 were found 26 species of liz-

4 species were the best represented. ards of eight families, Ablepharus (2), At the upper end of the scale, with Anolis, Chamaeleo, Coleonyx, Gambelia, FMRs exceeding 130, that is with fe- Ichnotropis, Lacerta (2), Lipinia, Mabuya males very large, are 37 species of snakes (3), Moloch, Ophiomorus (2), Phyllodac-

o cr LLi CL 60 80 100 120 140 160 180 200 220 FMR (% FEMALE TO MALE LENGTH S-V)

Fig. 5. Comparison of FMR in turtles, lizards and snakes. Each group has a wide range of FMR but trends differ with turtles attaining much higher ratios than squamates, and snakes attaining much higher ratios than lizards. SEXUAL SIZE DIFFERENCES IN REPTILES 37 fyliis, Ptijchodactylus, Sceloporus (4), snakes. Striking exceptions to the gen-

Sphaerodactyhis (2), Tropidiirus, Xon- eral trends are seen in Ctenosaura similis tusia, and 63 other species of snakes of and Iguana iguana, which have relatively 42 genera. small females, yet these produce large More than half of the reptile taxa clutches, with more eggs than other liz- studied had FMRs in the range 91 to ards and more than most snakes. 110, that is with small or moderate size Figure 7 demonstrates the trend in difference between the sexes, but only squamate reptiles from a low incidence about 3.2 percent of the total 770 lacked of viviparity in those species having rela- SSD. Regardless of which sex is larger, tively small females to a high incidence the lizards and turtles in this range usu- of viviparity in those haxing relatively ally have male rivalry and combat. In small males. Viviparous species are com- the snakes, on the contrary, combat is mitted to a strategy of relatively long known to occur mostly in those kinds intervals between broods during gesta- having males definitely larger tlian fe- tion, compensated by moderate or large males. numbers of young per brood. As a con- Significant trends in the correlation tainer and carrier of the eggs and em- of FMRs with other specific traits are bryos, the female is subject to selective discernible in a few instances. Other pressure to attain adequately large size. such correlations are suspected but are Figure 8 demonstrates the related still not demonstrable. In general, rela- trend in squamates from a high percent- tively large female size is demonstrably age of tropical species among those with correlated with: (1) viviparous (vs. ovip- relatively large males to a minority of arous) reproduction, (2) large (vs. small) tropical species (i.e., mostly temperate mean number of offspring in clutch or zone species) among those with rela- litter, (3) temperate (vs. tropical) climate tively large females. The most plausible where the species occurs, and (4) small explanation of this trend is that tropical (vs. large) body size. All these factors species, having continuous breeding in are interrelated. There are many species some instances, or at least having an that are exceptions to the general trends. extended breeding season, are under less According to Trivers' (1972) theory, selective pressure to increase their size intrasexual competition is closely linked as egg containers than are those more with parental inxestment. Whichever sex restricted to a short and concentrated (usually the female) devotes the most breeding season in the temperate zone. energy, risk and sacrifice to the offspring Figure 9 shows mean sexual size ra- will be in short supply, and will be the tios in lizards and snakes of various object of competition by the opposite body-size groups. The main trend seems sex. Intrasexual competition will select to be from larger mean size in the groups for size, strength and aggressiveness, and of species having relatively large males the most successful competitors will have to smaller mean size in the groups of many mates and disproportionately large species having relatively large females. numbers of offspring. However, some points on the graph de- Figure 6 demonstrates the trend from viate from the general trend. Also each few eggs or young per clutch or litter FMR grouping includes species over a in species having relatively small fe- wide size-range, and the correlation be- males to much larger broods in those tween FMR and body size is not sta- species having relatively large females. tistically significant. Anoles and geckos make up a high pro- Both Ralls (1976) and Kolata (1977) portion of the small-brooded species in after examining the evidence, mainly in this particular sample, whereas many of mammals and birds, concluded that no the large-brooded species are natricine one of the current theories could satis- 38 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY SEXUAL SIZE DIFFERENCES IN REPTILES 39

80 100 120 140 160 FMR (% FEMALE TO MALE LENGTH S-V)

Fig. 7. Correlation of oviparity with relatively large male size vs viviparity with relatively large fe- male size in 609 species of squamate reptiles. not available to the males. Sex ratios of Regardless of which sex is the larger, several of these species approximated 1:1 SSD relieves intraspecific competition by in field samples (Bury, 1979). In a re- partitioning food resources. Anoles are cent study of Graptemys geographica at typical of reptiles having relatively large Lake of Two Mountains, Quebec, Gor- males, and for this genus Schoener (1967) don and MacCullock (1979) found the and others have amply demonstrated population to be biased in favor of males. that males, on the average, take larger On the contrary, Seigel (1979) found that food items often of different taxa from in a population of Malacleinys terrapin those taken by females. Also, in anoles in Brevard County, Florida, females out- the sexes may occupy somewhat differ- number males by as much as 5 to 1. ent habitat niches; in species having tree- Bull and Vogt (1979) found that in trunk to ground orientation, males usu- Graptemys, sex is controlled by environ- ally perch higher. mental temperature during the middle At the opposite end of the scale, in third of the incubation period. Clutches species with relatively large females, re- kept at 25° C in the laboratory produced productive success is promoted by tlie nearly all male hatchlings, whereas fact that reproductive females are re- clutches kept at 30.5° produced almost lieved from competition by immatures all females. Natural nests that were as well as by males. In a study of Kansas monitored likewise produced biased sex Thamnophis sirtalis (FMR 123), I found ratios in hatchlings, depending whether incomplete partitioning of food resources the site was warm and sunny (females which may be typical of snakes hav- predominant) or cool and shaded (males ing SSD in this range. Average weight predominant). of females was 155 per cent of male 40 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

< o Ouj

LUO < cn UJ

Q. SEXUAL SIZE DIFFERENCES IN REPTILES 41 of their much larger mates, provide ex- on the female, leading to extreme reduc- amples of another type of dependence tion in male size (Gertsch, 1949).

60 80 100 120 140 FMR (% FEMALE TO MALE LENGTH S-V)

Fig. 9. Average adult size in lizards and snakes correlated with SSD showing that in both groups SSD (especially with male superiority) tends to be greater in species of large body size and less in small species. :

42 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY LITERATURE CITED

Nader. neglected Mexican species. Copeia 1939: Abalos, J. W., E. C. Baez and R. 1965. Serpientes de Santiago de Estero. 140-147. Acta Zoologica Lilloana 20:211-283. BoGERT, C. M. and V. D. Roth. 1966. Ritual- AcHAVAL, F. 1973. El genero Clelia en el istic combat of male gopher snakes, Pituo- Uruguay. Trab. V. Congr. Latinoam. Zool. phis melanoleucus affinis (Reptilia, Colubri- 1:17-29. dae). Am. Mus. Nat. Hist. Novit. no. 2245, Alcala, a. C. and W. C. Brown. 1967. Pop- 27 pp.

ulation ecology of the tropical scincoid BoNS, J. and H. St. Girons. 1963. Ecologie lizard, Emoia atrocostata, in the Philippines. et cycle sexuel des amphisbeniens du Maroc. Copeia 1967(3) :596-604. Bull. Soc. Sci. et Physiquees du Maroc. 3" AxrADON, D. 1959. The significance of sexual et 4^ trimestre: 117-176.

difference in size among birds. Proc. Amer. Booth, J. and J. A. Peters. 1972. Behavioral Phil. Soc. 103:531-546. studies on the green turtle (Chelonia mydas) Anderson, S. C. 1963. Amphibians and rep- in the sea. Anim. Behav. 20:808-812. tiles from Iran. Proc. California Acad. Sci. BosTic, D. L. 1966. A preliminary report of 31(16):417-498. reproduction in the teiid lizard, Cnemi- Anderson, S. C. and A. E. Leviton. 1966a. dophorus hyperythrus beJdingi. Herpeto- A review of the genus Ophiomorus (Sauria: logica 22(2) :81-90. Scincidae), with descriptions of three new Braix, C. K. 1969. Field observations on liz- forms. Proc. California Acad. Sci. 4th ser. ards (Scincidae: Mabmja). Koedoe no. 33(16):499-534. 12:1-10.

. 1966b. A new species of Eublepharis Brazaitis, p. 1973. The identification of liv- from southwestern Iran (Reptilia: Gekkoni- ing crocodilians. Zoologica 58(3-4):59-101.

dae). Occas. Papers California Acad. Sci. Bheckenridge, W. J. 1955. Observations on No. 53, 5 pp. the life history of the soft-shelled turtle, Arnold, E. N. and A. E. Levitox. 1977. A Trionyx ferox, with especial reference to

revision of the lizard genus Scincus ( Rep- growth. Copeia 1955(1 ):5-9.

tilia: Scincidae). Bull. British Mus. (Nat. Broadley, D. G. and E. V. Cock. 1975. Hist.) 31(5):189-248. Snakes of Rhodesia. Longman Rhodesia Auffenberg, W. 1978. Courtship and breed- Ltd., Salisbury'. 152 pp. ing behavior in Geochclone radiata (Testu- Brown, W. C. and D. S. Rabor. 1967. Review dines: Testudinidae). Herpetologica 34(3): of the genus Brachymeles (Scincidae) with 277-287. descriptions of new species and subspecies.

Bailey, J. R. 1938. A systematic revision of Proc. California Acad. Sci. 34 ( 15) : 525-548. the snakes of the genus ConiopJianes. Pa- Brown, W. S. 1971. Moiphometrics of Terra- pers Michigan Acad. Sci. Art and Letters penc coaiiuila (Chelonia, Emydidae), with 24, pt. 2:1-48. comments on its evolutionary status. South- Barbault, R. 1974. Structure et dynamique western Nat. 16(2): 171-184. des populations naturelles de lezard Mabuija Bruno, S. 1967a. La Vipera ursinii (Bonaparte buettneri dans la savane de lamto (Cote 1835) in Italia. Ricerche Sulla Fauna

dTvoire). Bull. d'Ec. 5(2) : 105-121. Appenninica. Memorie del Museo Civico di

Barker, D. G., J. B. Murphy and K. W. Smith. Storia Natiirale, Verona, 15:105-125.

1979. Social behavior in a captive group . 1967b. Sulla Vipera ammodytes (Lin- of Indian pythons. Python molurus (Ser- naeus 1758) in Italia. Memorie del Museo pentes, Boidae) with formation of a linear Civico di Storia Naturale, Verona, 15: social hierarchy. Copeia 1979(3) :466-471. 289-336.

Beebe, W. 1944. Field notes on the lizards of . 1968. Gli anfibi e i rettili dellTsola Kartabo, British Guiana, and Caripito, Vene- di Montecristo. Atti della Societa Toscana zuela. Part 2. Iguanidae. Zoologica 29(4) di Scienze Naturale Memorie 75(B):31-71.

195-216. . 1969. Morfologia, distribuzione e bio- Bertelsen, E. 1951. The ceratioid fishes. logia di Elaphe situla (Linnaeus) 1758 Dana Report 39:1-281. (Reptilia, Serpentes, Colubridae). Atti della Blanchard, F. N. 1921. A revision of the Accademia Gioenia di Scienze Naturali in king snakes: genus Lampropeltis. U.S. Nat. Catania Serie Settima 1:1-44.

Mus. Bull. 114, 260 pp. . 1970. Anfibi e rettili di Sicilia. Atti

. 1937. Data on the natural history of della Accademia Gioenia di Scienze Naturali the red-bellied snake, Storeria occipito- in Catania Serie Settima 2:1-144.

maculata (Storer), in northern Michigan. Bull, J. and R. C. Vogt. 1979. Temperature- Copeia 1937:151-162. dependent sex determination in turtles. Sci- BoGERT, C. M. 1939. Notes on snakes of the ence 206:1186-1188. genus Salvadora with a redescrlption of a Burkett, R. D. 1966. Natural history of the .

SEXUAL SIZE DIFFERENCES IN REPTILES 43

cottonmouth moccasin, Agkistrodon pisci- rate of American alligators in Louisiana. vorus (Reptilia). Univ. Kansas Publ. Mus. Herpetologica 35(l):51-57.

Nat. Hist. 17(9):435-491. Christiansen, J. L. and R. R. Burken. 1979. BuRKHOLDER, G. L. and J. M. Walker. 1973. Growth and maturity of the snapping turtle Habitat and reproduction of the desert (Chchjdra serpentina) in Iowa. Herpeto- whiptail lizard Cnemidophonis tigris in the logica 35(3):261-266. its northern part of range. Herpetologica Christiansen, J. L. and E. O. Moll. 1973. 29(l):76-83. Latitudinal reproductive variation within a Burrage, B. R. 1973. Comparative ecology single subspecies of painted turtle Chry- and behaviour of Chamaeleo piimilus pu- seyms picta belli. Herpetologica 29:152-163. milus (Gmelin) and C. namaquensis A. Church, G. 1962. The reproductive cycle of Smith (Sauria: Chamaeleonidae). Ann. S. the Javanese house geckos, Cosymbotus African Mus. 61:1-158. platurus, Hemidactylus frenatus and Peropus Bury, R. B. 1979. Population ecology of fresh- mutilatus. Copeia 1962(2) :262-269. water turtles. Pp. 571-602 in Turtles, Per- Clark, D. R., Jr. 1964. Reproduction and spectives and Research. Harless, M. and in a population of the H. Morlock. John Wiley and Sons, N.Y. rough earth snake, Virginia siriatida (Lin- 695 pp. naeus). Texas Jour. Sci. 16(3) :265-295. Bustard, R. H. 1964. The systematic status CoNANT, R. 1969. A review of the water of the Australian geckos Gehtjra variegata snakes of the genus Matrix in Mexico. Bull. (Dumeril and Bibron, 1836) and Gehijra American Mus. Nat. Hist. 142(1) :140 pp.

australis Gray 1845. Herpetologica 29(4): Corn, M. J. and P. L. Daley. 1973. Sys- 259-272. tematics of the anoles of San Andres and

. 1968. The ecology of the Australian Providencia Islands, Colombia. Jour. Herp. gecko Heteronotia binoei in northern New 7(2):63-74. South Wales. Jour. Zool., Proc. Zool. Soc. CoTT, H. B. 1961. Scientific results of an London 156(4) :483-497. inquiry into the ecology and economic status Cagle, F. R. 1954. Observations on the life of the Nile crocodile (Crocodtjlus niloticus) cycles of painted turtles (genus Chnjsemijs) in Uganda and northern Rhodesia. Trans. Amer. Midi. Nat. 52:225-235. Zool. Soc. London 29(4):210-357.

Campbell, J. A. and B. L. Armstrong. 1979. De Haas, C. P. J. 1941. Some notes on the Geographic variation in the Mexican pygmy biology of snakes and on their distribution rattlesnake, Sistrurus ravus, with the descrip- in two districts in West Java. Treubia 18 tion of a new subspecies. Herpetologica (2):327-375.

35(4):304-317. Dlxon, J. R. 1974. Systematic review of the Carey, W. M. 1975. The rock iguana, Cyclura microteiid genus Iphisa. Herpetologica 30 pinguis, on Anageda, British Virgin Islands. (2):133-139.

Bull. Florida State Mus. 19(4): 189-233. Dixon, J. R. and R. B. Huey. 1970. Sys- Carpenter, C. C. 1952. Growth and ma- tematics of the lizards of the gekkonid genus turity of the three species of Thamnophis Phyllodactylus of mainland . in Michigan. Copeia 1952(4) :237-243. Los Angeles County Museum Contrib. Sci.

. 1969. Behavioral and ecological notes no. 192, 78 pp.

on the Galapagos land iguanas. Herpeto- Dixon, J. R. and P. Soini. 1975. The reptiles logica 25(3): 155-164. of the upper Amazon Basin, Iquitos Region,

1970. Miscellaneous notes on Gala- Peru. I. Lizards and Amphisbaenians. Mil- pagos lava lizards (Tropidurus—Iguanidae). waukee Pub. Mus. Contrib. Biol, and Geol. Herpetologica 26(3): 377-386. no. 4, 58 pp.

Carpenter, C. C, J. B. Murphy and L. A. . 1977. The reptiles of the upper Ama- Mitchell. 1978. Combat bouts with spur zon Basin, Iquitos Region, Peru. II. Croco- use in the Madagascan boa (Sanzinia mada- dilians, Turtles and Snakes. Milwaukee Pub. gascarensis). Herpetologica 34:207-212. Mus. Contrib. Biol, and Geol. no. 12, 91 pp.

Carr, a. E. 1952. Handbook of turtles. Corn- Dixon, J. R. and J. W. Wright. 1975. A stock Publ. Assoc. Cornell Univ. Press, review of the iguanid genus Tropidurus Ithaca. 542 -f xv pp. in Peru. Los Angeles Co. Mus. Contrib.

Cei, J. M. 1975. Southern Patagonian lizards Sci. no. 271, 39 pp. of the Liolaemus kingi Group. Herpeto- Dmi'el, R. 1967. Studies on reproduction and logica 31(1):109-116. growth and feeding in the snake Spaleroso-

. 1979. Remarks on the South American phis cliffordi ( Colubridae ) . Copeia 1967 iguanid lizard Liolaemus anomahis Kos- (2):332-346.

lowsky and the synonymy of Fhnjnosaura DoBiE, J. L. 1971. Reproduction and growth werneri Miiller (Reptiha, Lacertilia, Iguani- in the alligator snapping turtle. Copeia dae). Jour. Herp. 13(2) :183-186. 1971:645-658. Chabreck, R. H. and T. Joanen. 1979. Growth Donoso-Barros, R. 1966. Reptiles de Chile. 44 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Edicion de la Universidad de Chile, San- referred to the iguanid genus Leiocephalus.

tiago. 458 pp. Copeia 1966( 1 ) :79-91.

DowLixG, H. G. 1950. Studies of the black . 1968. A review of the iguanid lizard swamp snake, Seminatrix ptjgaea (Cope), genera Uracentron and Strobilurus. Bull. with descriptions of two new subspecies. British Mus. (Nat. Hist.) 17(2):47-64. Misc. Publ. Mus. Zool. Univ. Michigan 76, -. 1969. A review of the iguanid lizard 38 pp. genus Enijalius. Bull. British Mus. (Nat. Downs, F. L. 1967. Intrageneric relationships Hist.) 18(8):233-260. among colubrid snakes of the genus Geophis 1970. A review of the South Ameri- Wagler. Misc. Publ. Mus. Zool. Univ. Michi- can iguanid lizard genus Plica. Bull. British gan no. 131, 193 pp. Mus. (Nat. Hist.) 19(7) :237-256. DuELLMAN, W. E. 1958. A monographic study Evans, L. T. 1938. Cuban field studies on of the colubrid snake genus Leptodeira. territoriality of the lizard, Anolis sagrei. Bull. Amer. Mus. Nat. Hist. 114, art. 1, Jour. Comp. Psychol. 25:97-125. 152 pp. Fitch, H. S. 1940. A biogeographical study

. 1960. Variation, distribution and ecol- of the ordinoides artenkreis of garter snakes ogy of the Mexican teiid lizard Cnemidoph- (genus Thamnophis). Univ. CaHfomia Publ. oriis caUdipes. Copeia 1960(2) :97-101. Zool. 44(1):1-150.

-. 1978. The biology of an equatorial . 1960. Autecology of the copperhead. herpetofauna. Univ. Kansas Mus. Nat. Hist. Univ. Kansas Publ. Mus. Nat. Hist. 13(4): Misc. Publ. no. 65, 352 pp. 85-288. DuELLMAx, W. E. and A. Schwartz. 1958. 1963. Natural history of the racer, Amphibians and reptiles of southern Florida. Coluber constrictor. Univ. Kansas Publ. Bull. Florida St. Mus., Biol. Sci. 3(5): Mus. Nat. Hist. 15(8):351-468.

181-324. . 1965. An ecological study of the

DuELLMAx, W. E. and J. Wellmax. 1960. A garter snake Thamnophis sirtalis. Univ. systematic study of lizards of the Deppci Kansas Publ. Mus. Nat. Hist. 15(10): group (genus Cncmidophorus) in Mexico 493-564. and Guatemala. Misc. Publ. Zool. Univ. 1970. Reproductive cycles of lizards Michigan no. Ill, 81 pp. and snakes. Univ. Kansas Mus. Nat. Hist.

Dunham, A. E., D. W. Tinkle and J. W. Misc. Publ. no. 52, 247 pp.

Gibbons. 1978. Body size in island lizards: . 1975. A demographic study of the a cautionary tale. Ecology 59(6): 1230-1238. ringneck snake (Diadophis punctatus) in EcHTERNACHT, A. C. 1971. Middle American Kansas. Univ. Kansas Mus. Nat. Hist. Misc. lizards of the genus Ameiva (Teiidae) with Publ. No. 62:1-53.

emphasis on geographic variation. Univ. . 1976. Sexual size differences in the Kansas Mus. Nat. Hist. Misc. Publ. 55, mainland anoles. Occas. Papers Mus. Nat. 86 pp. Hist. Univ. Kansas 50:1-21.

. 1973. The color pattern of Soiwra . 1978. Sexual size differences in the miclioacanensis (Duges) (Serpentes, Colu- genus Sceloporus. Univ. Kansas Sci. Bull. bridae) and its bearing on the species. 51(13):441-461. Breviora, Mus. Conip. Zool. no. 410, 18 pp. Fitch, H. S. and R. W. Hexdersox. 1977. Ernst, C. H. 1971. Growth of the painted Age and sex differences, reproduction and turtle, Chrysemtjs j)icta, in southeastern conservation of Iguana iguana. Contrib. PennsyKania. Herpetologica 27:135-141. Biol, and Geol. Milwaukee Pub. Mus. 13:

. 1977. Biological notes on the bog 1-21. turtle, Clemmys midilenbcrgii. Herpeto- . 1978. Ecology and Exploitation of logica 33(2):241-246. Ctcnosaura similis. Univ. Kansas Sci. Bull. 1978. A revision of the neotropical 51(15):483-500. turtle genus Callopsis (Testudines: Emydi- FitzSi.moxs, V. F. M. 1930. Scientific results

dae: Batagurinae ) . Herpetologica 34(2): of the \'emay-Lang Kalahari expedition, 113-134. March to September, 1930. Ann. Transvaal Ernst, C. H. and R. W. Barbour. 1972. Mus. 16(2):295-397. Turtles of the United States. Uni\ersity . 1943. The lizards of . Press of Kentucky, Lexington. 347 pp. Transvaal Museum Memoir No. 1, xv + Etheridge, R. 1964. The skeletal morpholog> 528 pp. and systematic relationships of sceloporine . 1962. Snakes of Southern Africa.

hzards. Copeia : 610-631. 1964(4) Purnell and Sons, Ltd., Cape Town. 423 pp. . 1965. The abdominal skeleton of liz- Force, E. R. 1936. The relation of the ards in the family Iguanidae. Herpetologica knobbed anal keels to age and sex in the 21(3):161-168. lined snake, Tropidoclonion lineatum (Hal- 1966. The systematic relationships of lowell). Papers Michigan Acad. Sci., Arts West Indian and South American lizards and Letters, 21:613-617. SEXUAL SIZE DIFFERENCES IN REPTILES 45

FuGLER, C. M. and T. D. Schwaxeb. 1968. . 1977. Descriptions of new taxa of Sexual dichromatism in the genus Ura- crotalid snakes from China and Ceylon centron. Herpetologica 24(3) :253-255. (). Proc. Biol. Soc. Washington

FuHN, J. E. and R. Mertexs. 1959. Studien 90(4):1002-1015. an Lacerta trilincata aus Rumanien mit Goldberg, S. R. and M. D. Robixsox. 1979. Beschreibung einer neuer Unterart. Senck. Reproduction in two Namib Desert lacertid biol. 40(l/2):25-42. lizards (Aporosaura anchietae and Meroles

I. S. 1961. FuHX, E. and Vaxcea. Fauna cuneirostris) . Herpetologica 35(2) : 169-175. Republicii Populare Romine. Reptilia. Ed- GoRDOx, D. M. and R. D. MacCullock. 1979. itura Academiei Republicii Populare Romine, Patterns of movements and habitat utiliza- vol. .xiv Fasc. 2, 349 pp. tion in a population of map turtles (Grap- FuKADA, H. 1964. On the life history of a temys geograpliica) in south\\'estern Quebec. snake, Rhabdophis t. iigrinus (Boie). Acta Abstracts of papers, 1979 ASIH 59th An- Herpetologica Japonica, 2(l):l-4. nual meeting.

. 1965. Breeding habits of some Jap- Graham, T. E. 1971. Growth rate of the anese reptiles (critical review). Bull. Kyoto red-bellied turtle, Chnjsemys nibriventris, Gakugei Univ. Series B, no. 27:65-82. at Plymouth, Massachusetts. Copeia 1971 1978. Growth and maturity of the (2):353-356. rat snake, Japanese Elaphe cUtnacophora Graham, T. E. and T. S. Doyle. 1979. Di- (Reptilia, Serpentes, Colubridae). Jour. morphism, courtship, eggs and hatchlings Herp. 12(3):269-274. of the Blanding's turtle, Emydoidea hland- Cans, C. 1964. A redescription of, and geo- ingii (Reptiha, Testudines, Emydidae) in graphic variation in, Liophis 7niliaris Linne, Massachusetts. Jour. Herp. 13( 1 ) :125-127. the common water snake of southeastern Gyi, K. 1970. A rexlsion of the Colubrid South America. Amer. Mus. Novit. no. snakes of the subfamily Homalopsinae. 2178:58 pp. Univ. Kansas Publ. Mus. xXat. Hist. 20(2): Garrick, D. L. and J. W. Laxg. 1977. Social 47-223. signals and behaviors of adult aUigators and Haas, G. and Y. L. Werxer. 1969. Lizards crocodiles. Amer. Zool. 17:225-239. and snakes from southwestern Asia, col- Garrick, L. D., W. Laxg, and H. A. Her- J. lected by Henry Field. Bull. Mus. Comp. zoG, Jr. 1978. Social signals of adult Zool. 138(6) :327-406. American alligators. Bull. American Mus. Hain, M. L. 1965. Ecology of the lizard Nat. Hist. 160(3): 153-192. Uta mearnsi in a desert canyon. Copeia Garrido, O. H. 1972. Anolis hremcri Barbour 1965(1 ):78-81. (Lacertilia: Iguanidae) en el occidente de Hall, R. 1969. Ecological observations Cuba e Isla de Piiios. Carib. Jour. Sci. J. on 12(l-2):59-77. Graham's watersnake {Regina grahami Baird and Girard). Amer. Midi. Nat. 81 Gertsch, W. J. 1949. American Spiders. D. (1):156-163. Van Nostrand Co., Inc. New York, xiii + 285 pp. Hardy, L. M. 1975. Revision of the colubrid snake genus Gyalopion. Jour. Herp. GiBBOxs, J. W. 1967. Variation in growth 9(1): rates in three populations of the painted 107-132. turtle, Chnjsemijs picta. Herpetologica 23 Harless, M. 1978. Social behavior. Pp. 475- (4):296-303. 492 in Turtles, Perspectives and Research.

. 1968. Population structure and sur- Harless, M. and H. Morlock, ed. John vivorship in the painted turtle, Chnjsemys Wiley and Sons, N.Y. 695 pp. picta. Copeia 1968:260-268. Harris, V. A. 1964. The life of the rainbow

-. 1970. Reproductive characteristics of lizard. Hutchison Tropical Monographs. a Florida population of musk turtles (Ster- Hutchinson and Co. Ltd., London, 174 pp. nothaerus odoratus). Herpetologica 26(2): Hattori, Z., T. Ixoue and T. Okoxogi. 1974. 268-270. In front of a pile of sea snake carcasses.

GiBBOxs, J. W. and J. W. Coker. 1977. Eco- The Snake 6:94-98. logical and life history aspects of the cooter, Hebard, W. B. 1936. Relationships and varia- Chnjsemys jioridana (LeConte). Herpeto- tion in the garter snakes, genus, Thamnophis logica 33(l):29-33. of the Puget Sound region of Washington

GiBBOxs, J. W., J. W. Coker and T. W. State. Herpetologica 6(4):97-101. Murphy, Jr. 1977. Selected aspects of the Hexdersox, R. W. and L. G. Hoevers. 1979. life history of the rainbow snake (Farancia Variation in the snake Tretanorhinus nigro- erytrogramma). Herpetologica 33(3) :276- httetis lateraUs in Belize with notes on breed- 281. ing tubercles. Herpetologica 35(3) :245- Gloyd, H. K. 1972. The Korean snakes of 248. the genus Agkistrodon (Crotalidae). Proc. Hertz, P. E. 1976. AnoUs alumina, a new Biol. Soc. Washington 85, no. 49:557-578. species of grass anole from the Barahona .

46 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

peninsula of Hispaniola. Breviora 437, distribution and ecology of Barker's anole, 19 pp. Anolis barkeri Schmidt (Iguanidae). Zoo- Hidalgo, H. ms. Courtship and mating in logica 50:41-44. Rhinoclemys pulcherrima incisa (Testudines: King, W. 1969. The giant lizards of Komodo. Emydidae: Batagurinae). Trans. Kansas Nature and Science 7(l):5-7. Acad. Sci. Klauber, L. M. 1937. A statistical study of HiKiDA, T. 1980. Reproduction of the Japanese the rattlesnakes. IV. The growth of the skink (Eiimeces latiscutatus) in Kyoto, (un- rattlesnake. Occas. Papers San Diego Soc. published ms.) Nat. Hist. no. 3:1-56.

Hill, N. P. 1944. Sexual dimorphism in the . 1940. The lyre snakes (genus Tri- Falconiformes. Auk 61:228-234. morphodon) of the United States. Trans. Nat. Hist. 163-194. HoDDENBACH, G. A. and J. R. Lanxom, Jr. San Diego Soc. 9( 19): 1967. Notes on the natural history of the -. 1941. The long-nosed snakes of the Mexican gecko Phyllodactylus tuberculosus. genus Rhinochcilus. Trans. San Diego Soc. Herpetologica 23(4) :293-296. Nat. Hist. 9(29):289-332.

HooGMOED, M. S. 1973. Notes on the herpeto- . 1943. Tail-length difference in snakes fauna of Surinam. IV. The lizards and with notes on sexual dimorphism and the amphibians of Surinam. W. Junk, The coefficient of divergence. Bull. San Diego Hague. 419 pp. Soc. Nat. Hist., no. 18, 76 pp. HuEY, R. B. and E. R. Pianka. 1974. Eco- . 1945. The geckos of the genus Co- logical character displacement in a lizard. leonyx with descriptions of new subspecies. Amer. Zool. 14:1127-1136. Trans. San Diego Soc. Nat. Hist. 10(11): 133-216. . 1977. Patterns of niche overlap among broadly sympatric versus narrowly sympatric 1946. The , Arizona, with Kalahari lizards (Scincidae: Mahuija) descriptions of new subspecies. Trans. San Ecology 58(1):119-128. Diego Soc. Nat. Hist. 10( 17):311-398. Inger, R. F. and B. Greexberg. 1966. Annual KoDA, K. 1938. Some notes on Agkistrodon reproductive patterns of lizards from a halys (Pallas) from Syoryuzan Island, Bornean rain forest. Ecology 47(6):1007- Kwangtung, South Manchuria (1). Zool. 1021. Mag. 50(5):245-264. Inger, R. F. and H. Marx. 1965. The sys- KoBA, K. and D. Kikukawa. 1969. A taxo- tematics and evolution of the Oriental colu- nomic study of the Tokara-habu, Tri- brid snakes of the genus Calamaria. Fieldi- meresurus tokarensis from the Tokara Is- ana: Zoology 49:1-304. lands, Japan. Bull. Biogeogr. Soc. Japan, 25(l):l-8. IvERSOX, J. B. 1977. Geographic variation in the musk turtle, StcrnotJierus minor. Copeia . 1976. The morphology of Trimere- 1977(3) :502-517. surus elegans (Serpentes: Viperidae). Bull. Coll. no. 1:19-32. . 1979a. Reproduction and growth of Ginkyo Med. Tech. the mud turtle, Kinosternurn stibrubrum Koba, K., D. Kikukawa, T. Fukada and K.

( Reptilia, Testudines, Kinosternidae), in Taxaka. 1977. A taxonomic study of

Arkansas. Jour. Herp. 13( 1 ) :105-111. Calliophis japonicus (Serpentes: Elapidae) 1979b. Beha\ior and ecology of the of the Nansei Islands, Japan. Bull. Ginkyo rock iguana Cyclura carinata. Bull. Florida Coll. Med. Tech. no. 2:7-30. St. Mus. 24(3): 175-358. KoLATA, G. B. 1977. Sexual dimorphism and nis. Geographic variation in sexual mating systems: how did they evolve? dimorphism in the mud turtle, Kinosternurn Science 195:362-383. hirtipes. Kopstei.n, F. 1941. Uber sexualdimorphismus Jackson, D. R. and R. Fra.nz. ms. Aspects bei Malaischen schlangen. Temminckia 6: of the ecology of the eastern coral snake, 109-145.

Micrurus fulvius fulvius, in north-central Kroll, J. C. 1971. Combat behavior in male Florida, submitted to Herpetologica. Great Plains ground snakes. Texas Jour. Jexssex, T. a. 1973. Shift in tlie structural Sci. 33(2) :306. habitat of Anolis opalinus due to congeneric Kropach, C. 1975. The yellow-bellied sea competition. Ecology 54(4) :863-869. snake Pclamis in the Eastern Pacific. Pp. Johnson, S. R. 1965. An ecological study of 185-213. In The Biology of tlie Sea Snakes. the chuckwalla Sauromalus obesus Baird, Univ. Park Press, Baltimore. in the western Mojave Desert. Amer. Midi. L.\nz.\, B. 1972. The natural history of the Nat. 73(l):l-29. Cerbicale Islands (southeastern Corsica) Kassixg, E. F. 1961. A life history study of with particular reference to their herpeto- the Great Plains ground snake, Sonora fauna. Natura—Soc. Ital. Sci. Nat. Museo episcopa (Kennicott). Texas Jour. Sci., 13 Civ. Stor. Nat. e Acquarino Civ., Milano (2): 185-203. 65(3-4): 155-193.

Kennedy, J. P. 1965. Observations on the Laurext, R. F. 1950. Revision du genre .

SEXUAL SIZE DIFFERENCES IN REPTILES 47

Atractaspis A. Smith. Inst. Roy. des Sci. parative Zoology and the United States Na- Nat. de Belgique 2nd ser. 38:49 pp. tional Museum. Bull. Mus. Comp. Zool.

. 1956. Contribution a I'Herpetologie 101(2):305-4.30. de la Region des Grands Lacs de I'Afrique -. 1953. Zoological results of a fifth ex- centrale. Annales du Musee Royal du Congo pedition to East Africa. III. Reptiles from Beige. Tervuren, Belgique 48, 390 pp. Nyasaland and Tete. Bull. Mus. Comp. 1964. Reptiles et amphibiens de I'An- Zool. 110(3): 143-322. gola Museu do Dundo. Publicag'oes Cul- Loveridge, A. and E. E. Williams. 1957. turias No. 67:165 pp. Revision of the African tortoises and turtles Laurent, R. F. and C. Cans. 1965. III. Liz- of the suborder Cryptodira. Bull. Mus. ards. Pp. 27-45 in Notes on a herpetological Comp. Zool. 115(6) :161-557. collection from the Somali Republic. Musee Mahmoud, Y. 1967. Courtship behavior and Royal de I'Afrique Centrale, Tervuren, Bel- sexual maturity in four species of kinosternid giques Annales. Sciences Zoologiques no. turtles. Copeia 1967(2) :314-318. 134. Malnate, E. V. 1962. The relationships of

Lee, J. C. 1975. The autecology of Xantusia five species of the Asiatic natricine snake henshawi henshawi (Sauria: Xantusiidae ) genus Amphiesma. Proc. Acad. Nat. Sci. Trans. San Diego Soc. Nat. Hist. 17(19): Philadelphia 114(3) :251-299. 259-278. Malnate, E. V. and S. A. Minton. 1965. A

Legler, J. M. 1954. Nesting habits of the redescription of the natricine snake Xeno- western painted turtle, Chrysemys picta chrophis cerasogaster with comments on bellii (Gray). Herpetologica 10:137-144. its taxonomic status. Proc. Acad. Nat. Sci.

Leon, J. R. and L. J. Cova. 1973. Repro- Philadelphia 117(2) :19-43. duccion de Cnemidophorns lemniscatus Marx, H. 1958. Egyptian snakes of the genus (Sauria: Teiidae) en Cumana, Venezuela. Psammophis. Fieldiana no. 18:191-200. Carib. Jour. Sci. 13( 1-2): 63-73. Maslin, T. p. 1950. Snakes of the Kiukiang- Leviton, a. E. 1959. Report on a collection Lushan area, Kiangsi, China. Proc. Cali- of reptiles and amphibians from Afghani- fornia Acad. Sci. 4th ser. 26( 12):419-466.

stan. Proc. California Acad. Sci. 4th ser. Maslin, T. P. and J. M. Walker. 1973. Varia- 29(12):445-463. tion, distribution and behavior of the lizard,

. 1963. Contributions to a review of Cnemidophorus parvisocius Zweifel ( Lacer- Philippine snakes, III. The genera Maticora tilia, Teiidae). Herpetologica 29(2) :128- and Calliophis. Philippine Jour. Sci. 92(4): 152. 523-550. Mayhew, W. W. 1965. Reproduction in the

. 1964a. Contributions to a review of sand-dwelling lizard Uina inornata. Her- Philippine snakes, V. The snakes of the petologica 21(l):39-55.

genus Trimeresurus. Philippine Jour. Sci. . 1966a. Reproduction in the psam- 93(2):251-276. mophilous lizard Uma scoparia. Copeia 1964b. Contributions to a review of 1966(1 ):114-122. Philippine snakes, VII. The snakes of the -. 1966b. Reproduction in the arenico- genera Naja and Ophiophagus. Philippine lous lizard Uma notata. Ecology 47(1): Jour. Sci. 93(4):531-550. 9-18.

. 1968. Contributions to a review of 1971. Reproduction in the desert liz- Philippine snakes, XI. The snakes of the ard, Dipsosaurus dorsalis. Herpetologica genus Boiga. Philippine Jour. Sci. 97(3): 27(l):57-77. 291-314. McCoy, C. J. 1970. II. The Bahamian sub- . 1970. Description of a new subspe- species. Pp. 118-151 in A systematic review

cies of Rhabdophis atiricidata in the Philip- of Ameiva auheri Cocteau ( Reptilia, Tei- pines, with comments on the zoogeography idae) in Cuba and the Bahamas. Ann. of Mindanao Island. Proc. California Acad. Carnegie Mus. 41(4) :45-168. Sci. 4th ser. 38 ( 18) : 347-362. McDowell, S. R. 1979. A catalogue of the Levitox, a. E. and S. C. Anderson. 1967. snakes of New Guinea and the Solomons, Survey of the reptiles of the sheikdom of with special reference to those in the Bemice Abu Dhabi, Arabian Peninsula. Part II. P. Bishop Museum. Part III. Boinae and Systematic account of the collection of rep- Acrochordoidea (Reptilia, Serpentes). Jour. tiles made in the sheikdom of Abu Dhabi Herp. 13(l):l-92. by John Gasperetti. Proc. California Acad. Medica, p. a. 1967. Food habits, habitat Sci. 4th ser. 35(9) : 157-192. preference, reproduction, and diurnal ac-

. 1970. Review of the snakes of the tivity in four sympatric species of whiptail genus Lytorhynchus Proc. California Acad. lizard (Cnemidophorus) in south central Sci. 4th ser. 37(7):249-274. New Mexico. Bull. S. California Acad. Sci. Loveridge, a. 1948. New Guinean reptiles 66(4):251-276. and amphibians in the Museum of Com- Mendelssohn, H. 1963. On the biology of 48 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

the venomous snakes of . Pt. 1. Israel Oshima Island, Japan. Jour. Herp. 13(2): Jour. Zool. 12:143-170. 147-152.

1965. On the biology of the venomous MiNNicH, J. E. 1971. Seasonal variation in snakes of Israel. Pt. 2. Israel Jour. Zool. weight-length relationships and fat body 14:185-212. size in the desert iguana, Dipsosaurus dor- Mertens, R. 1930. Die Amphibien und Rep- salis. Copeia 1971(2) :359-362. tilien der Inseln Bali, Lombok, Sumbawa, Mitchell, F. J. 1973. Studies on the ecology und Flores. Abhandl. Senckenberg. Natur- of the agamid lizard Amphiholurus macu-

forsch. Gesell. 42(3) : 115-344. lostis (Mitchell). Trans. Royal Soc. S. . 1931. Ablepharus hmitoni (Desjardin) Australia 97(l):47-76. und seine geographische Variation. Abdruck Mittermeier, R. a. 1971. Notes on the be- aus Zoologische Jahrbucher Abteilung fiir havior and ecology of Rhinoclemijs annulata Systematik, Okologie und Geographie der Gray. Herpetologica 27(4):485-488. Tiere 61 1/2:63-210. Moehx, L. D. 1967. A combat dance between 1955a. Die Amphibien und Reptilien two prairie kingsnakes. Copeia 1967(2): Siidvvestafrikas. Abhandlungen der Sencken- 480-481. bergischen Naturforschenden Gesellschaft. Moll, E. O. 1973. Latitudinal and intersub- 490:1-172. specific variation in reproduction of the . 1955b. Die Mauereidechsen der Li- painted turtle, Chrysemtjs picta. Herpeto- parischen Inseln, gesammelt von Dr. An- logica 29(4):307-318. tonino Trischitta. Senck. Biol. 36(1/2): Moll, E. O. and M. Legler. 1971. The 25-40. J. life history of a neotropical slider turtle, . 1955c. Die Mauereidechsen Kalabriens, Pscudeimjs scripta (Schoepf) in Panama. Siziliens und einiger benachbarter Inseln. Bull. Los Angeles Co. Mus. Nat. Hist., Senck. Biol. 36(3/4):219-234. Science no. 11, 102 pp. . 1956. Zur Kenntnis der Iguaniden- MoNTANUcci, R. R. 1973. Systematics and Gattung Tropidiirus in Peru. Senck. Biol. 37(1/2): 101-136. evolution of the Andean lizard genus Pho- lidobolus (Sauria: Teiidae). Univ. Kansas . 1958. Bemerkungen iiber die VVarane Misc. Publ. 59, 52 pp. Australiens. Senck. Biol. 39(5/6) : 229-264. MossiMANX, E. and R. Bider. 1960. Vari- . 1959a. Studien Laccrta trilineata aus J. J. Rumanien mit Beschreibung einer neuen ation, se.xual dimorphism, and maturity in Unterart. Senck. Biol. 40( 1/2) :25-42. a Quebec population of the common snap- 1959b. Amphibien und Reptilien von ping turtle, Chchjdra serpentina. Canadian Karimundjawa, Bawean und den Kangean- Jour. Zool. 38:19-38. Inseln. Treubia 25(1):1-15. Mount, R. H. 1965. Variation and systematics of the lizard, . 1961. Die Rassen der Schmetterling- scincoid Eumcces egregius sagame, Leiolepis belliana. Senck. biol. 42 (Baird). Bull. Florida St. Mus., Biol. Sci. (5/6):507-510. 9(5):183-213.

. 1962. Die Art en und Unterarten der Myers, C. W. 1967. The pine woods snake, Geckonengattung Phelsuma, Senckenbergi- Rhadinea fiavilata (Cope). Bull. Florida St. ana Biologica 43(2) :81-127. Mus., Biol. Sci. ll(2):48-97.

. 1964a. Das Riitsel der Eidechsen von . 1974. The systematics of Rhadinea Santo Stefano. Zool. Jahrb. Syst. Biol. 92: (Colubridae), a genus of New World snakes.

91-102. Bull. Amer. Mus. Nat. Hist. 153, art. 1, 1964b. Funf neue Rassen der Gec- 262 pp. konengattung Phehuma. Studien iiber die Nevo, E., G. Gorman, M. Soule, S. Yung Reptilien fauna Madagaskars V. Senck. biol. Yang, R. Clover and V. Jovanovic. 1972. 45(2):99-112. Competitive exclusion between insular La- Mertens, R. and O. Schnurre. 1949. Eido- certa species (Sauria, Lacertidae). Notes niische und okologische Studien am Smarag- on experimental introductions. Oecologia deidechsen. Abh. der Senckenbergischen 10:183-190. Naturforschenden Gesellschaften Deutsch- NussBAUM, R. A. and L. V. Diller. 1976. The lands. 481:1-28. life history of the side-blotched lizard, Uta Michael, E. D. 1972. Growth rates in Anolis stansburiana Baird and Girard, in north- cawlinemis. Copeia 1972(3):575-577. central Oregon. Northwest Science 50(4): MiLSTEAD, W. W. 1961. Observations on the 243-260. activities of small animals (Reptilia and NussBAUM, R. A. and R. F. Hoyer. 1974. Mammalia) on a quadrat in southwest Geographic variation and the \'alidit>' of Texas. Amer. Midi. Nat. 65( 1 ):127-138. subspecies in the rubber boa, Charina bottae MiNAKAMi, K. 1979. An estimation of age (Blainville). Northwest Science 48(4) :219- and life span of the genus Trimeresurus 229. (Reptilia, Serpentes, Viperidae) on Amami Okada, Y. 1937. Studies on the lizards of SEXUAL SIZE DIFFERENCES IN REPTILES 49

Japan. II. Agamidae. Zool. Inst. Tokyo of the Texas coral snake (Micrurus fulvius Univ. 3:83-94. tenere). Copeia 1979(3):453-463.

Oliver, J. A. 1948. The anoline lizards of Ralls, K. 1976. Mammals in which females Bimini, Bahamas. Amer. Miis. Novit. 1383: are larger than males. Quart. Rev. Biol. 36 pp. 51:245-276. Parker, W. S. 1971. Ecological observations Raxd, a. S. 1967. Ecology and social organiza- on the regal horned lizard (Phrynosoma tion in the iguanid lizard AnoHs lineatopus. solare) in Arizona. Herpetologica 27(3): Proc. U.S. Nat. Mus. 122, 79 pp. 333-338. Rexjifo, J. M. 1979. Systematics and distribu-

. 1972. Aspects of the ecology of a tion of crotalid snakes in Colombia. (M.A. Sonoran Desert population of the western Dissertation, University of Kansas.) banded gecko, Coleonyx variegatus (Sauria, Reyxolds, R. T. 1972. Sexual dimorphism in Eublepharinae). Amer. Midi. Nat. 88(1): accipiter hawks: a new hypothesis. Condor 209-224. 74:191-197.

Parker, W. S. and E. R. Piaxka. 1975. Com- Rica, J. and P. Martixez. 1971. Contribucion parative ecology of populations of the lizard al estudio de la Biologia de los geconidos Uta stanshuriana. Copeia 1975(4) :615-632. ibericos (Rept., Sauria). Publ. Centro

. 1976. Ecological observations on the Pirenaico Biol. Exper. V.S., 291 pp. leopard lizard (Crotaphytus tvislizenii) in RiGLEY, L. 1971. "Combat dance" of the black different parts of its range. Herpetologica rat snake Elaphe o. obsolete. Jour. Her- 32:93-114. petology 5:65-66.

Peters, J. A. 1960. The snakes of the sub- RoDGERS, T. L. and H. S. Fitch. 1947. Varia- family Dipsadinae. Misc. Publ. Mus. Zool. tion in the skinks (ReptiHa: Lacertilia) of Univ. Michigan, no. 114, 224 pp. the Skiltonianus Group. Univ. California PiANKA, E. R. and W. S. Parker. 1972. Ecol- Publ. Zool. 48(4): 169-220.

ogy of the iguanid lizard Callisaurus draco- RozE, J. A. 1964. Pilgrim of the river. Nat. noides. Copeia 1972(3):493-508. Hist. 73(7):34-41.

. 1975. Ecology of homed lizards: a RuiBAL, R. and E. E. Williams. 1961. The review with special reference to Phryno- of the Anolis homolechis complex of soma platyrhirws. Copeia 1975( 1 ) : 141-162. Cuba. Bull. Mus. Comp. Zool. 125(8): Piaxka, E. R. and H. D. Piaxka. 1970. The 211-246. ecology of Moloch horridus (Lacertilia: Saixt Giroxs, H. 1973. Nouvelles donnes sur Agamidae) in western Australia. Copeia la vipere naine du haut Atlas, Vipera latastei 1970:90-103. monticola. Bull. Soc. Sci. Nat. et Physiques Piexaar, U. de V. 1966. The reptile fauna of Maroc 53:111-118.

the Kruger National Park. Koedoe no. 1, . 1978. Morphologic extrene comparee 223 pp. et systematique des Viperes d'Europe (Rep- PiTMAx, C. R. S. 1974. A guide to the snakes tilia, Viperidae). Revue Suisse Zool. 85(3): of Uganda. Wheldon and Wesley Ltd., 565-595.

Glasgow. 290 pp. Savage, J. M. 1960. A revision of the Ecua- snakes of Plummer, M. V. 1977. Activity, habitat and dorian the colubrid genus Atractus. Misc. Publ. Mus. Zool. population structure in the turtle, Trionyx Univ. Michigan 112, muticus. Copeia 1977(3) :431-440. 86 pp. Savage, J. M. and L. Vlu.. 1974. The Plummer, M. V. and D. B. Farrar. ms. J. venomous coral snakes (genus Micrurus) Sexual dietary differences in a population of Costa Rica. Rev. Trop. Biol. 21(2): of Trionyx muticus (Reptilia: Testudines). 295-349. Submitted to Herpetologica. Schmidt, K. P. 1923. Contributions to the PoLOZHixzKi, V. F. and A. S. Khalaxsky. of the Belgian Congo based on 1964. Biology of the viviparous lizard the collection of the American Museum (Lacerta vivipara) in the central Urals. Congo Expedition, 1909-1915. Bull. Amer. (Translation of selected abstracts from Mus. Nat. Hist. 49(1):1-146. Voprosy Gerpetologii, edited by Paul V. Schoexer, T. W. 1967. The ecological sig- Terentev, U. of Leningrad) 84 pp. nificance of sexual dimorphism in size in Pope, C. H. 1935. The reptiles of China, the lizard Anolis conspersus. Science 155: turtles, crocodihans, snakes, lizards. Nat- 474-477. ural history of Central Asia, vol. 10, xlii + 1970. Size patterns in West In- 600 pp. Published by the American Mu- dian Anolis lizards. II. Correlations with seum of Natural History. the sizes of particular sympatric species dis- Prestt, I. 1971. An ecological study of the placement and convergence. American Nat- viper Vipera berus in southern Britain. Jour. uralist 104:155-174. Zool. (London) 164(3) :373-418. Schoexer, T. W. and A. Schoexer. 1971a. QuixN, H. R. 1979. Reproduction and growth Structural habitats of West Indian Anolis :

50 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

lizards. I. Lowland Jamaica. Breviora 368, Schwartz, A. and O. H. Garrido. 1975. A 53 pp. reconsideration of some Cuban Tropidophis

. 1971b. Structural habitats of West ( Serpen tes, Boidae). Proc. Biol. Soc. Wash- Indian Anolis lizards. II. Puerto Rican up- ington 88(9):77-90. lands. Breviora 375, 39 pp. Seigel, R. a. 1979. Preliminary observations ScHWANER, T. D. 1980. Reproductive biology on the population dynamics of the diamond- of lizards on the American Samoan Islands. back terrapin, Malaclemys terrapin tequesta, Occas. Paper Mus. Nat. Hist. Univ. Kansas, Merritt Island National Wildlife Refuge, no. 86, 53 pp. Brevard Co., Florida. Abstracts of papers Schwartz, A. 1959. Variation in lizards of 1979 ASIH 59th Annual meeting. the Leiocephalus cubensis complex in Cuba Shealy, R. M. 1976. The natural history of and the Isla de Pinos. Bull. Florida State the Alabama map turtle, Graptemys pulchra Mus. Bio. Sci. 4(4):97-143. Baur, in Alabama. Bull. Florida St. Mus.,

. 1960. Variation in the Cuban lizard Biol. Sci. 21(2):47-111. Leiocephalus raviceps Cope. Proc. Biol. Sheplax, R. R. and A. Schwartz. 1974. Sec. Washington 73:67-82. Hispaniolan boas of the genus Epicrates

. 1965a. A review of the colubrid snake (Serpentes, Boidae) and their Antillean re- genus Arrhyton with a description of a new lationships. Ann. Carnegie Mus. 45(5): subspecies from southern Oriente Province, 57-143. Cuba. Proc. Biol. Soc. Washington 78: Sherbrooke, W. C. 1975. Reproductive cycle 99-114. of a tropical lizard Neusiicurus ecpleopus

. 1965b. Two new subspecies of the Cope, in Peru. Biotropica 7(3) :194-207. anguid lizard Wetmorena from Hispaniola. Shine, R. 1977. Reproduction in Australian Proc. Biol. Soc. Washington 78:39-48. elapid snakes. Australian Jour. Zool. 25:

. 1967. The Leiocephalus ( Lacertilia 647-653 and 655-666.

Iguanidae) of Hispaniola. II. The Leio- . 1978a. Growth rates and maturation cephalus personatus complex. Tulane Stud- in six species of Australian elapid snakes.

ies in Zoology 14(1 ):53 pp. Herpetologica 34( 1 ) : 73-78.

. 1968a. The Cuban lizards of the -. 1978b. Sexual size dimorphism and Anolis hovwlechis complex. Tulane Studies male combat in snakes. Oecologia 33:

in Zoology 14(4) : 140-184. 269-277.

1968b. Geographic variation in the . 1979. Sexual selection and sexual New World gekkonid lizard Tarentola amer- dimorphism in the Amphibia. Copeia 1979 icana Gray. Proc. Biol. Soc. Washington (2):297-306. 81:123-142. 1980a. Reproduction, feeding and

. 1970. I. The Cuban subspecies. Pp. growth in the Australian burrowing snake 45-117 in A systematic review of Ameiva Veriyncella anmdata. Jour. Herpetology 14 auberi Cocteau (Reptilia, Teiidae) in Cuba (l):71-77.

and the Bahamas. Ann. Carnegie Mus. . 1980b. Comparative ecology of three 41(4):45-168. Australian snake species of the genus Caco- 1974a. A new species of primitive phis (Serpentes: Elapidae). Copeia 1980: Anolis (Sauria Iguanidae) from the Sierra 831-838. de Baoruco, Hispaniola. Breviora. 423:19 1980c. Ecology of the Australian

pp. death adder, Acanthophis antarcticus ( Ser-

. 1974b. An analysis of variation in pentes, Elapidae ) . Herpetologica 34 ( 1 ) the Hispaniolan giant anole, Anolis ricordi 73-78. Dumeril and Bibron. Bull. Mus. Comp. Smith, A. G. 1949. The subspecies of the Zool. 146(2) :89-146. Plains garter snake, Thamnophis radix.

-. 1975a. A new subspecies of Sphaero- Bull. Chicago Acad. Sci. 8( 14): 285-300. dactylus copei Steindachner (Sauria, Gek- S-mith, H. M. 1963. The ta.xonomic status of konidae) from Hispaniola. Herpetologica the Black Hills population of smooth green 31(1):1-18. snakes. Herpetologica 19(4) :256-261.

. 1975b. Variation in the Cuban boid . 1965. Two new colubrid snakes from snake Tropidophis haetianus. Jour. Herp. the United States and Mexico. Jour. Ohio 9(3):303-311. Herp. Soc. 5(l):l-4.

-. 1978. The Hispaniolan Anolis (Rep- Smith, H. M. and E. Laufe. 1946. A sum- tilia, Lacertilia, Iguanidae) of the hender- mary of the Me-xican lizards of the genus

soni complex. Jour. Herp. 12(3) : 355-370. Ameiva. Univ. Kansas Sci. Bull. 31(l):7-73.

Schwartz, A. and R. I. Crombie. 1975. A S.mith, H. M., C. W. Nixon and P. W. Smith. new species of the genus Aristelliger 1950. Mexican and Central American gar- (Sauria: Gekkonidae) from the Caicos Is- ter snakes (Thamnophis) in the British Mu- lands. Proc. Biol. Soc. Washington 88(27): seum (Natural History). Jour. Linn. Soc. 305-314. 41(17):571-584. SEXUAL SIZE DIFFERENCES IN REPTILES 51

Smith, H. M., R. B. Smith and H. L. Sawin. teiid lizard from Bolivia. Postilla, Peabody 1977. A summary of snake classification Mus. Yale Univ. no. 129, 15 pp.

(Reptilia, Serpentes). Jour. Herpetology Van Denburgh, J. 1914. The gigantic land 11(2):115-12L tortoises of the Galapagos Archipelago. Ex- Smith, M. A. 1935. The fauna of British pedition of the California Academy of Sci- , including Ceylon and Burma. Rep- ences to the Galapagos, 1905-1906. Proc. tilia and Amphibia. II. Sauria. Taylor and California Acad. Sci., 4th ser. 2:203-374. Francis, London, xiii + 440 pp. Van DevExNder, R. W. 1978. Growth ecology

. 1943. The fauna of British India, in- of a tropical lizard, Basiliscus hasiliscus. cluding Ceylon and Burma. Reptilia and Ecology 59(5): 1031-1038. Amphibia. III. Serpentes. Taylor and Vanzolini, p. E. 1955. Contribuigoes ao Francis, London, xii -|- 583 pp. conhecimento dos lagartos brasileiros da 1951. The British amphibians and familia Amphisbaenidae Gray, 1825. V. reptiles. Collins, London, xiv -f 318 pp. Distribuigao geografica e biometria de Spellerberg, I. F. and T. E. Phelps. 1977. Amphisbaena alba L. Arquivos do Museu Biology, general ecology, and behavior of Nacional, Rio de Janeiro, D.F., 42:683-706. the snake Coronella austriaca Laurenti. Vanzolini, P. E. and R. Rebou5as-Spieker. Biol. Jour. Linn. Soc. London 9:133-164. 1969. On a large and surprising sample of

Staton, M. a. and J. R. Dlxox. 1977. Breed- Calliscincopus agilis from Brasil, with the ing biology of the spectacled caiman. Cai- invalidation of the genus (Sauria, Teiidae). man crocodilus crocodilus, in the Vene- Papeis Avulsos Zool. 22 (13): 123-144, Sec. zuelan llanos. U.S. Dept. Int. Fish & Wild- Agr., Sao Paulo. life Rept. 5, 21 pp. Vaz-Ferrora, R. and B. S. De Soriano. 1960. Stickel, L. F., W. H. Stickel and F. C. Notas sobre reptiles de Uruguay. Univ. ScHMiD. 1980. Ecology of a Maryland Uruguay, Rev. Fac. Human Cienc. no. 18: population of black rat snakes (Elaphe o. 133-206.

obsoleta). Amer. Midi. Nat. 103(1 ):1-14. ViTT, L. J. and R. D. Ohmart. 1977a. Ecol- Tanner, W. W. 1944. A taxonomic study of ogy and reproduction of lower Colorado the genus Hypsiglena. Great Basin Nat. River lizards: I. Callisaurtis draconoides 5(3and4):25-92. (Iguanidae). Herpetologica 33(2):214-222.

. . 1957. A taxonomic and ecological 1977b. Ecology and reproduction of study of the western skink (Eumeces skil- lower Colorado River lizards: II. Cnemi- tonianus). Great Basin Nat. 17 (3-4): 59-94. dophorus tigris (Teiidae) with comparisons. Tanner, W. W. and B. H. Banta. 1966. A Herpetologica 33(2) :223-234. systematic review of the Great Basin rep- VoGT, R. G. 1980. Natural history of the map tiles in the collection of the Brigham Young turtles, Graptemys pseitdogeographica and University and the University of Utah. G. ouachitensis in Wisconsin. Tulane Stud- Great Basin Nat. 26(3-4): 87-135. ies in Zool. and Bot. 22(l):17-48. Taylor, E. H. 1956. A review of the lizards Voris, H. K. and B. C. Jayne. 1979. Growth, of Costa Rica. Univ. Kansas Sci. Bull. 38 reproduction and population structure of a

Pt. 1(1) :322 pp. marine snake, Enhydrina schistose ( Hydro-

. 1965. The serpents of Thailand and phiidae). Copeia 1979(2) :307-318. adjacent waters. Univ. Kansas Sci. Bull. Walker, J. M. 1970. Morphological variation 45(9):609-1006. and clutch size in a population of Cnemi- Thomas, R. 1975. The Argi/5 group of West dophorus lineatissimus Cope in Michoacan, Indian Sphaerodactylus (Sauria: Gekkoni- Mexico. Herpetologica 26(3):359-365. dae). Herpetologica 31:177-195. Walker, J. M. and T. P. Maslin. 1969a. A Thornhill, R. 1980. Rape in Fanorpa scor- review of the San Pedro Nolasco whiptail pionflies and a general rape hypothesis. An. lizard {Cnemidophorus bacatus Van Den- Behav. 28:52-59. burgh and Slevin). Amer. Midi. Nat. 82 Trapido, H. 1944. The snakes of the genus (1):127-139. Storeria. Amer. Midi. Nat. 31(l):l-84. Walker, W. F., Jr. 1945. A study of the Travassos, H. 1946. Estudo de variagao de snake, Tachymenis peruviana Wiegmann Mabuya punctata (Gray, 1839). Boletino and its allies. Bull. Mus. Comp. Zool. 96 Mus. Nac. Nov. Ser. Zool. 60:56 pp. (l):l-55. Trivers, R. L. 1972. Parental investment and Wall, F. 1911. Twpidonotus stolatus in A sexual selection. In Sexual selection and popular treatise on the common Indian

the descent of man. (B. J. Campbell, ed.) snakes. Jour. Bombay Nat. Hist. Soc. Part Pp. 136-177. 14, 20:603-632.

UzzELL, T. M., Jr. 1966. Teiid lizards of the . 1912. Helicops schistosus in A pop- genus Neusticurus (Reptilia, Sauria). Bull. ular treatise on the common Indian snakes. Amer. Mus. Nat. Hist. 132(5) :279-327. Jour. Bombay Nat. Hist. Soc. Part 18, 21:

. 1969. A new genus and species of 1009-1021. ) )

52 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

. 1921. Ophidia Taprobanica or the WiLSOx, L. D. and D. E. Hahx. 1973. The snakes of Ceylon. H. R. Cottle, Govt. herpetofauna of the Islas de Bahia, Hon- Printer, Ceylon. 581 pp. duras. Bull. Florida St. Mus. 17(2) :93-148. Waltner, R. C. 1978. Comparative ecology WiLTHOF, D. C. 1963. Reproduction in the of Agama tuberculata Gray at different alti- tropical Australian skink, Leiolopisma rhom- tudes in the western Himalayas. (Ph.D. hoidalis. Amer. Midi. Nat. 70(2) :442-461. Dissertation, University of Kansas. WiTTE, G. F. DE. 1941. Exploration du Pare Wbibb, R. G. 1958. The status of the Mexican National Albert. Batracians et Reptiles. lizards of the genus Mabuya. Univ. Kansas Inst, des Pares Nationaux du Congo Beige Sci. Bull. 38, pt. 2, no. 17:1303-1313. 33:1-261.

. 1970. Another new night lizard . 1953. Exploration du Pare National (Xantusia) from Durango, Mexico. Los de rUpemba. Reptiles. Inst, des Pares Angeles County Mus. Contrih. Sci. no. 194, Nationaux du Congo Beige 6:1-322. 10 pp. 1965. Les cameleons de I'Afrique

Webb, R. G., J. K. Jones and G. W. Byers. Centrale ( Republique democratique du 1962. Some reptiles and amphibians from Congo, Republique Rwanda et Royaume Korea. Univ. Kansas Mus. Nat. Hist. 15(2): de Burundi). Mus. Roy. Afrique Centr., 149-173. Tervaren, Belgique Annales, Sen In., 8°, Wellmax, J. 1963. A revision of snakes of Sci. Zool. 142, 215 pp. the genus Conophis (Family Colubridae, WiTTE, G. F. DE and R. Laurext. 1947. Re- from Middle America). Univ. Kansas Publ. vision d'un groupe de Colubridae Africains Mus. Nat. Hist. 15(6):251-295. Genres Calamelaps, Miodon, Aparallactus, Werxer, Y. L. 1971. Lizards and snakes from et formes affines. Mem. de Musee Royal Transjordan recently acquired by the British d'Histoire Naturelle de Belgique. Ser. 2, Museum (Natural History). Bull. Brit. Mus. fasc. 29, 134 pp.

Nat. Hist. 21(6):215-256. Wood, J. F. and W. D. Duelumax. 1950.

White, J. B. and G. W. Murphy. 1973. The Size and scutellation in Natrix septemvittata reproductixe cycle and sexual dimorphism (Say). American Midi. Nat. 43( 1 ):173-178. of the common snapping turtle, Chelydra Woodbury, A. M. and R. Hardy. 1948. Studies .serpentina serpentina. Herpetologica 29(3): of the desert tortoise, Gopherus agassizii. 240-246. Ecol. Monogr. 18:145-200. Whitford, W. B. and W. G. Whitford. 1973. Worrell, E. 1964. Reptiles of Australia. Combat in the horned lizard, Phrynosoma Angus and Robertson, xv + 207 pp. cornutum. Herpetologica 29:191. Wright, A. H. and A. A. Wright. 1957. Wilbur, H. M. 1975. The evolutionary and Handbook of snakes of the United States mathematical demography of the turtle and Canada. Comstock Publ. Associates, Chrysemys picta. Ecology 56:64-77. Cornell Univ. Press, vol. 1, xviii -j- 564 pp., Williams, E. E. 1972. The origin of faunas. vol. 2, ix + 565-1105 pp. Evolution of lizard congeners in a complex ZuG, G. R., S. B. Hedges and S. Suxkel. island fauna: a trial analysis. Evol. Biol. 1979. Variation in reproductive parameters 6:47-90. of three neotropical snakes, Coniaphanes

. 1974. The second Anolis newsletter. fissidens, Dipsas catesbyi, and Imantodes

(Mimeographed leaflet, Mus. Comp. Zool., . cenchoa. Smithsonian Contrib. Zool. 300: Harvard Univ. 20 pp. WiLLL^Ms, E. E. and T. P. Webster. 1974. ZwEiFEL, R. G. 1959. Variation and distribu- Anolis rupinae a new species, a syntopic tion of hzards of western Mexico related sibling of A. monticola Shreve. Breviora to Cnemido))honis sacki. Bull. Amer. Mus. 429:22 pp. Nat. Hist. 117(2):63-116. SEXUAL SIZE DIFFERENCES IN REPTILES 53

APPENDIX I

Alphabetical list of reptiles, with female-to-male percentages, snout-vent lengths

Following each FMR figure, where available, are the male average and (in parentheses) the range and the number in the sample series; the same figures for females follow, and finally the source, abbreviated to the initials of the author(s) with the year of publication. These sources correspond with the publications listed in the Literature Cited in most instances. However, the abbreviation HSF** indi- cates figures from my own unpublished field data or museum specimens examined. The abbreviation var for "various sources" is used in instances where data are based on two or more publications.

Ablepharus kitaihelii 115 39.7(33-47) 45.7(35- Aineiva quadrilineata 96.6 72.5(66-79) 70.0 51) lEF & SV 61. (62-78) HFH 63. Ablepharus tcahlbergii 110.6 42.0(38-46 in 4) Ameiva undulata 83.8 103.6(93-115 in 43) 46.5(44-52 in 4) var. 86.9(78-106 in 74) HSF". Acanthodactylus cantoris 87 54(39-85 in 17) Amphibolurus maculosus 91 67 61 FJM 73. 47(36-58 in 14) SCA 63. Amphiesma sauteri 115.5 260(237-282 in 8) Acanthophis antarcticus 131 440(320-670 in 73) 300.5(261-333 in 10) EVM 62. 578(375-825 in 50) RS 80C. Amphiesma stolata 133 411(400-429 in 11) Achalinus spinalis 125.4 265.6(217-340 in 5) 587.4(478-654 in 10) FW 11. 332.4(320-368 in 5) var. Amphisbaena alba 103.1 433(305-537 in 34) Agama agama 86.4 (99-123 in 7) (80-112 in 447(353-655 in 43) PEV 55. 7) var. Amphisbaena fuhginosa 97 (251-397) (224-402) Agama agilis 87.4 87.3(79-94 in 26) 76.2(64- in 17 JRD & PS 75. 89 in 20) SCA 63. Anniella geronimensis 94 120.2(111-134 in 20) Agama atricollis 89.3 153.2(134-171 in 5) 113.0(111-129 in 18) HSF^ 137.7(118-153 in 4) var. Anniella pulchra 102 129.2(119-142 in 13) Agatna hispida 95.2 103.3(82-134 in 10) 98.5 123.0(110-132 in 9) HSF*. (82-118 in 8) var. Anolis aeneus 71 69.2(67-72 in 10) 49.3(48-52 Agama pallida 109.3 61.2(55-67 in 20) 67.0 in 10) TS & AS 71A. (59-81 in 20) YLW 71. Anolis allisoni 74 82.6 in 70 61.0 in 43 TWS Agama tuberculata 93 121(100-140 in 96) 113 70. (96-138 in 149) RCW 78. Anolis allogus 75.4 56.7 in 202 42.7 in 97 Agkistrodon contortrix 93.5 627.9(501-890 in TWS 70. 116) 586.9(500-678 in 98) HSF". Anolis alutaceus 92.0 35.8 in 55 32.8 in 70 Agkistrodon halijs 112 664.2(480-784 in 9) 743 TWS 70. (697-840 in 4) KK 38. Anolis angusticeps 88 42.0 in 26 37.0 in 37 Agkistrodon piscivorus 96 565(450-900 in 96) TWS 70. 493(450-800 in 90) RDB 66. Anolis aquaticus 88.7 65.9(57-71 in 10) 58.6 Ahaetulla prasina 121.5 792(710-874 in 5) 962 (59-62 in 9) HSF 76. (773-1075 in 12) FK 41. Anolis argillaceus 81 44.3 35.8 TWS 70. Alligator mississippiensis 73 3500 2550 (total Anolis attenuatus 95 84.5(78-95 in 24) 80.6 lengths) RHC & TJ 79. (74-90 in 18) HSF 76. Alopoglossus atriventris 105.9 41-46 43-49 Anolis auratus 104.4 44.6(40-49 in 31) 46.6 JRD & PS 75. (43-49 in 8) HSF 76. Alopoglossus copi 111.1 51.2(44-51 in 5) 57.0 Anolis auratus sipaliwinensis 104 43.9(39-48 in (48-62 in 7) WED ms. 14) 45.9(42-50 in 11) MSH 73. Amblyodipsas unicolor 149.5 431(366-495 in 4) Anolis bimaculatus 71 85.5 60.5 EEW 74. 702(410-705 in 4) var. Anolis biporcatus 102 87.0(73-98 in 24) 88.7 Amblyrhynchus cristatus 85 341 290 JBI 79. (77-97 in 19) HSF 76. Ameiva ameiva 95 114(90-142 in 110) 105 Anolis biscutiger 106 37.3(33-43 in 42) 39.4 (90-125 in 78) WED ms. (36-44 in 33) HSF 76. Ameiva auberi 82.6 93(78-136 in 23) 77(60- Anolis bombiceps 110 55-71 65-74 JRD & 115 in 23) AS 70. PS 75. Ameiva festiva 86.1 104.1(94-115 in 16) 89.6 Anolis bourgaei 103.1 54.6(47-61 in 24) 56.3 (78-104 in 27) HSF". (46-65 in 13) HSF 76. 54 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Anolis bremeri 70 65.3(58-72 in 9) 45.6(39-52 Anolis gundlachi 69 64.8 45.2 TWS & AS 71B. in 9) OHO 72. Anolis hendersoni 84 47.9 in 165 40.2 in 86 Anolis brevirostris 89 47.0 in 79 42.0 in 28 TWS 70. TWS 70. Anolis heteropholidotus 109 48.6(45-51 in 10) Anolis capito 106.4 84.2(78-90 in 13) 89.6 53.1(49-58 in 7) HSF 76. (83-96 in 13) HSF 76. Anolis homolechis 78 52.3 in 355 40.7 in 107 Anolis carolinensis 79 59.9(54-66 in 14) 47.3 TWS 70. (41-53 in 12) HSF 76. Anolis humilis 105 36.7(32-43 in 155) 38.5 Anolis carpenteri 105 38.5(35-41 in 6) 40.4 (34-43 in 106) HSF 76. (35-41 in 14) HSF 76. Anolis intermedins 99 46.0(39-54 in 241) 45.5 Anolis chlorocyaneus 76 71.4 in 184 54.0 in 90 (39-53 in 98) HSF 76. TWS 70. Anolis isthmicus 89 54.4(50-63 in 25) 48.4 Anolis christophei 92 47.6 43.7 TS 70. (44-58 in 9) HSF». Anolis chrysolepis 105 71.5(66-79 in 29) 74.4 Anolis kemptoni 104 48.0(45-53 in 13) 50.1 (67-80 in 32) HSF 76. (46-54 in 21) HSF 76. Anolis coelestinus 78.3 68.6 in 414 53.6 in 174 Anolis krugi 79.4 49.7 39.3 TWS & AS 71B. TWS 70. Anolis lemurinus 104 67.0(59-79 in 13) 69.6 Anolis concolor 74 68.3(60-80 in 70) 50.5(45-60 (59-78 in 16) HSF 76. in 44) MJC & PLD 73. Anolis limifrons (Costa Rica) 103 37.5(33-43 Anolis cooki 70 59.5 41.6 TWS & AS 71B. in 392) 38.6(34-45 in 276) HSF 76. Anolis crassulus 88 48.3(39-53 in 8) 42.7(35-56 Anolis limifrons (Panama) 99 43.9(38-48 in 8) in 7) HSF 76. 43.25(41-46 in 8) HSF 76. Anolis cristatellus 79 63.6 in 327 44.6 in 204 Anolis lineatopus 69 60(50-70) 42(37-47) TAJ TWS 70. 73. Anolis cupreus 88 47.4(41-53 in 233) 41.7(37- Anolis lionotus 84.8 71.5(65-78 in 19) 60.6 48 in 239) HSF 76. (56-68 in 24) HSF 76. Anolis cupreus hofFmanni 97 44.1(38-52 in 314) Anolis loysiana 89 40.4 in 18 36.0 in 7 42.6(38-51 in 166) HSF 76. TWS 70. Anolis cupreus macrophallus 82 49.6(43-54 in Anolis lucius 84 63.3 in 156 53.2 in 108 53) 40.8(34-46 in 33) HSF 76. TWS 70. Anolis cupreus spilomelas 84 49.6(41-55 in 57) Anolis megapholidotus 98 45.6(41-53 in 28) 41.7(36-49 in 23) HSF 76. 44.6(41-49 in 14) HSF 76. Anolis cuprinus 73 63.3(58-69 in 22) 46.5(42- Anolis nebulosus 100 42.0(35-49 in 58) 42.0 53 in 15) HSF 76. (.35-49 in 44) HSF 76. Anolis cuvieri 92 41.7 in 22 38.4 in 13 TWS 70. Anolis nigrolineatus 94 50.9(47-55 in 14) 48.0 Anolis cybotes 77 65.3 in 230 50.2 in 133 (45-51 in 15) HSF 76. TWS 70. Anolis occultus 100 39.0 39.2 TWS & AS 71B. Anolis damulus 110 43.1(37-48 in 9) 47.5(41- Anolis olssoni 91 44.8 in 91 40.6 in 84 52 in 12) HSF 76. TWS 70. Anolis distichus 87 50.2 in 450 43.2 in 262 Anolis opalinus 82 49.5 40.5 TWS & AS 71A. WED & AS 58. Anolis ortoni 96 46.8(43-54 in 9) 44.8(42-48 Anolis distichus biminicnsis 90 46.7(38.3-49.8 in 8) HSF 76. in 10) 41.8(.36.3-44.2 in 4) JAO 48. Anolis pachypus 101 45.5(40-50 in 32) 46.0 Anolis dollfusianus 94 39.0(35-43 in 54) 36.7 (41-50 in 24) HSF 76. (32-40 in 42) HSF 76. Anolis pentaprion 81 74.2(70-79 in 5) 60.0 Anolis equestris 93 170.9 in 95 158.4 in 66 (57-63 in 5) HSF 76. TWS 70. Anolis peraccae 93 49.9(46-52 in 21) 46.3(44-48 Anolis evermanni 74 70.7 52.4 TWS & AS in 9) HSF 76. 71B. Anolis pinchoti 90 46.2(40-52 in 95) 41.5(38-46 Anolis frenatus 82 132.4(121-143 in 15) 108.9 in 59) MJC & PLD 73. (100-118 in 20) HSF 76. Anolis poecilopus 96 63.5(56-72 in 8) 61.0 Anolis fuscoauratus 108 42.0(39-43 in 12) 45.3 (56-68 in 9) HSF 76. (40-50 in 12) HSF 76. Anolis polylepis 93 50.9(45-57 in 40) 47.3(41- Anolis fuscoauratus kuglcri 102 44.5(40-49 in 53 in 48) HSF 76. 9) 45.3(41-48 in 10) MSH 73. Anolis poncensis 87 45.6 39.6 TWS & AS 71B. Anolis gadovii 89 70.6(62-76 in 10) 62.6(56-69 Anolis porcatus 72 71.2 in 114 51.5 in 62 in 12) HSF 76. TWS 70. Anolis garmani 75 110 82.5 TWS 70. Anolis pulchellus 80 46.1 in 108 37.0 in 24 Anolis gemmosus 94 62.5(58-66 in 38) 58.5 TWS 70. (56-63 in 28) HSF 76. Anolis punctatus 88 80.5(79-83 in 4) 71.5(64- Anolis grahami 68 65.5 44.0 TWS & AS 71A. 77 in 12) HSF 76. Anolis grahami aquarum 73 61.8 45.1 TWS Anolis punctatus boulengeri 103 65-80 66-75 & AS 71A. JRD & PS 75. SEXUAL SIZE DIFFERENCES IN REPTILES 55

Anolis quercorum 89 40.1(37-46 in 26) 35.8 Atractus major 111 326(120-852 in 32) 364 (32-41 in 16) HSF'. (140-852 in 24) JMS 60 (incl. juv.). Anolis richardi 81 68.3(65-74 in 10) 66.6(65- Atractus multicinctus 110 284(262-300) 314 69.8 in 10) TS 70. (286-354) JMS 60 (incl. juv.). Anolis rodriguezi 101 43.3(40-46 in 15) 43.7 Atractus occipitoalbus 126 189(93-269 in 7) (40-49 in 23) HSF 76. 231(135-298 in 14) JMS 60 (incl. juv.). Anolis roquet 77 74(72-76 in 10) 56.9(53-62 Atretium schistosum 120 431 in 7 518 in 7 in 10) TS 70. FW 12. Anolis sagrei 73 54.5 in 192 39.7 in 62 HSF 76. Austrelaps superbus 92,1 766 in 10 706 in 27 Anolis sagrei stejnegeri 79 53.9(49-60 in 20) RS 77. 42.4(40-44 in 20) WED & AS 58. Anolis semilineatus 86 40.7 in 57 35.2 in 34 Bachia favescens (cophias) 108 64.8(60-73 in 9) TWS 70. 70(58-80 in 15) MSH 73. Anolis sericeus 90 45.4(40-52 in 47) 41.0(36- Bachia flavescens (vermiforme) 99 57-64 55-65 47 in 34) HSF 76. JRD & PS 75. Anolis subocularis 76 51.0(44-63 in 49) 38.8 Bachia trinasale 104 65.5(56-72 in 11) 68.1(59- (33-48 in 19) HSF 76. 79 in 9) WED ms. Anolis stratiilus 86 46.7 in 63 39.9 in 7 TWS Basiliscus basiliscus 78 218 170 RWV 78. & AS 71B. Basiliscus vittatus 85.5 140.9(121-167 in 29) Anolis taylori 79 71.8(64-78 in 45) 57.0(53-64 120.5(110-131 in 17) HSF". in 21) HSF 76. Bitis arietans 93.1 865.6(762-1030 in 21) 806.6 Anolis trachyderma 115 44.4(38-52 in 129) (710-965 in 12) VFMF 30. 51.2(46-57 in 101) HSF 76. Blanus cinereus 100 210(197-254 in 12) 210 Anolis tropidogaster 96 50.0(43-55 in 24) 48.0 (194-235 in 18) JB & HStG 63. (43-54 in 15) HSF 76. Boaedon lineatus 140 629(443-801 in 4) 879 Anolis tropidolepis 99 50.6(43-59 in 298) 50.1 (618-1047 in 8) var. (43-58 in 175) HSF 76. Boiga dendrophila 96 1392(993-1607 in 4) Anolis tropidonotus 81 52.3(46-55 in 16) 42.4 1332(1275-1395 in 6) FK 41. (36-53 in 34) HSF 76. Boiga pulverulenta 106 825(764-884 in 4) 874 Anolis uniformis 98.1 37.4(35-40 in 29) 36.7 (840-944 in 4) var. (34-38 in 13) HSF 76. Bothrops atrox 115.4 872.7(701-1200 in 59) Anolis valencienni 86.3 79.4 68.5 TWS & 1007.4(706-1390 in 53) HSF'. AS 71. Bothrops lansbergi 101 357(255-476 in 33) Anolis villai 89 51.5(43-60 in 64) 46.0(37-53 361(250-500 in 52) JR 79. in 28) HSF & RWH 76. Bothrops nasutus 96.4 354.7(273-450 in 23) Anolis vittigerus 125.4 52.3(45-57 in 7) 65.6 337.1(270-4.50 in 17) JR 79. (60-70 in 7) HSF 76. Bothrops pulcher 153 353.6(333-374 in 4) Anolis wattsi 87 47.5 41.2 EEW 74. 540.5(435-634 in 8) JR 79. Anolis woodi 86.6 80.8(78-87 in 4) 69.9(61-77 Bothrops punctatus 144 580(517-678 in 8) in 10) HSF 76. 833.7(550-1065 in 8) JR 79. Aparallactus lunulatus 131 284(261-315 in 4) Bothrops schlegelii 111 420.8(304-557 in 11) 373(310-410 in 4) var. 466.3(302-704 in 14) JR 79. Aparallactus modestus 120 386(377-402 in 4) Brachijmeles gracilis 93 (59.4-86) (57.2-78) 465(435-483 in 4) var. WCB & DSR 67. Aplopeltura boa 102.5 499(413-546 in 6) 511 (455-582 in 11) FK 41. Cacophis kreflFtii 112.2 235 264 RS SOB. SOB. Aporosaura anchietae 89.8 49 44 SRG & Cacophis harriettae 124.6 286 357.6 RS Cacophis squamulosus 129 390 in 48 502 in 61 MDB 79. RS SOB. Arthrosaura kockii 107 46.4(40-54 in 13) 49.5 Calamaria agamensis 117.7 237(200-268 in 28) (45-53 in 13) MSH 73. 279(245-326 in 27) FK 41. Arthrosaura reticulata 86 57-66 45-61 JRD & Calamaria gervaisi 126 191(170-210 in 8) 254 PS 75. (190-321 in 9) RFI & HM 65. Atheris squamiger 112.8 479(369-559 in 4) Calamaria lumbricoidea 115 413(384-485 in 26) 540(416-598 in 5) var. 477(337-555 in 36) CPJH 41. Atractaspis bibroni 110.8 512(370-575 in 6) Calamaria multiplicata 126 218.1(183-260 in 566.5(470-611 in var. 4) 159) 275.5(225-358 in 155) CPJH 41. Atractaspis irregularis 110 494(466-541 in 5) Calamaria pavimentata 116 238.2(193-286 in 5) 543(510-621 in 5) var. 266.2(219-336 in 9) RFI & HM 65. Atractus carrioni 142 216(135-280 in 5) 307 Calamaria virgulata 116.1 296(211-330 in 16) (260-350 in 5) JMS 60 (incl. juv.). 343.7(275-390 in 10) FK 41. Atractus elaps 111 344.5(152-560 in 34) 382 Callisaurus draconoides 89 78.9(70-88 in 43) (134-631 in 23) JMS 60 (incl. juv.). 70.2(63-80 in 46) ERP & WSP 72. 56 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Callisaurus draconoides rhodostictus 89.7 68.8 Cnemidophorus inomatus 103.5 56.0(50.5-65) (31-89 in 13) 61.6(33-80 in 24) HSF". 58(47-66) PAM 67. Candoia carinata 137 568.9(487-640 in 10) Cnemidophorus lemniscatus 79.4 76.7(60-97 in 780(544-1089 in 23) SBM 79. 201) 60.9(50-78 in 194) JRL & LJC 73. Carphophis vermis 116.7 244.1(216-288 in 90) Cnemidophorus lineatissimus 89.4 91.5(78-105 285(208-325 in 73) HSF'. in 28) 81.7(75-90 in 14) JMW 70. Causus lichtensteini 115.2 464(376-574 in 4) Cnemidophorus parvisocius 91.1 64.8(52-79 in 537(442-660 in 4) var. 274) 59.0(50-69 in 172) TPM & JMW 73. Causus rhombeatus 95 664.2(503-830 in 5) Cnemidophorus sacki 93.3 70.7(55-58) 66(45- 632(540-740 in 7) var. 95) WWM 61. Cemophora coccinea 79 832 650 AHW & Cnemidophorus sexlineatus 100.8 72.7(65-81 in AAW 57. 88) 73.3(65-83 in 96) HSF^ Cerastes cerastes 120 514.4(415-640 in 7) Cnemidophorus tigris 93.7 83.5(70-95 in 44) 617.25(567-760 in 4) AEL & SCA 67. 78.1(70-87 in 75) HSF*. Cerberus rhijnchops 118 480.2(420-556 in 6) Coleodactylus amazonicus 105 21.2(20-23 in 566.5(482-618 in 4) FK 41. 18) 22.3(18-24 in 17) MSH 73. Cercosaura ocellata 103 50-65 54-63 in 52 Coleonyx variegatus 106.8 58.4(53-65 in 55) JRD & PS 75. 62.3(56-70 in 23) WSP 72. Chamaeleo bitaeniatus 101 116(74-108 in 4) Coleonyx variegatus utahensis 113.9 54.1(37-66 117.3(79-97 in 4) var. in 16) 61.6(44-70 in 12) WWT & BHB 66. Chamaeleo dilepis 107 131.3(71-172 in 10) Coluber constrictor 110 721(513-1110 in 181) 140(97-164 in 9) var. 795(538-1210 in 177) HSF». Chamaeleo etiennei 109 79.3(68-97 in 8) 86.4 Coluber jugularis 71.1 1496.6(1160-1840) (65-115 in 15) var. 1065.8(500-1272) lEF & SV 61. Chamaeleo namaquensis 106 112.6(75-158 in Coluber spinalis 126 501(375-572 in 9) 631.2 30) 119.6(88-140 in 50) BRB 73. (483-755 in 7) CHP 35. Chamaeleo pumilis 107.1 73.5(53-93 in 65) Coluber viridiflavus 86.3 800.1(685-873 in 7) 78.8(51-102 in 86) BRB 73. 690.1(633-790 in 6) SB 68. Chamaeleo quilensis 120 94(86-111 in 19) Coluber viridiflavus xanthurus 77 1208.5(740- 112.5(89-127 in 11) RFL 64. 1365 in 10) 930.4(865-1085 in 10) SB 70. Chamaeleolis chamaeleonides 99 161.7 in 12 Coniophanes fissidcns 113.6 263(225-335 in 15) 160.5 in 33 TS 70. 298.8(230-425 in 27) GRZ, SBH & SS 79. Charina bottae 112.2 499 561 RAN & RFH 74. Coiwlophus subcristatus 91.1 383(350-417 in 8) Charina bottae utahemis 122.2 444 543 RAN 349(31.3-383 in 8) CCC 69. & RFH 74. Coronella austriaca 102 515(440-600 in 31) 526 Chelonia mtjdas 106.2 904(710-1040) 960(787- (440-600 in 27) IFS & TEP 77. 1143) CHE & PWB 72. Corythophanes cristatus 109 98.6(79-117 in 5) Chehjdra serpentina 100 254(191-355 in 18) 107.2(80-120 in 9) HSF». 255(211-259 in 9) JLC & RRB 79. Cosymbotus platurus 98.5 55.0(53.7-56.3 in Chrysemys picta 139 114(116-220 in 15) 158.1 122) 54.1(52.9-56.8 in 173) GC 62. (130-155 in 30) JWG 67. Crocodylus niloticus 85.2 3416(3073-3743 in Chrysopelia paradisi 124 573(470-700 in 8) 14) 2911(2600-3192 in 50) (total length) 770(480-910 in 5) RM 68. HBC 61. Clelia rustica 96.7 706(520-950 in 7) 681(450- Crotalus atrox 90.6 963 in 87 873 in 56 LMK 875 in 9) FA 73. 37. Clemmys guttata 100 80 in 10 80 in 10 Crotalus cerastes 103.3 537 in 53 555 in 42 RBB 79. LMK 37. Clemmys marmorata 100 100-120 100-120 Crotalus durissus 88 1512 in 10 1334 in 10 RBB 79. LMK .37. Clemmys muhlenbergii 107 67.0(61.8-89.7 in Crotalus durissus terrificus 97 754(450-965 in 76) 71.7(67.9-86.9 in 74) CE 77. 12) 731(405-1140 in 18) JR 79. Clonophis kirtlandi 110 525-675 550-775 Crotalus enyo 92 796 in 10 736 in 10 LMK 37. AHW & AAW 57. Crotalus horridus 94 1073 in 10 1010 in 10 Cnemidophorus bacatus 91.6 78.3 in 6 71.7 LMK 37. in 6 JMW & TPM 69. lepidus 82.4 in 492 Cnemidophorus calidipes 91.4 73.8(70-79 in Crotalus 596(545-648 4) (445-540 in 57. 25) 67.2(66-68 in 6) WED 60. 4) AHW & AAW Cnemidophorus deppei 92.8 73.2(60-92 in 182) Crotalus lepidus klauberi 84.6 528 in 37 447 67.9(60-81 in 260) HSF^ in 32 LMK 37. Cnemidophorus guttatus 93 106(89-128 in 12) Crotalus lucasensis 87.1 1055 in 162 919 in 98(83-112 in 8) HSF". 110 LMK 37. Cnemidophorus hyperythrus 97.4 61.4(55-72 in Crotalus mitchelli 93.6 842 in 49 788 in 27 97) 59.7(53-70 in 116) DLB 66. LMK 37. SEXUAL SIZE DIFFERENCES IN REPTILES 57

Crotalus mitchelli pyrrhus 78 1092 in 10 847 Dipsas catesbyi 96.3 395.9(260-520 in 99) in 10 LMK 37. 381.2(270-580 in 105) HSF'. Crotalus mitclielli stephensi 88 840 in 10 740 Dipsosaurus dorsalis 95 127(115-145 in 377) in 10 LMK 37. 120(110-142 in 200) JEM 71. Crotalus molossus 90.5 967 in 37 875 in 23 Disj)hoUdus ttjpus 102 1021.1(740-1290 in 8) LMK 37. 1047(805-1293 in 9) var. Crotalus molossus nigrescens 84 1156 in 10 Draco melanopogon 105.6 79.5(67-87 in 343) 969 in 19 LMK 37. 84.0(77-90 in 83) RFI & BG 66. Crotalus pricei 82 562 in 10 460 in 10 Draco quinquefasciatus 101.5 96(87-107 in 248) LMK 37. 97.4(86-107 in 62) RFI & BG 66. Crotalus ruber 84 1285 in 10 1075 in 10 Drymoluber dichrous 73.5 1041(802-1140 in LMK 37. 11) 695.3(610-785 in 13) HSF*. Crotalus scutulatus 87.9 858 in 121 754 in 48 Ititrix 118.2 263.7(164-355 in 8) 312.9 LMK 37. (161-384 in 10) var. Crotalus tigris 82 767 in 10 632 in 10 LMK 37. Crotalus triseriatus 90 555 in 10 499 in 10 Echis carinata 129 471-531 587-717 CRSP 74. LMK 37. Echis colorata 97.7 642(551.5-728 in 20) 627 Crotalus viridis 91.5 753 in 274 682 in 222 (553-732.5 in 21) HM 65. MK 37. Elaphe climacophora 102 1325(1188-1720 in Crotalus viridis concolor 88 601 in 10 526 in 39) 1344(1210-1530 in 22) HF 78. 10 LMK 37. Elaphe conspicillata 100 900-1200 900-1200 Crotalus viridis helleri 79.5 1102-1300 in 10 HF 65. 860-1052 in 10 AHW & AAW 57. Elaphe dione 103 773.2(650-843 in 4) 794.3 Crotalus viridis lutosus 89.7 875 in 96 784 in (720-885 in 4) GHP 35. 48 LMK 37. Elaphe flavolineata 103.7 1045(885-1178 in 5) Crotalus viridis nuntius 78 688 in 10 537 in 10 1084(960-1198 in 8) FK 41. LMK 37. Elaphe longissima 85.6 1126.6(835-1347) 963.7 Crotalus viridis oreganus 86.7 691 in 127 599 (665-1120) IFF & SV 61. in 83 LMK 37. Elaphe obsoleta 96.0 1058(801-1530 in 256) Crotaphopeltis hotamboeia 105 527(370-636 in 1016(800-1372 in 168) HSF". 14) 563.6(435-710 in 11) var. Elaphe porphyriaca 100 701.2(678-733 in 6) Crotaphytus coUaris 92.7 100.9(95-109 in 24) 700(651-742 in 5) GHP 35. 93.6(78-112 in 56) HSF*. Elaphe quadrivirgata 92 900-1300 700-1200 Cryptoblepharus boutoni 102 44(41.5-46.5 in HF 65. 30) 45(39.5-49.5 in 28) RM 31. Elaphe radiata 107.9 1065(819-1267 in 13) Ctenosaura similis 80 345(200-489 in 610) 276 1149(1018-1218 in 7) FK 41. (200-347 in 283) HSF & RWH 78. Elapoides fuscus 110 337(267-399 in 153) 371 Cyclura carinata 81.6 276.3(191-360 in 47) (308-434 in 155) FK 41. 225.4(190-292 in 45) JBI 79B. Emoia adspersa 101.1 74.0(72-84 in 111) 74.9 Cyclura comuta 92 534.5±3.88 468.0± 10.87 (70-81 in 21) TDS 79. JBI 79B. Emoia atrocostata 96.5 92.7(88-100 in 20) Cyclura cychlura 93.4 303 283 JBI 79B. 89.6(85-95 in 15) AGA & WGB 67. Cyclura pinguis 86 534.5 468.0 WMC 75. Emoia cyanura 99.0 48.3(42-58 in 195) 47.7 Cyrtodactylus malayanus 109 98.9(82-107 in (41-56 in 82) TDS 80. 119) 107.7(97-117 in 36) RFI & BG 66. Emoia lawesii 101.7 98(90-106 in 16) 99.7 Cyrtodactylus pubisculus 110.2 66.4(57-72 in (94-104 in 20) TDS 80. 54) 73.3(69-78 in 15) RFI & BG 66. Emoia nigra 94 108(93-120 in 107) 101.7(88- 113 in 70) TDS 80. Dasypehis scabra 117.1 564(425-710 in 8) 661 Emoia samoensis 93.5 107(90-115 in 47) 100 (505-848 in 14) var. (89-113 in 37) TDS 80. Deirochelys reticularia 194 75-85 150-160 Emydoidea blandingii 95.1 215.5(182-234 in RBB 70. 41) 204.2(179-218 in 33) TEG & TSD 79. Dendrelaphis picta 114.3 500.3(445-594 in 8) Emys orbicularis 106 149.6(142-163) 158.5 572(435-646 in 24) FK 41. (146-171) IFF & SV 61. Diadophis punctatus 111 249(215-312 in 227) Enhydrina schistosa 111 782(800-858 in 4) 279(221-368 in 408) HSF". 847(890-950 in 4) HKV & BGJ 79. Dinodon flavozonatiwi 82.6 883(790-1170 in 5) Enhydris enhydris 109.3 397(333-446 in 16) 729.7(590-990 in 4) GHP 35; MAS 43. 434(378-513 in 18) FK 41. Dinodon orientale 100 40-80 40-80 HF 65. Enyaliosaurus clarki 92.9 153 142 WED & Dinodon rufozonatum 96.1 816.4(708-910 in 5) ASD 59. 785.1(540-990 in 7) GHP 35; TPM 50. Enyalioides laticeps 100 115(100-128 in 14) Dipsadoboa unicolor 83.7 812.1(653-1093 in 5) 114.5(102-125 in 17) WED ms. 680(635-725 in 4) var. Epicrates cenchria 114 955(790-1257 in 13) 58 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

1089(975-1330 in 6) JWA, ECB & RD 65. Geochelone elephantopus ephippium 82.1 2580 Eremias arguta 93.4 59.7 55.8 lEF & SV 61. (2325-2950 in 25) 2120(1840-2700 in 61) Eremias guttulata 99 48.0(39-53 in 7) 47.5 JVD 14. (38-57 in 6) SCA 63. Geochelone elephantopus vicina 98.6 2690 Eremias lugubris 96 172(168-178 in 4) 165 (2400-3320 in 10) 2650(2125-3120 in 35) (159-171 in 4) (total lengths) VFMF 30. JVD 14. Eremias namaquensis 90 160.8(145-184 in 14) Geochelone radiata 93.0 360 in 11 334 in 15 144.8(130-157 in 8) (total lengths) VFMF 30. WA 78. Eremias savagei 97.7 41.9(33-48 in 29) 40.9 Geodipsas depressiceps 116.1 296(230-360 in 4) (35-50 in 27) RFL & CO 65. 343.5(244-390 in 4) var. Eretmochehjs imbricata 103.7 315.6(312-320) Geophis brachycephalus 116.9 339 394 FLD 327(255-360) RHM 65. 67. Eublepharis angramaimju 88.8 142-154 in 8 Geophis hoffmanni 132 197 260 FLD 67. 126-137 in 5 SCA & AEL 66B. Geophis nasalis 104.5 285 298 FLD 67. Eumeces brevirostris 103.6 62.2(60-69 in 4) Geophis rhodogaster 124 253 314 FLD 67. 64.5(60-71 in 4) JRD 69. Geophis semidoliatus 128.9 290 374 FLD 67. Eumeces egregius 106 42.5(34-48 in 33) 45.1 Gerrhonotus monticolus 93.6 77.3(63-87 in 25) (37-54 in 37) RHM 65. 72.4(63-85 in 24) HSF". Eumeces fasciatus 98.8 72.7(66-82 in 120) Gerrhonotus moreleti 92.5 88.6(81-94 in 6) 71.9(66-79 in 180) HSF°. 82.0(77-88 in 13) HSF". Eumeces gilberti 90 91. 3 ±1.4 in 59 82.4±1.1 Gerrhonotus multicarinatus 97.5 132.7(120-149 in 31 TLR & HSF 47. in 22) 129.4(120-142 in 20) HSF". Eumeces gilberti cancellosus 97 86.9itl.6 in 31 Gerrhonotus multicarinatus webbii 98.2 132.8 84.3±.92 in 35 TLR & HSF 47. (120-170 in 25) 130.5(120-152 in 22) HSF". Eumeces gilberti placerensis 95 89.6±.22 in 23 Gonatodes albogularis 100 40.1(36-45 in 23) 85.5±2.4 in 21 TLR & HSF 47. 40.1(36-42 in 18) HSF". Eumeces gilberti rubricaudatus 102 86.5±1.17 Gonatodes annularis 101 47(40-50 in 6) 47.4 in 40 88.1 ±1.35 in 18 TLR & HSF 47. (39-55 in 7) MSH 73. Eumeces inexpectatus 97.9 66.8(55-77 in 11) Gonatodes concinnatus 99 42.4(32-52 in 8) 65.4(49-78 in 18) WED & AS 58. 42.0(35-49 in 12) WED ms. Eumeces latiscutatus 98.0 71.5(63.3-87.7 in 10) Gonatodes humcralis 106 31-41 33-39 JRD & 70.0(58.8-81.3 in 11) TH 78. PS 75. Eumeces obsoletus 101.8 111.9(100-128 in 146) Gongylosoma baliodeira 108 258.8(217-305 in 113.9(100-136 in 128) HSF°. .35) 278.5(245-314 in .36) CPJH 41. Eumeces ochotercnac 102 48.3 49.4 JRD 69. Gopherus agassizii 92.2 272(256-316 in 59) Eumeces septentrionalis 101.1 78.6(71-85 in 5) 251(231-301 in 32) AMW & RH 48. 79.5(71-85 in 6) HSF°. Gopherus polyphemus 106 230-341 238-368 Eumeces skiltonianus 101 62.7±.42 in 166 RBB 79. 63.2±.48 in 134 TLR & HSF 47. Graptemys barbouri 195 (90-130) (150-230) Eumeces skiltonianus utahensis 103.6 63.7(60.1- RBB 79. 68.1 in 14) 66(62.0-70.5 in 19) WWT 57. Graptemys geographica 196 115(93-136 in 45) 226(201-258 in 15) RCV 80. Farancia ahacura 165 600-1090 920-1875 Graptemys kohtn 181.9 (90-130) (150-250) AHW & AAW 57. RBB 79. Farancia abacura rcimcardti 159 725-982 852- Graptemys nigrinoda 142.9 (75-100) (100-150) 1790 AHW & AAW 57. RBB 79. Farancia erytrogramma 148.5 622(270-870 in Graptemys ouachitensis 167 123(109-137 in 68) 17) 923(370-1340 in 27) JWG & JWC 77. 205(163-242 in 265) RCV 80. Ficimia olivacca 95 367(251-483) 350(250-450) Graptemys oculifera 183.8 (75-110) (100-150) LMH 75. RBB 79. Ficimia quadrangularis 95 212.1(87-304 in 74) Graptemys pseudogeographica 169 133(111- 201.7(127-280 in 25) LMH 75. 151 in 68) 225(193-274 in 109) RCV 80. Fordonia leucobalia 119.2 383(337-511 in 6) Graptemys pulchra 248 100(80-120) 248.5(212- 456.7(366-556 in 6) FK 41. 285) RMS 76. Gyalopion canum 106 211.9(116-292 in 39) Gambelia wislizenii 115.2 102(88-110 in 36) 224.8(151-315 in 15) LMH 75. 117.5(112-132 in 25) WSP & ERP 76. Gehtjra australis 103.8 63.4(59-68 in 5) 65.8 Hemiaspis signata 98.6 43.1 in 53 43.3 in 15 (63-70 in 5) RHB 64. RS 77. Gehyra oceanica 97.0 79.4(74-90 in 14) 77.0 Hemidactylus frenatus 96 53.5(52-54 in 179) (74-86 in 18) TDS 80. 51.4(50-52 in 251) GC 62. Gehtjra variegata 98.6 51.8(50-54 in 5) 51.0 Hemidactylus mabouia 105.6 59-67 in 6 61-72 (48-56 in 5) RHB 64. in 4 GFW 53. SEXUAL SIZE DIFFERENCES IN REPTILES 59

Hemidactylus turcicus 106.2 40.4±1.3 in 70 Lacerta muralis 101.8 58.7(51-63) 59.7(53-66) 43.0±1.5 in 51 JR & MP 71. lEF & SV 61. Hemirhagerrhis nototaenia 105.4 247.4(208-270 Lacerta muralis maculiventris 99 59.3(57-62) in 5) 261(197-315 in 6) var. 58.8(57-61) lEF & SV 61. Heterodon nasicus 116 385-550 430-660 DRP Lacerta pratincola 116 47.1(41-51) 54.6(50.5- 69. 57) lEF & SV 61. Heterodon platyrhinos 107 400-1050 450-1200 Lacerta sicula 90.0 62.6 in 31 56.0 in 42 DRP 69. RM 64. Heteronotia binoei 107.8 41.7(34-49 in 91) Lacerta sicula alveaoi 92 (68-70) (57-70) SB 70. 45.0(39-49 in 27) RHB 68. Lacerta sicida ciclopica 94 (70-75 in 10) (65-71 Holarchus violaceus 87.4 457.5(436-472 in 4) in 7) RM 55. 400(381-429 in 4) var. Lacerta sicula medemi 88.3 (70-75) (60-68) in Holbrookia maculata 107.6 48.9(43-60 in 31) 21 RM 55. 52.6(42-63 in 70) HSF». Lacerta taurica 82 55.5 45.5 IFF & SV 61. Holbrookia maculata approximans 92.6 56.8 Lacerta tiliquerta eiselti 91 57.4(53-60 in 6) (54-61 in 7) 52.0(50-55 in 9) WWM 61. 52(49-55 in 4) BL 72. Homalopsis buccata 109 625(510-800 in 26) Lacerta tiliquerta maresi 90 66.7(60-71 in 7) 681(540-870 in 30) KG 70. 60.8(54-64 in 4) BL 72. Hijdrophis torquatus 97 813.6(705-918 in 4) Lacerta trilineata media 103 110.7(101-131 in 786.4(732-940 in 4) EHT 65. 10) 113.6(100-137 in 10) JEF & RM 59. Lacerta trilineata trilineata 105.4 107.7(104- Ichnotropis capensis 95 55.0(38.3-66.7 in 56) 131 in 10) 113.6(100-137 in 10) RM 59. 52.3(40.6-61.7 in 52) RFL 64. Lacerta vauerselli 102 52.4(46-60 in 21) 53.4 Ichnotropis squamulosa 94.9 220(208-235 in 8) (46-59 in 7) GFW 41. 208.3(190-223 in 11) (total lengths) VFMF Lacerta viridis 92.8 112.8(92-123 in 26) 104.4 30. (93-119 in 24) RM & OS 49. Iguana iguana 91 361(250-550 in 174) 327 Lacerta viridis chlornota 91.9 115(100-127 in (236-411 in 169) HSF & RWH 77. 9) 105.3(98-116 in 6) SB 70. Imantodes cenchoa 109 699.8(616-754 in 8) Lacerta vivipara 116 45(42-48) 52(49-55) VFP 762.9(690-831 in 10) HSF'. & ASK 64. Imantodes lentiferus 105 616(471-682 in 11) Lacerta wagleriana 92.3 (52-76 in 40) (49-60 645(534-710 in 4) WED ms. in 68) SB 70. Iphisa elegans 100 52.0(41-62) 52.2(46-60) Lacerta wagleriana antoninoi 87 (61-70 in 12) JRD 64. (52-60 in 13) SB 70. Lacerta wagleriana maritlinensis 87.8 (53-70 in Japalura swinhonis 94.9 62.8(51-81 in 45) 60.3 23) (49-59 in 10) SB 70. (50-74 in 34) YO 37. Lampropeltis calligaster 90.9 850.7(681-1185 in 78) 773.2(568-1070 in 75) HSF'. Kentropyx calcaratus 97 105(92-115 in 28) Lampropeltis getulus 87.1 1299.8(865-1607 in 102(94-116 in 24) WED ms. 24) 1019(877-1485 in 9) FNB 21. Kentropyx pelviceps 96 75-115 in 29 80-111 Lampropeltis getulus boylii 94.7 1077.3(919- in 23 JRD & PS 75. 1180 in 10) 1020.3(920-1220 in 12) FNB 21. Kentropyx striatus 89 88.5(72-124 in 12) 79 Lampropeltis getulus holbrooki 87.5 1067.2 (72-94 in 17) MSH 73. (790-1634 in 18) 933.6(765-1145 in 21) Kerilia jerdoni 103 512.6(362-854 in 7) 525.6 FNB 21. (351-900 in 7) EHT 65. Lampropeltis multicincia 112 507-850 547- Kinosternum bauri 101 89.1(78.3-103.9 in 6) 973 AHW & AAW 57. 89.8(74.1-110.7 in 15) WED & AS 58. Lampropeltis pyromelana 91 424-1067 519- Kinosternum bauri palmarum 122 87.6(80.8- 840 AHW & AAW 57. 98.1) 107.6(101.6-119.0) WED & AS 58. Lampropeltis triangulum 87.8 821.5(710-1115 Kinosternum flavescens 97.5 103(80-115 in 23) in 17) 721.3(601-900 in 7) FNB 21. 100.5(73-117 in 21) YM 67. Lampropeltis triangulum elapsoides 88.0 468.9 Kinosternum subrubrum 118 78.3(71.1-88.7) (400-599 in 9) 412.5(355-482 in 13) FNB 21. 92.5(75.5-106.9) JBI 79. Lampropeltis triangulum syspila 96.6 578.3 Kinosternum subrubrum hippocrepis 100 89.3 (420-797 in 47) 558.9(457-675 in 35) HSF». (65-108 in 21) 89.6(67-111 in 20) YM 67. Lapemis curtus 100 828 827 ZH, TI & TO 74.

Lacerta agilis 108 71.8(60-75) 77.6(60-82) lEF Leimadophis reginae 111.9 400.6(313-490 in & SV 61. 32) 448.3(350-580 in 45) HSF'. Lacerta agilis chersonensis 99.5 70.4(60-82) Leimadophis taeniurus 105.4 391.7(302-440 in 70.1(61-84) lEF & SV 61. 7) 413.2(370-481 in 18) HSF'. Lacerta melisellensis 88 (63.4 in 16) (55.7 in Leiocephalus astictus 85 69.2(58-79 in 15) 58.7 40) EN, GG, MS, SYY, RC & VJ 72. (55-62 in 10) AS 59. 60 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Leiocephalus cubensis 77 88.4(64-110 in 37) Mabuya punctata 88 83.2(66-92 in 48) 72.1 68.0(56-81 in 28) AS 59. (62-92 in 52) HT 46. Leiocephalus exotheotus 84 59.8(46-70 in 19) Mabuya quinquetaeniata margaritifer 88.1 262 49.9(43-57 in 16) AS 59. (253-273 in 5) 230.9(220.5-241 in 6) VFMF Leiocephalus gigas 72 100.7(80-121 in 23) 72.1 30 (total lengths). (61-83 in 30) AS 59. Mabuya sparsa 86.5 73.5(61-85 in 13) 63.5 Leiocephalus macrapus felinoi 70 73-87 in 8 (66-85 in 21) CKB 69. 54-59 in 8 AS 59. Mabuya spilogaster 104.4 67.0±.75 in 88 Leiocephalus pamhasileus 78 83.4(66-95 in 11) 70.0±.62 in 131 RBH & ERP 77. 65.4(64-67 in 7) AS 59. Mabuya striata 101.1 77.7(68.5-91 in 47) 78.6 Leiocephalus paraphrus 76 83.9(55-98 in 9) (67.5-92 in 42) VFMF 30. 63.7(56-69 in 17) AS 59. Mabuya varia 105.5 57.9(55-60 in 4) 61.0(53- Leiocephalus raviceps klinkowskii 89 58.5(53- 70 in 5) var. 69 in 4) 51.9(46-59 in 8) AS 60. Mabuya variegata 111 35 39 RBH & ERP 77. Leiocephalus raviceps uzzelli 82 66.5(61-71 in Macrochelys lacertina 86.4 460(370-570 in 25) 23) 54.5(52-57 in 11) AS 60. 397(33-50 in 33) JLD 71. Leiocephalus sierrae 66 73.2(60-81 in 33) 62.8 Macropisthodon rudis 139 558.0(543-590) (57-67 in 30) AS 59. 783.3(770-805) CHP 35. Leiocephalus stictigaster 83 66.1(57-79 in 26) Malaclemys terrapin 158 100-140 150-230 54.9(48-72 in 27) AS 59. CHE & RWB 72. Leiolopisma rhomboidalis 100 50.5(46-55 in 42) Malaclemys terrapin centrata 143.5 115(100- 50.5(48-56 in 33) DCW 63. 123 in 13) 165(155-176 in 9) RS 80. Lepidodacttjlus luguhris 102.1 36.9(35-39 in 6) Malaclemys terrapin tequesta 140.5 123(109- 37.4(31-40 in 14) AHW 70. 144 in 26) 173(142-205 in 181) RS 80. Leposoma guianensis 103 35.6(30-37 in 8) 36.6 Masticophis lateralis 106 593 627 AHW & (30-39 in 14) MSH 73. AAW 57. Leposoma parietale 105 33.0(29-38 in 53) 34.7 Masticophis tacniatus 95.4 600-1050 575-1000 (31-39 in 24) WED ms. AHW & AAW 57. Leptodeira annulata 107.5 509.5(442-580 in 52) Masticophis taeniatus ruthveni 95.6 1031 981 547.9(480-635 in 51) HSF°. AHW & AAW 57. Leptophis ahaetulla 90.6 1021(848-1145 in 11) Maticora intcstinalis 98.6 487.4(426-560 in 5) 928(815-1000 in 12) HSF*. 480.5(455-528 in 5) FK 41. Liolaemus anomalus 91 (55-80 in 9) (54-72 Meroles cuneirostris 90.6 54 49 SRC & MDR in 7) JMC 79. 79. Liolaemus archeforus 90.5 74.4(69-87 in 10) Micrurus fulvius 133.5 555(450-710 in 61) 740 82.1(76-92 in 10) JMC 75. (570-990 in 39) DRJ & RF 80. Liolaemus archeforus sarmentiori 93.8 (80-85) Micrurus fulvius tenere 118.9 466(388-601 in (75-80) JMC 75. 46) 554.2(355-950 in 92) HBQ 79. Liolaemus kingii 91.6 77-100 in 14 72-90 in 14 Moloch horridus 113.2 84.6(79-96 in 31) 96.0 JMC 75. (82-110 in 33) ERP & HDP 70. Liophis miliaris 123.8 539(382-738 in 123) 667(480-993 in 244) CO 64. A'a/a melanoleuca 85 2040(1660-2692 in 4) Lipinia noctua 101 43.7(37-49 in 22) 44.3 1732(1353-2591 in 4) var. (41-49 in 22) TDS 80. Naja naja 98.9 1048(928-1240 in 16) 1033 Lycophidion capense 133 343.2(310-391 in 6) (943-1168 in 14) FK 41. 454.8(302-533 in 6) var. iVfl/a nigricollis 102 1211(905-1555 in 9) 1148 (713-1470 in 7) var. Mahuija haijoni 105 68.8-72.6 in 8 70-80 in 15 Natriciteres olivacea 125.4 328(287-382 in 5) RFL 64. 412(338-460 in 5) var. Mahuija hrachypoda 100.6 72.5(64-84 in 8) Natrix annularis 137.5 411(340-500 in 49) 565 73.0(64-88 in 6) EHT 56. (475-695 in 27) TPM 50. Natrix natrix 114 557.7(430-660) 634.4(420- Mahuija buettneri 120 71 85 RB 74. 830) lEF & SV 61. Mabuya mabouya 112.1 71.6(66-91 in 21) 80.3 Natrix natrix sicula 114.5 610(510-755 in 14) (72-91 in 18) HSF°. 699(525-1000 in 28) SB 70. Mabuya mabouya alliacea 105.8 70.8(66-76 in Natrix percarinata 136 564(530-638 in 6) 766 10) 74.8(71-88 in 5) 56. EHT (620-1047 in 6) var. Mabuya maculilabris 98 71.2(52-84 in 16) 69.9 Natrix tessellata 102.5 549(475-599) 562(472- (55-77 in 17) RFL 64. 641) lEF & SV 61. Mabuya multifasciata 94 101.5(90-113) 95(87- Natrix trianguligera 117.8 607(405-956 in 23) 103) RM 30. 715(367-912 in 19) FK 41. Mabuya occidentalis 108 72 78 RBH & ERP Nerodia cyclopion 124 626-900 660-1250 77. AHW & AAW 57. SEXUAL SIZE DIFFERENCES IN REPTILES 61

Nerodia enjthrogaster bogerii 107 618(539-708 Pelamis platurus 118 563(518-621 in 30) 664 in 4) 663(583-794 in 6) RC 69. (627-738 in 30) CK 75. Nerodia erythrogaster transversa 115 686.2 Peropus mutilatus 99 53.3(52.4-54.0 in 70) (630-750 in 10) 786.8(664-966 in 10) RC 69. 52.8(52.5-53.0 in 98) GC 62. Nerodia fasciata 116 600-1090 660-1300 AHW Philothamnus hoplogaster 120.1 417.5(335-690 & AAW 57. in 6) 501(398-655 in 4) var. Nerodia fasciata confluens 132 410-658 500- Philothamnus irregularis 133 601.6(499-730 in 910 AHW & AAW 57. 8) 802.5(646-1070 in 6) var. Nerodia fasciata pictiventris 152 425-818 700- Philothamnus semivariegatus 103.2 650.4(534- 1195 AHW & AAW 57. 800 in 9) 671(435-850 in 11) var. Nerodia rhombifera 111 772.0(695-862 in 10) Phrynocephalus scutellatus 105.2 (42.5-48.0) 859.7(774-1015 in 10) RC 69. (40.5-50.5) AEL 59. Nerodia rhombifera blanchardi 120 714.8(683- Phrynosoma cornutum 106.6 69.6(64-75 in 15) 780 in 10) 854.6(692-1068 in 10) RC 69. 74.4(65-82 in 17) HSF^ Nerodia rhombifera werleri 162 676.5(529-791 Phrynosoma coronatum 101.5 82.5(71-90 in 6) in 10) 1093(956-1162 in 10) RC 69. 83.6(74-96 in 5) HSF*. Nerodia sipedon 132.4 551.2(413-748 in 55) Phrynosoma douglassi 109.7 60.9(39-88 in 11) 729.7(570-1025 in 46) HSF". 66.9(28-94 in 23) WWT & BHB 66. Nerodia sipedon insularum 108 685-900 562- Phrynosoma modestum 112.2 55.8(51-66 in 6) 1151 AHW & AAW 57. 62.8(55-71 in 10) HSF». Nerodia sipedon pleuralis 124 670-1100 710- Phrynosoma arhiculare 103 73.5(64-86 in 8) 1350 AHW & AAW 57. 75.7(68-90 in 15) HSF^ Nerodia taxispilota 117 670-1100 710-1350 Phrynosoma platyrhinos 106.2 71.5(65-75 in AHW & AAW 57. 24) 76(65-80 in 32) ERP & WSP 75. Nerodia valida 135 545.4(513-579 in 10) 738.5 Phrynosoma solare 108 90.4(80-100 in 19) 98 (694-867 in 10) RC 69. (80-110 in 22) WSP 71. Nerodia valida celaeno 109 613.4(556-712 in Phyllodactylus angustidigitatis 95.1 50.3(41-57) 10) 671.1(608-730 in 10) RC 69. 47.8(37-54) in 246 JRD & RBH 70. Nerodia valida isabelleae 142 417.3(379-479 in Phyllodactylus curopaeus 97.5 40.8(40-44 in 4) 10) 591.4(531-707 in 10) RC 69. 39.8(38-42 in 5) SB 68. Nerodia valida thamnophisoides 121 452.8(425- Phyllodactylus gerrhopygus 97.5 43.9(32-56) 500 in 10) 547.2(476-672 in 10) RC 69. 42.8(.32-55) in 98 JRD & RBH 70. Neusticurus bicarinatus 85 100(90-117 in 19) Phyllodactylus inaequalis 99.5 37.0(33-40) 36.8 85(79-96 in 15) MSH 73. (.30-42) in 59 JRD & RBH 70. Neusticurus ecpleopus 93.0 61(52.5-72 in 66) Phyllodactylus interandinus 104.9 39.2(32-45) 56.6(53.5-60 in 23) WCS 75. 41.1(33-47) in 149 JRD & RBH 70. Ninia maculata 107.2 202.6(187-231 in 18) Phyllodactylus johnwrighti 103 37.9(32-40) 217.4(187-233 in 7) HSF**. 39.0(33-44) in 41 JRD & RBH 70. Notechis scutatus 98.9 81.6 in 174 80.8 in 32 Phyllodactylus kofordi 101.7 38.0(30-45) 38.6 RS 77. (30-46) in 167 JRD & RBH 70. Phyllodactylus lepidopygus 114.7 40.8(32-50) Opheodrys aestivus 100 345-379 335-805 46.8(36-55) in 63 JRD & RBH 70. AHW & AAW 57. Phyllodactylus microphyllus 99.8 46.7(33-56) Opheodrys major 83.4 750.5(650-930 in 4) 46.5(32-58) in 277 JRD & RBH 70. 626(610-678 in 4) var. Phyllodactylus reissi 97.0 59.4(42-75) 57.5(37- Opheodrys vernalis 101 332(304-358 in 6) 73) in 772 JRD & RBH 70. 335(301-378 in 7) HMS 63. Phyllodactylus tuherculosus 102 72.5(54-80) Ophiomorus persicus 119 64.6(56-72 in 7) 77.1 76.6(72-83) GAH & JRL 67. (73-82 in 9) SCA & AEL 66. Phyllodactylus ventralis 99.8 62.4(50-74) 62.3 Ophiomorus rathmai 112 77.7(64-85 in 7) 86 (52-75) in 22 JRD & RBH 70. (63-99 in 11) SCA & AEL 66. Phijllorhynchus decurtatus nuhilus 110 300- Ophiomorus tridactyhts 103 82(71-91 in 9) 343 in 50 300-408 in 33 AHW & AAW 57. 84.6(76-88 in 6) SCA & AEL 66. Phyllorhynchus decurtatus perkinsi 97 340 in Ophisaurus attenuatus 95.2 226.6(200-285 in 214 330 in 148 AHW & AAW 57. 733) 215.6(195-263 in 420) HSF*. Pituophis melanoleucus affinis 104 676 in 31 Oxybelis argenteus 125 576(447-774 in 8) 724 698 in 23 AHW & AAW 57. (630-806 in 11) WED ms. Pituophis melanoleucus catenifer 95 1060(760- melanogenys in Oxyrhopus 115.2 588(540-696 1360) 1010(750-1270) AHW & AAW 57. 16) 677(605-755 in 18) HSF'. Pituophis melanoleucus deserticola 91 910.5 in Oxyrhopus petola 117.6 662.2(608-758 in 13) 23 826.2 in 13 AHW & AAW 57. 779.3(700-857 in 14) HSF". Pituophis melanoleucus sayi 101.0 1246(1015- Pareas carinatus 99.6 387.9(339-454 in 20) 1779 in 59) 1258(1005-1624 in 55) HSF". 386(332-460 in 20) FK 41. Plica plica 100 90-140 83-143 RE 70. 62 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Plica umbra 90.5 (72-100 in 15) (61-94 in 14) Rhadinea flavilata 111.5 205 in 46 229 in 45 RE 70. CWM 74. Plica umbra ochrocoUaris 102.8 78.5(66-89 in Rhamphiophis acutus 86.5 651.2(549-826 in 4) 16) 80.6(69-90 in 12) WED ms. 564(400-729 in 4) var. Polychrus marmoratus 124 385 in 9 478 in 13 Rhinocheilus lecontei 87 498-936 536-820 WB 44. AHW & AAW 57. Prionodactylus argulus 99.5 38.0(30-42 in 14) Rhinocheilus lecontei clarus 91 642 in 29 586 37.8(32-47 in 25) WED ms. in 13 AHW & AAW 57. Prionodactylus manicatus 122.8 51.3(41-65 in Rhinoclemys pidcherrima incisa 117 153 in 5 6) 63(55-70 in 5) WED ms. 179 in '5 HH ms. Proctoporus bolivianus 106 50.0(46-61 in 10) 53.0(46-61 in 10) HSF^ Salvadora hexalepis 90 684-1014 709-826 Prosymna ambigua 117 234(202-250 in 4) 274 AHW & AAW 57. (216-366 in 4) var. Salvadora hexalepis mojavensis 84 800-941 Psammodynastes pulverulentus 109 374(335- 650-803 AHW & AAW 57. 426 in 9) 407(352-485 in 12) FK 41. Salvadora hexalepis virgultea 91 678-1027 625- Psammophis schokari 11 A 664(614-737 in 10) 892 AHW & AAW 57. 513(443-600 in 5) HM 58. Salvadora lemniscata 97.4 1460 in 10 1423 in Psammophis sibilans 81.9 886(708-1215 in 19) 10 CMB 39. 725(516-1253 in 18) var. Salvadora mexicana 87 1246 in 10 1083 in 10 Psammophylax tritacniatus 93 622.7(525-734 CMB 39. in 8) 579(467-851 in 10) var. Sauromalus obesus 92 175(162-197 in 25) 161 Pseudechis porphyriaca 95.4 1116 in 225 1061 (149-184 in 28) SRJ 65. in 55 RS 77. Sceloporus adleri 92 65.3(59-72 in 14) 60.4 Pseudemys concinna 117 145 170 RBB 79. (.54-66 in 14) HSF 78. Pseudemys floridana 138.5 164(110-200 in 11) Sceloporus bulleri 97 100.7(95-116 in 10) 97.7 227.5(200-260 in 16) JWG & JWC 77. (91-108 in 10) HSF 78. Pseudemys floridana "suwanensis" 143 150-270 Sceloporus chrysostictus 95 54.0(45-62 in 81) in 208 240-360 in 232 AC 52. 51.3(44-61 in 82) HSF 78. Pseudemys rubriventris 116 257(212-277 in 4) Sceloporus clarki 92 102.1(97-118 in 29) 94.9 299(281-322.5 in 9) AEC 52; TEG 71. (88-107 in 21) HSF 78. Pseudemys scripta 140 217(137-340 in 98) 304 Sceloporus clarki boulengeri 81 104(91-138 in (248-349 in 48) EOM & JML 71. 27) 84.1(72-120 in 36) HSF 78. Pseudemys scripta troosti 108 140-210 in 9 Sceloporus cozumelae 87 50.7(43-60 in 57) 172-206 in 6 AC 52. 45.5(41-57 in 33) HSF 78. Sceloporus cyanogenys 100.7(86-116 in Pseudocerastes ficldi 108 575 in 8 623 in 7 105 8) HM 65. 105.9(88-119 in 22) HSF 78. Sceloporus formosus 103 71.6(64-80 in 12) Pseudogonatodes guiancnsis 102 25.2(23-26 in 73.9(68-80 in 8) HSF 78. 8) 25.5(23-27 in 8) WED ms. Sceloporus graciosus 104 57.4(52-63 in 106) Ptenopus garrulus 101.1 45.6(33.0-48.0 in 5) 59.9(53-69 in 121) HSF 78. 46.1(32.5-49.5 in 4) var. Sceloporus graciosus "gracilis" 103 52.1(49-61 Ptyas korros 92.2 1021(771-1227 in 15) 940 in 85) 53.9(48-63 in 76) HSF 78. (793-1055 in 19) FK 41. Sceloporus graciosus vandenburgianus 95 60.2 in Ptyas mucosus 93.8 1300(1120-1490 10) (55-65 in 34) 57.5(51-63 in 26) HSF 78. 1220(1050-1507 in 14) FK 41. Sceloporus grammicus 96 51.2(42-57 in 23) Ptychoglossus brevifrontalis 111 (40-46) (42- 49.3(44-54 in 32) HSF 78. 53) in 10 JRD & PS 75. Sceloporus insignis 92 89.5(80-99 in 10) 82.6 (80-89 in 10) HSF 78. Regina alleni 106 401-600 401-652 AHW & Sceloporus jarrovi 91 78.8(61-91 in 35) 71.88 AAW 57. (57-86 in 33) HSF 78. Regina grahami 119.5 478(340-620 in 36) 571 Sceloporus lundelli 105 90.0(86-93 in 4) 94.7 (430-760 in 33) RJH 69. (91-99 in 6) HSF 78. Regina rigida 134 350-546 493-705 AHW & Sceloporus magister 84 115.5(80-140 in 42) AAW 57. 96.6(80-120 in 33) HSF 78. Regina septemvittata 114.1 395 in 68 451 in Sceloporus malachiticus 95 79.1(67-90 in 146) 58 JTW & WED 50. 75.5(64-86 in 208) HSF 78. Rhabdophis chrysarga 106 473(417-590 in 94) Sceloporus megalepidurus 99 45.2(42-50 in 10) 500(420-643 in 110) CPJH 41. 44.9(41-48 in 11) HSF 78. Rhabdophis subminiata 122 388(352-445 in 43) Sceloporus merriami 95 52.3(45-61 in 60) 49.8 467(430-529 in 47) CPJH 41. (44-55 in 51) HSF 78. Rhabdophis tigrina 120 600-900 700-1100 HF Sceloporus merriami annulatus 95 47.7(42-53 65. in 96) 45.3(39-50 in 62) HSF 78. SEXUAL SIZE DIFFERENCES IN REPTILES 63

Sceloporus mucronatus 95 93.3(85-100 in 21) Seminatrix pygaea 110 303.3(275-336 in 20) 88.5(81-100 in 17) HSF 78. 330.3(285-415 in 20) HGD 50. Sceloporus nelsoni 87 60.1(53-65 in 26) 52.1 Sistrurus catenatus 92 663 in 10 610 in 10 (48-58 in 21) HSF 78. LMK 37. Sceloporus occidentalis 106 66.1(61-72 in 23) Sistrurus ravus exiguus 76 587-664 in 13 413- 70.4(68-77 in 13) HSF 78. 481 in 4 JAC & BLA 79. Sceloporus occidentalis biseriatus 107 73.6(65- Sonora episcopa 99.7 213.5(181-258 in 20) 81 in 14) 82.7(72-87 in 21) HSF 78. 213.1(180-245 in 16) HSF*. Sceloporus olivaceus 111 82.9(60-93 in 34) Sonora michoacanensis 104.1 234.4(205-275 in 93.0(63-107 in 107) HSF 78. 5) 244(234-272 in 6) ACE 73. Sceloporus orcuttii 90 102(90-115 in 17) 92 Sonora semiannulata 99 211 in 43 209 in 57 (85-106 in 77) HSF 78. AHW & AAW 57. Sceloporus pictus 98 48.9(47-51 in 8) 47.9 Spalerosophis cliffordi 107 1009(725-1265 in (44-52 in 7) HSF 78. 164) 1165(780-1520 in 205) RD 67. Sceloporus poinsetti 86 116.4(100-130 in 18) Sphaerodactylus argivus 99.3 25.4(22-29 in 82) 97.0(86-116 in 21) HSF 78. 25.2(21-29 in 106) RT 75. Sceloporus pyrocephalus 85 62.9(58-68 in 9) Sphaerodactylus argus 113 29.1(26-33 in 65) 53.5(49-60 in 12) HSF 78. 32.5(28-33 in 71) RT 75. Sceloporus scalaris 111 45.3(40-55 in 45) 51.3 Sphaerodactylus argus barstchi 105.8 25.8(20- (40-60 in 203) HSF 78. 29 in 30) 27.3(24-29 in 17) RT 75. Sceloporus scalaris aeneus 99 46.1(42-49 in 10) Sphaerodactylus lewisi 107.5 24.5(22-27 in 12) 45.5(41-53 in 23) HSF 78. 26.4(24-27 in 15) RT 75. Sceloporus scalaris bicanthalis 106 45.4(43-50 Sphaerodactylus oxyrhinus 111.2 30.9(28-33 in in 14) 48.8(42-55 in 11) HSF 78. 12) 34.4(29-34 in 14) RT 75. Sceloporus siniferus 86 60.8(53-67 in 32) 52.3 Sphaerodactylus oxyrhinus dacnicolor 101.5 (48-61 in 35) HSF 78. 29.8(27-32 in 28) 30.3(27-32 in 30) RT 75. Sceloporus smaragdinus 93 67.2(60-80 in 14) Sphaerodactylus semasiops 110 25.4(23-30 in 62.2(55-77 in 17) HSF 78. 10) 28.0(24-31 in 16) RT 75. Sceloporus spinosus 99 88.3(82-99 in 17) 87.2 Sphenomorphus cherriei 99.8 54.7(50-58 in 39) (77-96 in 18) HSF 78. 54.6(49-63 in 61) HSF». Sceloporus taeniocnemis 97 71.1(65-81 in 19) Stemotherus carinatus 98 105(84-116 in 18) 68.7(60-82 in 20) HSF 78. 103(82-117 in 13) YM 67. Sceloporus teapensis 93 58.9(46-64 in 24) 52.0 Stemotherus minor 105 82.3 in 310 86.3 in 341 (47-62 in 26) HSF 78. JBI 77. Sceloporus torquatus 99 103.5(98-118 in 13) Stemotherus odoratus 105 73.7(64-85 in 18) 102.7(97-110 in 9) HSF 78. 77.5(66-84 in 16) YM 67. Sceloporus undulatus 110 56.1(47-65 in 59) Stilosoma cxtenuatwn 104 270-567 300-575 62.1(53-70 in 35) HSF 78. AHW & AAW 57. Sceloporus undulatus consobrinus 101 60.3(55- Storeria dekayi texanum 120.2 203.8(167-244 in 74 in 45) 61.0(55-71 in 46) HSF 78. 13) 245.0(201-309 in 18) HSF". Sceloporus undulatus elongatus 112 63.1(55- Storeria dekayi victa 119.8 191(175-290 in 34) 71 in 20) 72.0(65-83 in 20) HSF 78. 227(175-412 in 22) HT 44. Sceloporus undulatus erythrocheilus 110 59.5 Storeria occipitomaculata 118.4 168.5(141-203 (53-65 in 21) 66.2(60-72 in 21) HSF 78. in 14) 199.5(177-272 in 15) HSF». Sceloporus undulatus garmani 107 52.2(45-59 in 62) 56.3(53-68 in 44) HSF 78. Tachymenis chilensis assimilis 87 306 267 Sceloporus undulatus hyacinthinus 107 59.8 WFW 45. (57-63 in 18) 64.2(57-67 in 11) HSF 78. Tachymenis chilensis melanura 106 350 372 Sceloporus undulatus tristichus 107 58.6(52- WFW 45. 70 in 33) 62.8(57-75 in 53) HSF 78. Tachymenis peruviana 93 333 309 WFW 45. in 59.7 Sceloporus utiformis 93 64.4(58-75 9) Tantilla gracilis 125.7 141.4(121-165 in 43) (51-66 in 10) HSF 78. 177.9(120-209 in 21) HSF". Sceloporus variabilis 81 65.8(57-74 in 97) 53.1 Tantilla planiceps 94 277-375 211-373 AHW (44-68 in 157) HSF 78. & AAW 57. Sceloporus virgatus 112 52.0(48-58 in 11) 58.8 84 62.7±2.3 52.7±1.1 (51-69 in 11) HSF 78. Tarentola mauritanica Sceloporus woodi 106 47.6 50.5 HSF 78. JR & PB 71. Scincella lateralis 105.3 45.4(43-50 in 14) 47.8 Telescopus semiannulatus 128.2 615.5(478-760 (42-56 in 22) HSF'. in 4) 790.2(522-953 in 4) var.

Scincus mitratus 79.1 126(121-134 in 4) 99.7 Terrapene Carolina 90.9 140.1(128-154 in 8) (92-105 in 5) ENA & AEL 77. 127.4(109-142 in 9) WED & AS 58. Scincus scincus 85.2 116(88-139 in 27) 99(83- Terrapene coahuila 92.5 108.9 in 70 100.9 in 115 in 29) ENA & AEL 77. 94 WSB 71. 64 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Terrapene omata 101.8 111.6(100-126 in 75) Trimeresurus stejnegeri 109.1 631.5(592-670 in 113.5(101-130 in 163) HSF°. 4) 690.8(625-731 in 4) CHP 35. Testudo graeca 97 208.7(145-270) 203.2 lEF Trimorphodon biscutatus lambda 130 296-788 & SV 61. 359-1026 AHW & AAW 57. Thamnophis brachystoma 112 290-440 290- Trimorphodon biscutatus vandenburghi 127 506 AHW & AAW 57. 555-738 556-1054 AHW & AAW 57. Thamnophis butleri 109 338(310-410 in 92) Trionvx muticus 157.5 98.1(80-120 in 1105) 369(310-480 in 60) CCC 52. 1,54.5(140-180 in 164) MVP 77. Thamnophis couchi 132 430-580 440-900 Trionyx spiniferus emoryi 236 80-90 200 RBB AHW & AAW 57. 79. Thamnophis couchi gigas 134 500-740 550- Trionyx spiniferus ferox 168 155(114-190 in 1080 AHW & AAW 57. 73) 286(165-395 in 98) WJB 55. Thamnophis couchi hammondi 136 373-729 Trionyx spiniferus pallidus 182 90-100 160- 388-989 AHW & AAW 57. 185 RBB 79. Thamnophis couchi htjdrophilus 130 330-580 Trogonophis wiegmanni 98 179(165-196 in 6) 350-610 AHW & AAW 57. 175(170-185 in 6) JB & HStG 63. Thamnophis cyrtopsis 146 429-470 504-764 Tropidoclonion lineatum 122.2 215.1(183-247 AHW & AAW 57. in 19) 262.8(216-341 in 40) HSF". Thamnophis elegans 118 370-590 420-690 Tropidurus albemarlensis 79 82(65-95 in 67) AHW & AAW 57. 65(45-75 in 118) CCC 70. Thamnophis elegans hiscutatus 138 490-797 Tropidurus albemarlensis barringtonensis 84 570-922 AHW & AAW 57. 94(75-125 in 49) 79(55-85 in 31) CCC 70. Thamnophis elegans terrestris 106 308-604 Tropidurus bivittatus 78 81(65-105 in 27) 63 380-590 AHW & AAW 57. (45-95 in 26) CCC 70. Thamnophis elegans vagrans 122 453(290-580 Tropidurus delanonis 76 119(115-155 in 41) in 35) 586(470-730 in 36) HSF 40. 90(85-115 in 43) CCC 70. Thamnophis eques 115 412(321-489 in 6) 498 Tropidurus duncanensis 89 87(55-105 in 17) (407-518 in 6) var. 77(55-85 in 32) CCC 70. Thamnophis niarcianus 126 335-621 322-887 Tropidurus grayi 116 70.3(55-95 in 42) 81.4 AHW & AAW 57. (45-85 in 17) CCC 70. Thamnophis ordinoides 125 328(250-500 in Tropidurus habeli 79 107.1(95-115 in 23) 84.6 151) 410(280-550 in 125) HSF 40. (75-95 in 27) CCC 70. Thamnophis proximus 109.5 489.6(420-600 in Tropidurus icae 86.7 85.6(77-94) 74.2(70-76)

1.3) 536.5(445-760 in 31) HSF*. JRD & J WW 75. Thamnophis radix 108 325-650 350-700 AHW Tropidurus occipitalis 81 64.4(50-75) 52.2(47- & AAW 57. 58) JRD & J WW 75. Thamnophis sauritus 117.5 410(360-540 in 115) Tropidurus pacificus 87 87.5(65-105 in 17) 75.7 483(360-610 in 158) CCC 52. (65-85 in 32) CCC 70. Thamnophis sirtalis 114 453(390-600 in 240) Tropidurus peruvianus 86 98.3(90-103) 84.6 515(390-720 in 235) CCC 52. (78-97) JRD & JWW 75. Thamnophis sirtalis parietalis 123 519(412-683 Tropidurus salinicola 92 62.3(51-72) 57.1(50- in 215) 636(510-968 in 282) HSF°. 64) JRD & JWW 75. Thamnophis sirtalis pickeringi 124 471.4±10.84 Tropidurus stolzmanni 71.3 80.3(52-106) 57.4 584.40±13.10 WBH 36. (48-68) JRD & JWW 75. Thecadactylus rapicaudus 106 101(93-108 in Tropidurus talarae 77.8 81.6(77-84) 63.4(60-70) 5) 107(97-116 in 6) WED ms. JRD & JWW 75. Thelotornis capcnsis 100 945(757-1312 in 5) Tropidurus thoracicus 87 68.5(63-74) 62(48- 942(670-1366 in 5) var. 76) JRD & JWW 75. Tropidurus torquatus 80 109.8(97.8-121.7 in Thrasops jacksoni 125.5 1322(1300-1330 in 5) 11) 88.1(79.5-98.5 in 7) RV BSD 60. 1661(1263-1550 in 6) var. & Typhlosaurus garipensis 105.5 116.1±.78 in 37 Tretanorhinus nigroluteus 141 423 in 23 597 122.9±:.77 in 35 RBH & ERP 74. in 18 RWH & LGH 79. Typhlosaurus lineatus 105 130.5±.64 in 133 Tretioscincus agilis 107 37.9(33-48 in 70) 40.7 137.3±.75 in 93 RBH & ERP 74. (35-48 in 53) PEV & RR 69. Typhlops angolensis adolfi 124.5 377(281-534 Trimeresurus albolabris 161 468(438-485 in 5) in 11) 469.4(380-602 in 10) RFL 56. 751(710-786 in 5) CHP 35. Typhlops angolensis dubius 136.2 433(316-547 Trimeresurus flavoviridis 89.3 1035(720-1370 in 10) 591.7(464-703 in 6) RFL 56. in 24) 925(530-1370 in 22) KM 79. Typhlops angolensis iraci 141 396.5(312-532 Trimeresurus okinavensis 99 517(300-676 in 20) in 4) 559(500-630 in 10) RFL 56. 511(310-700 in 21) KM 79.

Trimeresurus puniceus 138.7 429(360-499 in 4) Uma inomata 79.4 102(80-122 in 191) 81(70- 595(527-656 in 4) FK 41. 99 in 213) WWM 65. SEXUAL SIZE DIFFERENCES IN REPTILES 65

Uma notata 79 96(80-121 in 270) 76(70-94 in Vipera amrrwdytes 118 (52-80) (61-95) SB 67B. 214) WWM 66B. Vipera hems 108 462.5 in 100 498 in 127 Uma scoparia 85.6 97(80-113 in 248) 83(70- IP 71. 112 in 236) WWM 66A. Vipera latastei 90.1 333(270-400 in 12) 290 Uracentron flaviceps 70.4 49.8(42-58 in 4) 35.0 (250-340 in 6) HSG 73. (30-42 in 5) CMF & TDS 68. Vipera tirsini 110 390 430 SB 67. Urechis gouldi 83.4 36.2 in 129 30.2 in 29 Vipera xanthina 95 937(810-1073 in 21) 894 RS 77. (831-1100 in 33) HM 65. Urosaurus omata 97.3 49.6(41-64 in 178) 48.3 Virginia striatula 115.7 180.8(182-200 in 90) (40-62 in 129) HSF'. 209.1(182-236 in 55) DRC 64. Uta antigua 92 50.8±1.3 in 33 46.6±.90 in 27 Virginia valeriae 124.4 169.8(133-189 in 10) AED, DWT & JWG 78. 211.3(190-240 in 15) HSF». Uta mearnsi 96 77.0(66-84 in 38) 73.9(132-172 in 50) MLH 65. Uta nolascensis 93 50.05±1.07 in 21 46.6±.83 Xantusia henshawi 110.7 56 62 JCL 75. in 15 AED, DWT & JWG 78. Xenochrophis cerasogaster 152.8 441.8(390-498 Uta palmeri 91 66.97±2.82 in 34 60.7±1.36 in 4) 673.2(480-754 in 4) EVM & SAM in 51 AED, DWT & JWG 78. 65; MAS 43. in Uta squamata 93 50.6±1.03 in 25 47.1±.66 Xenochrophis piscator 134.8 423.8(300-570 in 27 AED, DWT & JWG 78. 20) 571.4(326-842 in 40) FK 41. Uta stansburiana 87 (43-57 in 447) (40-56 in Xenochrophis vittata 123.9 327(263-386 in 12) 402) HSF". 405(303-483 in 14) FK 41. Xenodermus javanicus 111 345(316-418 in Varanus acanthums 86.6 170(153-192 in 6) 15) 383(314-440 in 24) FK 41. 147.5(133-163 in 4) RM 58. Vermicella annulata 139 392(282-534 in 84) Xenodon severus 96.1 905(710-1325 in 19) 544(325-746 in 80) RS 80A. 870(710-1129 in 15) HSF*.

SEXUAL SIZE DIFFERENCES IN REPTILES 67

APPENDIX II

Maximum sizes (snout-vent) of reptiles recorded by various authors

Symbol(s) after each name represent(s) degree of size difference between the sexes (see p. 4); these are followed by male length and female length in millimeters, initials of authority, and year of publication.

Ablepharus smithi X 41, 42, GFW 53^ Anguis fragilis + 212, 232, var. Acrochordus javajiicus ++++ 900, 1515, MAS Anilius scytale + + + + 810, 1184, JRD & 43 PS 77 Agama atra 135, 108, VFMF 43 Anolis ahli 58, 45, RR & FEW 61 Agama cyanogaster 167, 127, AEL 53 Anolis alumina — 40, 37, PEH 76 Agama hispida aculeata — 110, 103, VFMF 43 Anolis bahorucoensis southerlandi 51, 44, Agama kirki - 105, 92, AEL 53 AS 78 Agama mossamhica 93, 70, VFMF 43 Aiwlis baleatus 180, 148, AS 74 Agama planiceps — 112, 102, VFMF 43 Anolis baleatus litorisilva 158, 131, AS 74 Agkistrodon acutus + 1130, 1250, CHP 35 Anolis baleatus multistruppus — 150, 141, AS Agkistrodon blcmihaffi brevicaudus X 620, 598, 74 HKG 77 Anolis baleatus scelestus 180, 147, AS 74 Agkistrodon blomhoffi siniticus X 588, 608, Anolis barkeri 98, 79, JPK 65 HKG 77 Anolis baronhae — 158, 148, AS 74 Agkistrodon caliginosus X 521, 520, HKG 77 Anolis dolichocephalus sarmenticola 51, 42, Agkistrodon halys cognatus — 590, 518, HKG AS 78 77 Anolis dolichocephalus portusalus 52, 43, Agkistrodon himalayanus X 505, 520, MAS 43 AS 78 Agkistrodon rhodostoma + + + 545, 765, MAS Anolis extremus 74, 60, FEW 72 43 Anolis hendersoni ravidormitans — 49, 42, Agkistrodon saxatilis — 689, 613, MAS 43 AS 78 Ahaetulla nasuta + + + + 795, 1220, MAS 43 Anolis homolechis cuneus 58, 41, AS 68 Ahaetulla pulverulenta + + + + 655, 1020, Anolis homolechis jubar 54, 40, AS 68 MAS 43 Anolis homolechis oriens 56, 42, AS 68 Amblyodipsas polylepis + + H \- 495, 1040, Anolis homolechis quadriocellifer 55, 40, DGB & EVC 75 AS 68 Amblyodipsas ventrimaculatus ++ 290, 340, A7}olis lividus 69, 55, FEW 72 DGB & EVG 75 A7iolis luciae 91, 62, FEW 72 Ameiva chaitzami — 85, 75, ACE 71 Anolis mestrei 55, 44, RR & FEW 61 Ameiva undulata amphigramma X 101, 104, Anolis monticola 56, 42, FEW 74 HMS & LEL 46 Anolis nubilus 79, 52, EEW 72 Ameiva undulata gaigeae 125, 107, HMS Anolis oculatus 75, 55, FEW 72 & LEL 46 Anolis oculatus cahritensis 75, 57, EEW 72 Ameiva undulata hartwegi 138, 115, HMS Anolis oculatus montanus 95, 64, EEW & LEL 46 72 Ameiva undulata parva — 109, 95, HMS & Anolis oculatus winstoni 77, 61, FEW 72 LEL 46 Anolis petersi + 102, 108, HSF 76 Ameiva undulata podarga 116, 96, HMS Anolis ricordi subsolans X 152, 150, AS 74 & LEL 46 Anolis ricordi viculus — 148, 141, AS 74 Amphiesma beddomei ++ 385, 480, MAS 43 Anolis rubribarbis 58, 42, RR & EEW 61 Amphiesma craspedogaster + 435, 490, MAS Anolis rupinae 56, 42, EEW & IPW 74 43 Anolis sabanus 67, 51, FEW 72 Amphiesma khasiensis + 375, 410, MAS 43 Aparallactus capensis + 235, 268 DGB & Amphiesma modesta + + + 365, 460, MAS 43 EVC 75 Amphiesma monticola ++ 262, 325, MAS 43 Aparallactus guentheri + 345, 380, DGB & Amphiesma platyceps — 655, 570, EVM 66 EVC 75 Amphiesma popei X 438, 446, EVM 66 Aparallactus jacksoni X 228, 213, CRSP 74 Amphiesma pryeri ++ 607, 710, EVM 66 Aparallactus ubangensis ++ 375, 412, GW & Amphiesma sieboldi + + + 729, 943, EVM 66 AL 47 Amphiesma venningi -\- 410, 455, MAS 43 Aparallactus ulugurensis X 320, 335, GW & Amphiesma vibakari X 551, 580, MAS 43 RL 47 Amphiesma xenura X 440, 430, MAS 43 Argyrogena fasciolata X 765, 790, MAS 43 68 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Arizona elegans X 1168, 1165, LMK 46 Calamaria modesta ++ 366, 428, RFI & Aristelliger georgeensis 108, 83, AS & HM 65 RIC 75 Calamaria septentrionalis ++ 319, 371, RFI Aristelliger hechti 90, 75, AS & RIC 75 & HM 65 Aristelliger lar 132, 111, AS & RIC 75 Calamaria uniformis + 281, 320, MAS 43 Aristelliger praesignis 85, 65, AS & RIC 75 Calliophis calligaster — 519, 476, AEL 63 Arrhyton dolichurum — 308, 265, AS 65 Calliophis calligaster gemianulus — 519, 451, Arrhyton taeniatum + 401, 448, AS 65 AEL 63 Arrhyton vittatum — 193, 179, AS 65 Calliophis japonicus 533, 435, KK, DK, TF Arrhyton vittatum landoi + 236, 250, AS 65 & KT 77 Aspidelaps scutatus + 590, 640, DGB & EVC Calliophis macllelandi +++ 565, 720, MAS 43 75 Calliophis maculiceps -\--\- 385, 447, WAS 43 Aspidura copei -\- 340, 365, MAS 43 Callopistes maculatus — 173, 148, RDB 66 Aspidura trachyprocta + +++ 350, 505, MAS Calotcs versicolor — 95, 82.5, MAS 35 43 Candoia aspersa + + + + 410, 650, AL 48 Astrotia stokesii + + + 1030, 1410, MAS 43 Causus defiUpii X 392, 376, DGB & EVC 75 Atractaspis congica — 441, 400, RL 50 Causus lineatus + 574, 661, RFL 56 Atractaspis dahomeyensis + 417, 458, RL 50 Causus resimus -\- 574, 661, RFL 56 Atractaspis microlepidotus 690, 525, RL 50 Chamaeleo adolffriederici X 65, 63, GFW 65 Atractaspis microlepidotus fallax X 680, 705, Chamaeleo anchictae +++ 71, 90, GFW 65 RL 50 Chamaeleo hitaeniatus ellioti -\--\- 81, 97, Atractaspis microlepidotus micropholis 690, GFW 65 525, RL 50 Chamaeleo hitaeniatus graueri X 160, 160 Atractus "species A" + 395, 425, JRD & PS 77 GFW 41 Atractus hadius ++ 342, 413, JRD & PS 77 Chamaeleo chapini + + + + 44, 80, GFW 65 Atractus latifrons + + + 446, 586, JRD & PS 77 Chamaeleo dilepis idjwiensis -\- 135, 150, GFW Atractus resplendens -\- 333, 372, JMS 60 65 Atractus roulei ++ 330, 396, JMS 60 Chamaeleo gracilis X 163, 160, GFW 65 Atheris nitschei ++ 523, 616, CRSP 74 Chamaeleo iturieims + 102, 114, GFW 65 Chamaeleo johnstoni X 128, 127, GFW 65 Balanophis ceylonensis — 390, 365, MAS 43 Chamaeleo oweni X 137, 132, GFW 65 Bitis atropos + 397, 434, \TMF 62 Chamaeleo roperi + 110, 123, GFW 65 Bitis caudalis X 417, 399, \TMF 62 Chamaeleo rudis X 74, 74, GFW 65 Bitis cornuta 347, 271, \'FMF 62 Chamaeleo senegalensis ++ 102, 123, GFW 65 Bitis gabonica ++ 990, 1219, KPS 23 Chersina angulata 264, 163, AL & Bitis nasicornis + + + 812, 966, KPS 23 FEW 57 Bitis paucisquamata + 218, 234, \TMF 62 Chironius carinatus — 1359, 1196, JRD & PS 77 Bitis peringueyi ++ 245, 297, RM 55 Chironius fuscus - 1385, 1218, JRD & PS 77 Blythia reticulata + + + 275, 365, MAS 43 Chrysopelea ornata -\- 740, 825, MAS 43 Boaedon fuliginosa + + + + 519, 810, CRSP 74 Cnemidaphorus deppei infernalis — 84, 75, Boaedon olivaceus X 596, 596, CRSP 74 WED & JW 60 Boiga hlandingii + 1635, 1833, CRSP 74 Cnemidophorus guttatus flavolineatus 113, Boiga ceylonensis + + + 780, 1095, MAS 43 93, \NED & JW 60 Boiga cyanca + + + 1060, 1420, NL\S 43 Cnemidophorus lineatissimus duodecimlineatus Boiga cyiwdon ++ 1110, 1310, MAS 43 92, 72, \VT:D & JW 60 Boiga forsteni - 1460, 1260, MAS 43 Coleonyx brevis X 56, 59, LMK 45 Boiga gokool + 630, 695, MAS 43 Coleonyx elegans X 92, 97, LMK 45 Boiga multimaculata +++ 610, 800, ^L\S 43 Coleonyx mitratus X 91, 88, LMK 45 Boiga ochracea + 815, 885, MAS 43 Coluber kareliin ++ 610, 710, MAS 43 Boiga trigonata ++ 685, 810, MAS 43 Coluber ravergien — 875, 785, MAS 43 Bothrops bilineatus + + + 490, 638, JRD & Coluber ventromaculatus — 815, 715, NL\S 43 PS 77 Coniophanes bipunctatus + + + + 402, 560, Bothrops neuwiedii X 779, 800, R\' & BSS 60 JRB 38 Bungarus hungaroides 1240, 870, MAS Corallus caninus + 908, 1040, WED 78 43 Corallus enydris X 1643, 1700 (totals), JRD & Bungarus candidus — 1225, 1080, FK 41 PS 77 Bungarus fasciatus — 1005, 901, FK 41 Cordylus capensis X 100, 98, \TMF 43 Bungarus multicinctus — 960, 825, CHP 35 Cordylus coeruleopunctatus X 80, 79, VFMF 43 Bungarus walli — 1450, 1310, MAS 43 Cordylus giganteus X 180, 176, VFMF 43 Cordylus jonesi + 73, 82, UVP 66 Calamaria leucogaster + 196, 207, RFI & Cordylus jordani X 125, 127, VFMF 43 HM 65 Cordylus polyzonus + 113, 110 VFMF 43 Calamaria linnaei ++ 308, 379, RFI & HM 65 Cordylus trapidosternum X 86, 88, VFMF 43 SEXUAL SIZE DIFFERENCES IN REPTILES 69

Cordylus vandami + 118, 132, UVP 66 Garthia penai X 32, 32, RD 66 Cordylus warreni ++ 110, 127, UVP 66 Gastropyxis smaragdina ++ 562, 682, RFL 56 Coronella brachyura — 440, 395, MAS 43 Gecko japonicus 60, 43, YO 36 Crotaphopehis degeni X 463, 447, CRSP 74 Gecko vittatus X 93, 95, AL 48 Ctenoblepharis nigriceps — 89, 75, RDB 66 Geochelone pardalis +++ 302, 432, RM 55 Geochelone pardalis babcocki -\- 364, 385, Dasypeltis atra + + + 625, 841, CRSP 74 RM 55 Dasypeltis fasciata ++ 645, 809, CRSP 74 Gerrhosaurus flavigularis X 126, 133, var. Dasypeltis medici ++ 600, 700 Goniocephalus modestus — 87, 83, AL 48 Dendrelaphus ahaetulla + 735, 820, MAS 43 Gomjsoma oxijccphala + 1400, 1600, MAS 43 Dendrelaphus picta ++ 725, 910, MAS 43 Grayia ornata ++ 892, 1038, KPS 23 Dendroaspis angusticeps X 1453, 1480, DGB & Grayia smijthii X 1321, 1321 (total), CRSP 74 EVC 75 Grayia tholloni +++ 475, 605, CRSP 74 Dendroaspis jaimesoni + 1650, 1901, KPS 23 Dendroaspis polylepis X 2330, 2382, DGB & Haplocercus ceylonensis ++ 315, 380, MAS 43 EVC 75; UVP 66 Helicops angulatus ++ 426, 495, JRD & PS 77 Diploglossus costatus — 127, 116, AS 70 Hemichatus hemichatus + + + + 635, 865, Diploglossus curtissi — 86, 82, AS 70 DGB & EVC 75 Diploglossus occiduus 305, 256, AS 70 Homopus areolatus ++ 96, 114, AL & EEW Diploglossus stenurus 172, 143, AS 70 57 Diploglossus warreni — 230, 218, AS 70 Homopus boulengeri X 108, 110, AL & EEV^ 57 Dipsadoboa duchesnei 740, 616, RFL 56 Homopus fcmoralis ++ 133, 157, AL & EEW Dipsadoboa elongata 740, 623, RFL 56 57 Dipsas pavonina — 544, 486, JAP 60 Hydrophis brookei X 920, 890, MAS 43 Dipsas variegata X 640, 639, JAP 60 Hydrophis coerulescens — 720, 675, MAS 43 Duberria rhodesiana + + + + 220, 325 VFMF Hydrophis cyanocinctus ++ 1370, 1750, MAS 62 43 Duberria variegata + + + + 176, 280 VFMF 62 Hydrophis fasciatus — 1010, 915, MAS 43 Hydrophis klossi + 975, 1190, MAS 43 Elaphe helena + + + + 700, 1060, MAS 43 Hydrophis lapemoidcs X 870, 855, MAS 43 Elaphe hodgsoni 1190, 995, MAS 43 Hydrophis mammillaris X 730, 755, MAS 43 Elaphe taeniura ++ 1300, 1640, MAS 43 Hydrophis obscurus + 1055, 1090, MAS 43 Elapops modestus +++ 362, 464, KPS 23 Hydrophis ornatus — 835, 780, MAS 43 Elapsoidea guentheri X 480, 485, RFL 56 Hydrophis spiralis + 1480, 1710, MAS 43 Elapsoidea loveridgei + 510, 550, CRSP 74 Hydrophis stricticollis X 910, 960, MAS 43 Elapsoidea loveridgei colletti -\- 515, 555, CRSP Hypnale hypnale + + + + 275, 415, HKG 77 74 Hypnale tvalU - 262, 248, HKG 77 Elapsoidea semiannulata X 605, 603, DGB & Hypsiglena torquata + + + 479, 642, WWT 44 EVC 75 Emoia baudini 55, 48 X 55, AL Ichnotropis bivittata -\- 50, 54, GFW 53 Enhydris boucourti + + + + 520, 990, MAS 43 Enhydris chinensis + 516, 567, CHP 35 Kinixys belliana + 193, 207, AL & EEW 57 Enhydris plumbea + 358, 378, CHP 35 Kinixys belliana nogueyi X 152, 135, AL & Enyalius bilineatus ++ 88, 105, RE 69 EEW 57 Enyalius boulengeri + 107, 117, RE 69 Kinixys erosa 323, 260, AL & EEW 57 Enyalius catenatus X 107, 107, RE 69 Kinixys homcana X 200, 210, AL & EEW 57 Emjalius iheringi ++ 100, 124, RE 64 Epicrates angulifer + + + 1743, 2250, BRS & Lacerta tiliquerta — 65, 59, BL & BB 74 AS 74 Lacerta tiliquerta pardii — 73, 64, BL & BB 74 Epicrates jordi 860, 730, BRS & AS 74 Lamprophis aurora + + + 459, 529, VFMF 62 Epicrates gracilis X 870, 905, BRS & AS 74 Lamprophis inornatus + + + + 637, 975, VFMF Epicrates striatus — 2320, 2055, BRS & AS 74 62 Eremias argus + 57, 61, RGW, JKJ & GWB 62 Laticauda colubrina + + + + 745, 1275, MAS Eremias breviceps — 46, 43, RM 55 43 Eremias burchelli + 52, 57, VFMF 43 Laticauda laticauda ++ 800, 960, MAS 43 Eremias capensis — 63, 58, VFMF 43 Leiocephalus barhonensis 74, 60, AS 67 Eremias lineoocellata X 57, 55, VFMF 43 Leiocephalus barhonensis aureus 79, 62, Eremias undata X 54, 52, VFMF 43 AS 67 Eryx conicus + + + + 445, 855, MAS 43 Leiocephalus beatanus 80, 64, AS 67 Eryx iohni + 800, 920, MAS 43 Leiocephalus beatanus oxygaster 80, 60, Eumeces copei + 66, 73, JRD 69 AS 67 Eumeces dugesi X 66, 69, JRD 69 Leiocephalus lunatus 67, 55, AS 67 Leiocephalus lunatus arenicolor 65, 53, Garthia dorbignyi X 40, 40, RD 66 AS 67 )

70 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Leiocephalus lunatus melaenacelis X 61, 60, Lycophidion ornatum +++ 321, 416, CRSP 74 AS 67 Lycophidion semiannule X 222, 228, VFMF 62 Leiocephalus lunatus thomasi 66, 55, AS Lycophidion variegatum + 320, 340, DOB & 67 EVC 75 Leiocephalus personatus 79, 62, AS 67 Lygodactylus angolensis X 31, 32, GFW 53 Leiocephalus personatus actitis 86, 61, Lygodactylus angularis — 39, 35, GFW 53 AS 67 Lygodactylus capensis X 31, 31, AEL 53 Leiocephalus personatus agraulus 74, 60, Lygodactylus picturatus — 41, 36, GFW 53 AS 67 Lygosoma graueri + 172, 192, GFW 41 (total Leiocephalus personatus budeni 66, 52, lengths AS 67 Lygosoma kilimense + 54, 59, GFW 53 Leiocephalus personatus mentalis 72, 58, Lygosoma luheroensis — 138, 131 GFW 41 AS 67 (total lengths) Leiocephalus personatus scalaris 82, 63, Lygosoma solomonis — 67, 63, AL 48 AS 67 Lytorhynchus diadema — 429, 391, AEL & Leiocephalus personatus tarachodes 75, 63, SCA 70 AS 67 Leiocephalus personatus trujilloensis 78, Mahuya capense X 130, 135, VFMF 43 60, AS 67 Mahuya lacertiformis + 48, 52, AL 53 Leiocephalus vinculum — 77, 73, AS 67 Mahuya megalura + + + 56, 73, GFW 53 Leiocephalus vinculum altavelenus — 71, 63, Mahuya perroteti — 133, 124, GFW 53 AS 67 Mahuya quinquetaeniata ++ 121, 151, GFW Leiolepis helliana — 124, 115, RM 61 53 Lepidochehjs olivacea + 730, 790, AEC 52 Mahuya quinquetaeniata obsti X 117, 114, Leptodeira annulata ashmeadi -\--\- 525, 615, AL 53 WED 58 Mahuya rudis X 76, 77, RM 59 Leptodeira annulata cussiliris + + + 510, 670, Mahuya striata chimhawa + 77, 82, AL 53 WED 58 Mahuya striata ellcnbergi X 93, 90, AL 53 Leptodeira annulata rhomhifera ++ 515, 630, Mahuya sulcata + 75.5, 81, VFMF 43 WED 58 Macropisthodon plumbicolor -\—1- + + 415, 605, Leptodeira frenata ++ 464, 576, WED 58 MAS 43 Leptodeira nigrofasciata + 430, 473, WED 58 Malacochersus tornieri -|--1- 145, 177, AL & Leptodeira polysticta ++ 520, 700, WED 58 EEW 57 Leptodeira punctata -\- 410, 445, WED 58 Mehelya capensis ++ 1220, 1500, DGB & Leptodeira septentrionalis + + + 595, 774, EVC 75 WED 58 Mehelya poensis ++ + + 642, 936, KPS 23 Leptodeira septentrionalis ornata + + + 500, Mehelya savorgnanii ++ 884, 1021, RFL 56 665, WED 58 Mehelya stenophthalmus + + + + 455, 585, Liolaemus constanzae — 61.5, 54, RD 66 RFL 56 — 50, 46, RD 66 Meizodon coronatus + 478, 517, CRSP 74 — 52.4, 49.5, RD 66 Meizodon semiornatus + + + 455, 600, CRSP Liolaemus magellanicus X 60, 62, RD 66 74 Liolaemus monticola X 61, 63, RD 66 Micrelaps boettgeri + +++ 264, 381, CRSP 74 Liolaemus nigroviridis — 74, 64, RD 66 Micrurus alleni ++ 800, 951, JMS & JLV 74 X 64, 62, RD 66 Micrurus lang^dorffi + 685, 761, JRD & PS 77 53, 44, RD 66 Micrurus nigrocinctus + + + 575, 760, JMS & X 54, 55, RD 66 JLV 74 Liopeltis calamaria ++ 227, 290, MAS 43 Micrurus spixii 1315, 820, JRD & Liopeltis frenatus — 525, 450, MAS 43 PS 77 Liopeltis rappi X 340, 330, MAS 43 Microcephalus cantoris 1410, 1155, MAS Liopeltis scriptus X 310, 320, MAS 43 43 Liopeltis stoliczkae — 375, 343, MAS 43 Microcephalus gracilis + 870, 930, MAS 43 Ltjcodon aulicus + 692, 737, CHP 35 Miodon Christy + + + 690, 795, GW & RL 47 Lijcodon jara + 420, 445, MAS 43 Miodon collaris +++ 501, 630, CRSP 74 Ltjcodon suhcinctus + 710, 820, MAS 43 Miodon collaris graueri + 310, 358, CRSP 74 Lycodon travancoricus + 475, 505, MAS 43 laevissimus + + + 725, 915, Naja haje - 2125, 1946, DGB & EVC 75 VFMF 62 Naja mossambica X 1285, 1270, DGB & EVC 75 Lycodonomorphus leleupi + + + 580, 750, DOB Nfl/a naja samarensis + 843, 921, AEL 64 & EVC 75 Nerodia fasciata clarki + + + + AHW & AAW Lycodonomorphus rufulus + + + 552, 702, 57 VFMF 62 Neusticurus cochranae + 70, 79, TMU 66 Lycophidion laterale X 391, 409, KPS 23 X 88, 89, TMU 66 —

SEXUAL SIZE DIFFERENCES IN REPTILES 71

Neusticurus strangulatus — 87, 76, TMU 66 Psammophis crucifer X 490, 490, DGB & Neusticunis tatei — 104, 93, TMU 66 EVC 75 ISIucras delalandii X 99, 99, VFMF 43 Psammophis jallae 762, 640, DGB & l^ucras tessellata - 84, 76, VFMF 43 EVC 75 Psammophis punctulatus — 1080, 972, CRSP 74 Oligodon barroni + 280, 310, MAS 43 Psammophis subtaeniatus — 900, 820, DGB & Oligodon catenata X 490, 473, MAS 43 EVC 75 Oligodon cinereus + 620, 695, MAS 43 Pseudaspis cana X 1105, 1140, DGB & EVC 75 Oligodon cnwiUatus ++ 300, 320, MAS 43 Pseudemys fioridana texana + 244, 273, AEG Oligodon cyclurus 800, 630, MAS 43 52 Oligodon melaneus — 275, 255, MAS 43 Pseudocordylus microlepidotus X 134, 136, Oligodon splendidus X 610, 630, MAS 43 VFMF 43 Oligodon taeniatus + 387, 427, MAS 43 Pseudocordylus wilhelmi 82, 69, UVP 66 Oligodon taeniolatus X 280, 285, MAS 43 Pseudoxenodon macrops — 930, 820, MAS 43 Opheodrys multicinctus 755, 640, MAS 43 Pseudoxenodon nothus — 736, 645, CHP 35 Opipeuter xestus + 51, 58, TMU 69 Pseustes poecilonotus + 1107, 1205, JRD & Opisthotropis latouchii + 395, 419, CHP 35 PS 77 Oxybelis argenteus X 714, 743, JRD & PS 77 Python sebae + + + + 2300, 3685, DGB & Oxyrhabdium modestum ++ 449, 521, MAS 43 EVC 75 Oxyrhopus trigeminus ++ + + 579, 888, JRD & PS 77 Rhabdophis auriculata + 352, 372, AEL 70 Rhabdophis auriculata myersi X 342, 348, Pachydactylus punctatus + 38, 42, GFW 53 AEL 70 Pachydactylus tuberculosus — 72, 67, GFW 53 Rhabdophis himalayana +-\—1-+ 605, 945, Palmatogecko rangei ++ 60, 68, VFMF 43 AEL 70 Pareas margaritiphorus + + + 270, 395, MAS Rhabdophis nigrocincta X 625, 655, AEL 70 43 Rhabdophis nuchalis + + + + 520, 740, AEL 70 Pareas monticola + + + 430, 500, MAS 43 Rhabdops bicolor + 475, 530, MAS 43 Phelsuma laticatida 52, 42, RM 64 Rhadinea brevirostris — 372, 333, CWM 74 Phelsuma lineata 57, 47, RM 64 Rhadinea caUigaster +++ 313, 401, CWM 74 Phelsuma madagascarensis — 95, 83, RM 62 Rhadinea decorata + 265, 280, CWM 74 Philothamnus heterodermus + + + + 515, 730, Rhadinea fulvittis + 312, 347, CWM 74 CRSP 74 Rhadinea gaigeae ++ 377, 471, CWM 74 Philothamnus heterolepidotus -\- 475, 527 Rhadinea hesperis +++ 281, 380, CWM 74 Philothamnus natalensis ++ 855, 1062, UVP 66 Rhadinea laureata ++ 390, 473, CWM 74 Philothamnus ornatus ++ + + 420, 515, DOB Rhamphiophis oxyrhynchus X 1105, 1170, & EVC 75 VFMF 62 Pholidobolus affinis - 64, 58, RRM 73 Rhampholeon spectrum X 60, 60, GFW 65 Pholidobolus macbrydei X 56, 56, RRM 73 Rhinocheilus lecontei tesselatus 936, 763, Pholidobolus morUium ++ 56, 66, RRM 73 AHW & AAW 57 Pholidobolus prefrontalis + 57, 63, RRM 73 Rhinoclemys antmlata ++ 165, 197, RAM 71 Phnjnocephalus ornatus X 39.5, 41.5, AEL 59 Rhinoclemys areolata + 188, 206, CHE 78 Phyllorhynchus browni — 783, 692, AWH & Rhinoclemys junerea — 325, 282 CHE 78 AAW 57 Rhinoclemys nasuta + 196, 223, CHE 78 Physignathus conciimus 250, 200, MAS 35 Rhinoclemys pulcherrima + 181, 206, CHE 78 Platysaurus capensis X 78, 75, VFMF 43 Rliinoclemys pulcherrima manni -(--|- 147, 182, Platysaurus guttatus — 88, 84, VFMF 43 CHE 78 Platysaurus intermedins — 88, 84, UVP 66 Rhinoclemys pulcherrima rogerbarbouri + + + Platysaurus mitchelli X 46, 48, VFMF 43 150, 200, CHE 78 Praescutata viperina — 825, 740, MAS 43 Rhinoclemys punctularia + 251, 290, CHE 78 Prosymna bivittata + + + + 275, 387, UVP 66 Rhinoclemys punctularia diademata + + + 163, Prosymna jani ++ 182, 223, VFMF 62 208, CHE 78 Prosymna lineata — 262, 229, VFMF 62 Rhinoclemys rubida 230, 179, CHE 78 Prosymna sundevalli + + + + 247, 362, DOB Rhinoclemys rubida perixantha -\- 141, 156, & EVC 75 CHE 78 1-4- Psammobates oculifer -\- 118, 133, AL & Rhinophis drummondhayi -\--\— 200, 330, EEW 57 FW 21 Psammobates tentorius -\--\—1-+ 100, 138, AL Rhinophis philippinus — 252, 240, FW 21 & EEW 57 Riopa anchietae ++ 178, 210, GFW 53

Psammobates tentorius verroxi -| [- 118, 141, Riopa sundevallii X 93, 90, GFW 53 AL & EEW 57 Psammophis angolensis + 320, 350, DGB & Salea anamallayana 110, 85, MAS 35 EVC 75 Salea horsfieldi 95, 75, MAS 35 )

72 MISCELLANEOUS PUBLICATION MUSEUM OF NATURAL HISTORY

Salvadora grahamiae X 909, 919, AHW & Trimeresurus malabaricus + + + 450, 660, AAW 57 MAS 43 albopunctatus - 949, 880, CRSP 74 Trimeresurus monticola + + + + 410, 950, Scapteira knoxii - 68, 63, VFMF 43 MAS 43 microsquamatus Scincella reevesi ++ 41, 48, RGW, JKJ & Trimeresurus X 917, 955, MAS GWB 62 43 Scincus hemprichii 138, 108, ENA & Trimeresurus purpureomaculatus + + + + 540, AEL 77 760, MAS 43 Sepsina tetradactyla ++ 71, 90, GFW 53 Trimeresurus strigatus + 315, 358, MAS 43 Sibon dimidiata 444, 326, JAP 60 Trimeresurus tokarensis 1190, 960, KK & Sibon nebulata X 596, 573, JAP 60 DK 69 Sibon nebulata leucomelas X 547, 562, JAP 60 Trimeresurus trigonocephalus + +++ 510, 705, Sibon sanniola - 295, 279, JAP 60 MAS 43 Sibynomorphus mikaiu ++ 435, 513, JAP 60 Trimeresurus wagleri X 679, 679, AEL 64 Sibynomorphus ventromacidatus + 422, 483, Trimorphodon lyrophanes + 912, 1026, LMK JAP 60 40 Spalerosophis diadema ++ 980, 1225, MAS 43 Tropidophis haetianus X 468, 480, AS 75 Sphaerodactylus cinereus X 33.5, 35, WED & Tropidophis nigroventris + 303, 334, AS 75 AS 58 Tropidosaura gularis X 62, 60.5, VFMF 43 Sphaerodactylus copei astreptus X 38, 38, AS 75 Tropidurus theresiae X 70, 67, RM 56 Sphaerodactylus copei pelates X 40, 40, AS 75 Tupinambis nigrolineatus 333, 209, Sphaerodactylus copei websteri X 38, 39, AS 75 MSH 73 Sphaerodactylus rosaurae X 38, 39, LDW & DEH 73 Uracentron azureum X 87, 86, RE 68 Sphenomorphus megaspila + 91, 96, AL 48 Uraccntron azureum guentheri X 75, 75, RE 68 Strohilurus torquatus + 97, 106, RE 68 Uracentron azureum werneri X 60, 58, RE 68 Uranoscodon superciliosa X 138, 135, MSH 73 Tantilla melanocephala + 251, 273, JRD & Uromacer catesbyi ++ 685, 830, AS 70 PS 77 Uromacer catesbyi iiisulaevaccarum + + + 615, Tarentola americana — 111, 100, AS 68 800, AS 70 Tarentola americana ivarrcni X 92, 88, AS 68 Uromacer catesbyi frondicator + + + 688, 755, Telescopus dhara + + + + 620, 1035, CRSP 74 AS 70 Testudo kleinmanni + 113, 127, AL & EEW 57 Uromacer catesbyi hariolatus ++ 645, 790, Thalassophis anomalus — 720, 670, MAS 43 AS 70 Thamnophis rufipunctatus 4-+ 627, 760, Uromacer catesbyi inchausteguii + + + + 590, Thelotornis capensis kirtlandi + 852, 909, 795, AS 70 VFMF 62 Uromacer catesbyi pampineus + + + 610, 770, Trachischium fuscum + + + + 272, 415, MAS AS 70 43 Urostrophus torquatus X 92, 95, RDB 66 Trachischium guentheri + + + 262, 362, MAS 43 Varanus komodoensis 3030, 2270, V^K 69 Trachischium laeve 255, 390, MAS 43 ( total lengths Trimeresurus cantoris 555, 1010, MAS Vipera superciliaris + 513, 552, VFMF 62 43 Trimeresurus elegans X 1075, 1065, KK & Wetmorena haetiana mijlica X 88, 87, AS 65 DK 76 Wetmorena haetiana surda X 81, 81, AS 65 Trimeresurus erythrurus + + + + 445, 880, MAS 43 Xantusia henshawi holsoni + 50.8, 56.8, RGW Trimeresurus flavomaculatus 614, 929, 70 AEL 64 Xenocalamus mechowi + + + + 487, 685, DOB & EVC 75 Trimeresurus gramineus + + + 515, 665, MAS 43 Xenocalamus sabiensis ++ 400, 470, DGB & EVC 75 Trimeresurus jerdoni -\--\- 695, 830, MAS 43 Xenochrophis punctulata ++ 395, 470, MAS 43 Trimeresurus kaulbacki -j- 1115, 1118, MAS 43 Xenodon rabdocephalus ++ 628, 750, JRD & Trimeresurus labialis + 340, 372, MAS 43 PS 77 Trimeresurus macrolepis -\--\—1-+ 365, 465, Xenopeltis unicolor ++ 780, 955, MAS 43 MAS 43 Xylophis perroteti ++ 480, 580, MAS 43

Ikrp OL669 .F553 1981 Sc Mir Harvard MCZ Library

2044 062 382 957 RECENT MISCELLANEOUS PUBLICATIONS UNIVERSITY OF KANSAS MUSEUM OF NATURAL HISTORY

1-247, fig- 52. Reproductive cycles in lizards and snakes. By Henry S. Fitch. Pp. 16 ures in text. June 19, 1970. Paper bound.

leptodactyloid frogs. 53. Evolutionary relationships^ osteology, and zoogeography of By John D. Lynch. Pp. 1-238, 131 figures in text. June 30, 1971. Paper bound.

emphasis geo- 55. Middle American hzards of the genus Ameiva (Teiidae) with on graphic variation. By Arthur C. Echtemacht. Pp. 1-86, 28 figures in text. De- cember 14, 1971. Paper bound.

remarks on Heter- 57. A systematic review of the Teiid lizards, genus Bachia, with odactylus and Anotosaura. By James R. Dixon. Pp. 1-47, 15 figures in text. February 2, 1973. Paper bound.

(Sauria: 59. Systematics and evolution of the Andean hzard genus Pholidobolus Teiidae). By Richard R. Montanucci. Po. 1-52. 8 i^m^rp

Kansas. 62. A demographi ictatus) in By Henry S. Fitc' Paper bound.

William 65. The biology o\ Ecuador. By E. Duellman. 78. Paper bound. I southern 66. Leptodactylid le of \ February 28, 1979. Ecuador. By J^ Paper bound.

Peninsula. By 67. An ecogeograj^ icatan Paper Julian C. Lee. nary 29, 1980. bound.

'unctional, systematic, 68. Internal oral fe£ 1-146, evolutionary ar ^assersug. Pp. 37 figures in te

Andes ( Anura: 69. The Eleutherodactyius ot tne Amazonian slopes ot the Ecuadorian Leptodactylidae). By John D. Lynch and William E. Duellman. Pp. 1-86, 8 fig- ures in text. August 29, 1980. Paper bound.