Final Longterm Monitoring Protocol for Rocky Intertidal Communities Of

Total Page:16

File Type:pdf, Size:1020Kb

Final Longterm Monitoring Protocol for Rocky Intertidal Communities Of National Park Service U.S. Department of the Interior Natural Resource Program Center Final Long­term Monitoring Protocol for Rocky Intertidal Communities of Redwood National and State Parks, California Natural Resource Report NPS/KLMN/NRR—2008/034 ON THE COVER Rocky Intertidal area at False Klamath Cove, Redwood National and State Parks. Photograph by: Cara McGary Long­term Monitoring Protocol for Rocky Intertidal Communities of Redwood National and State Parks, California Natural Resource Report NPS/KLMN/NRR—2008/034 Prepared by: Karah Ammann, Research Assistant Dr. Peter Raimondi, Principal Investigator Department of Ecology & Evolutionary Biology Center for Ocean Health/Long Marine Lab University of California Santa Cruz, CA, 95060 March 2008 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer­reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; monitoring protocols; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly published newsletters. Views, statements, findings, conclusions, recommendations and data in this report are solely those of the author(s) and do not necessarily reflect views and policies of the U.S. Department of the Interior, NPS. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Printed copies of reports in these series may be produced in a limited quantity and they are only available as long as the supply lasts. This report is also available from the Natural Resource Publications Management website (http://www.nature.nps.gov/publications/NRPM) on the Internet or by sending a request to the address on the back cover. This protocol is also available from the Klamath Network web site (http://science.nature.nps.gov/im/units/klmn/index.cfm). Please cite this publication as: Ammann, K. N., and P. T. Raimondi. 2008. Long­term monitoring protocol for rocky intertidal communities of Redwood National and State Parks, California. Natural Resource Report NPS/KLMN/NRR—2008/034. National Park Service, Fort Collins, Colorado. Note: This Rocky Intertidal Monitoring protocol is written to National Park Service standards. This protocol is designed for long­term monitoring of target algae and invertebrate species in rocky intertidal habitats using permanent quadrat and transect sampling methods. The selection of monitored sites in the Redwood National and State Parks (RNSP), Del Norte County, has been performed in a preliminary study. This Protocol Narrative and the associated Standard Operating Procedures are based on a successful preliminary study that was conducted in 2004­2005 at RNSP, as well as a broader monitoring program that is in existence at over 80 sites within California and Oregon. This narrative describes existing and previously tested protocols in full. NPS D­216, March 2008 Contents Tables ........................................................................................................................................iv Figures........................................................................................................................................v Appendixes ...............................................................................................................................vii Abstract .....................................................................................................................................ix Background and Objectives.........................................................................................................1 Background and History..........................................................................................................1 Rationale for Selecting this Resource to Monitor.....................................................................3 Measurable Objectives ............................................................................................................5 Sampling Design.........................................................................................................................7 Rationale for Selecting this Sampling Design over Others .......................................................7 Site Selection ..........................................................................................................................8 Number and Location of Sites ...............................................................................................10 Sampling Frequency and Replication ....................................................................................12 Timing of Field Sampling......................................................................................................13 Level of Change that can be Detected for Amount/Type of Sampling....................................13 Field Methods ...........................................................................................................................15 Field Season Preparations and Equipment Setup....................................................................15 Sequence of Events during Field Season................................................................................15 Details of Taking Measurements with Field Forms................................................................15 Post­collecting Processing (Voucher) ....................................................................................17 End­of­season Procedures .....................................................................................................17 Data Handling, Analysis, and Reporting....................................................................................19 Metadata Procedures .............................................................................................................19 Overview of Database Design ...............................................................................................19 Data Entry, Verification, and Editing.....................................................................................19 Recommendations for Routine Data Summaries and Statistical Analysis to Detect Change ...20 Recommended Reporting Schedule .......................................................................................21 Recommended Report Format ...............................................................................................21 Recommended Methods for Long­term Trend Analysis.........................................................21 Data Archival Procedures......................................................................................................22 Personnel Requirements and Training .......................................................................................23 Roles and Responsibilities.....................................................................................................23 Qualifications........................................................................................................................23 Training Procedures ..............................................................................................................23 Operational Requirements.........................................................................................................25 Annual Workload and Field Schedule....................................................................................25 Startup Costs and Budget Considerations ..............................................................................27 Literature Cited.........................................................................................................................29 Standard Operating Procedures (SOPs) .....................................................................................33 SOP # 1: Pre­season Preparations.........................................................................................33 SOP # 2: Training Field Workers .........................................................................................41 SOP # 3: Establishing and Maintaining Plots........................................................................45 ii SOP # 4: Completing Field Logs and Assessing Site­wide Species Conditions .....................49 SOP # 5: Photographing Plots and Taking Area Photos ........................................................59 SOP # 6: Estimating Percent Cover in Field using Point­Intercept Method ...........................65
Recommended publications
  • Some Aspects of the Biology of Three Northwestern Atlantic Chitons
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1978 SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA) PAUL DAVID LANGER University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LANGER, PAUL DAVID, "SOME ASPECTS OF THE BIOLOGY OF THREE NORTHWESTERN ATLANTIC CHITONS: TONICELLA RUBRA, TONICELLA MARMOREA, AND ISCHNOCHITON ALBUS (MOLLUSCA: POLYPLACOPHORA)" (1978). Doctoral Dissertations. 2329. https://scholars.unh.edu/dissertation/2329 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • The Recent Molluscan Marine Fauna of the Islas Galápagos
    THE FESTIVUS ISSN 0738-9388 A publication of the San Diego Shell Club Volume XXIX December 4, 1997 Supplement The Recent Molluscan Marine Fauna of the Islas Galapagos Kirstie L. Kaiser Vol. XXIX: Supplement THE FESTIVUS Page i THE RECENT MOLLUSCAN MARINE FAUNA OF THE ISLAS GALApAGOS KIRSTIE L. KAISER Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA 4 December 1997 SiL jo Cover: Adapted from a painting by John Chancellor - H.M.S. Beagle in the Galapagos. “This reproduction is gifi from a Fine Art Limited Edition published by Alexander Gallery Publications Limited, Bristol, England.” Anon, QU Lf a - ‘S” / ^ ^ 1 Vol. XXIX Supplement THE FESTIVUS Page iii TABLE OF CONTENTS INTRODUCTION 1 MATERIALS AND METHODS 1 DISCUSSION 2 RESULTS 2 Table 1: Deep-Water Species 3 Table 2: Additions to the verified species list of Finet (1994b) 4 Table 3: Species listed as endemic by Finet (1994b) which are no longer restricted to the Galapagos .... 6 Table 4: Summary of annotated checklist of Galapagan mollusks 6 ACKNOWLEDGMENTS 6 LITERATURE CITED 7 APPENDIX 1: ANNOTATED CHECKLIST OF GALAPAGAN MOLLUSKS 17 APPENDIX 2: REJECTED SPECIES 47 INDEX TO TAXA 57 Vol. XXIX: Supplement THE FESTIVUS Page 1 THE RECENT MOLLUSCAN MARINE EAUNA OE THE ISLAS GALAPAGOS KIRSTIE L. KAISER' Museum Associate, Los Angeles County Museum of Natural History, Los Angeles, California 90007, USA Introduction marine mollusks (Appendix 2). The first list includes The marine mollusks of the Galapagos are of additional earlier citations, recent reported citings, interest to those who study eastern Pacific mollusks, taxonomic changes and confirmations of 31 species particularly because the Archipelago is far enough from previously listed as doubtful.
    [Show full text]
  • Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
    AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • Spinucella a New Genus of Miocene to Pleistocene , Muricid Gastropods from the Eastern Atlantic
    Contr. Tert. Quatern. Geol. 30(1-2) 19-27 1 tab., 1 pi. Leiden, June 1993 Spinucella a new genus of Miocene to Pleistocene , muricid gastropods from the eastern Atlantic Geerat J. Vermeij University of California Davis, U.S.A. — new of Miocene Pleistocene muricid from the Atlantic. Contr. Tert. Vermeij, GeeratJ. Spinucella, a genus to gastropods eastern Quatern. Geol., 30(1-2): 19-27, 1 tab., 1 pi. Leiden, June 1993. The muricid is for de C. 1825 from the Pliocene of the new gastropod genus Spinucella proposed Purpura tetragonaJ. Sowerby, (type species), North Sea Basin, and for several other early Miocene to late Pleistocene species from southern Europe, North Africa, and southern Africa. The is characterised the of labral on the of the shell and reticulate of genus by presence a spine outer lip by sculpture. Species and Acanthinucella Cooke, 1918. The Spinucella closely resemble members ofNucella Röding, 1798, Acanthina Fischer von Waldheim, 1807, ofthat in the eastern Pacific Acanthina andAcanthinucella. Withthe removal of labral spine of Spinucellawas probably evolved independendy from where authors have the the time of arrival of Nucella in the North Atlantic from the S. tetragona Nucella, many recent placed species, North Pacific was late Pliocene, rather than middle Pliocene. — words Key Spinucella, new genus, Acanthina, Nucella, Neogene, biogeography. Prof. Dr G.J. Vermeij, Department of Geology, University of California, Davis, CA 95616, U.S.A. Contents 1956; Glibert, 1959, 1963). In fact, Glibert (1959) considered N. tetragona to be ancestral to N. lapillus, Introduction 19 p. the two species being linked by the late Pliocene 20 Systematics p.
    [Show full text]
  • Chitons (Mollusca: Polyplacophora) Known from Benthic Monitoring Programs in the Southern California Bight
    ISSN 0738-9388 THE FESTIVUS A publication of the San Diego Shell Club Volume XLI Special Issue June 11, 2009 Chitons (Mollusca: Polyplacophora) Known from Benthic Monitoring Programs in the Southern California Bight Timothy D. Stebbins and Douglas J. Eernisse COVER PHOTO Live specimen of Lepidozona sp. C occurring on a piece of metal debris collected off San Diego, southern California at a depth of 90 m. Photo provided courtesy of R. Rowe. Vol. XLI(6): 2009 THE FESTIVUS Page 53 CHITONS (MOLLUSCA: POLYPLACOPHORA) KNOWN FROM BENTHIC MONITORING PROGRAMS IN THE SOUTHERN CALIFORNIA BIGHT TIMOTHY D. STEBBINS 1,* and DOUGLAS J. EERNISSE 2 1 City of San Diego Marine Biology Laboratory, Metropolitan Wastewater Department, San Diego, CA, USA 2 Department of Biological Science, California State University, Fullerton, CA, USA Abstract: About 36 species of chitons possibly occur at depths greater than 30 m along the continental shelf and slope of the Southern California Bight (SCB), although little is known about their distribution or ecology. Nineteen species are reported here based on chitons collected as part of long-term, local benthic monitoring programs or less frequent region-wide surveys of the entire SCB, and these show little overlap with species that occur at depths typically encountered by scuba divers. Most chitons were collected between 30-305 m depths, although records are included for a few from slightly shallower waters. Of the two extant chiton lineages, Lepidopleurida is represented by Leptochitonidae (2 genera, 3 species), while Chitonida is represented by Ischnochitonidae (2 genera, 6-9 species) and Mopaliidae (4 genera, 7 species).
    [Show full text]
  • Annotated Checklist of the Plant Bug Tribe Mirini (Heteroptera: Miridae: Mirinae) Recorded on the Korean Peninsula, with Descriptions of Three New Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 467–492, 2018 http://www.eje.cz doi: 10.14411/eje.2018.048 ORIGINAL ARTICLE Annotated checklist of the plant bug tribe Mirini (Heteroptera: Miridae: Mirinae) recorded on the Korean Peninsula, with descriptions of three new species MINSUK OH 1, 2, TOMOHIDE YASUNAGA3, RAM KESHARI DUWAL4 and SEUNGHWAN LEE 1, 2, * 1 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; e-mail: [email protected] 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Korea; e-mail: [email protected] 3 Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; e-mail: [email protected] 4 Visiting Scientists, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A, 0C6, Canada; e-mail: [email protected] Key words. Heteroptera, Miridae, Mirinae, Mirini, checklist, key, new species, new record, Korean Peninsula Abstract. An annotated checklist of the tribe Mirini (Miridae: Mirinae) recorded on the Korean peninsula is presented. A total of 113 species, including newly described and newly recorded species are recognized. Three new species, Apolygus hwasoonanus Oh, Yasunaga & Lee, sp. n., A. seonheulensis Oh, Yasunaga & Lee, sp. n. and Stenotus penniseticola Oh, Yasunaga & Lee, sp. n., are described. Eight species, Apolygus adustus (Jakovlev, 1876), Charagochilus (Charagochilus) longicornis Reuter, 1885, C. (C.) pallidicollis Zheng, 1990, Pinalitopsis rhodopotnia Yasunaga, Schwartz & Chérot, 2002, Philostephanus tibialis (Lu & Zheng, 1998), Rhabdomiris striatellus (Fabricius, 1794), Yamatolygus insulanus Yasunaga, 1992 and Y. pilosus Yasunaga, 1992 are re- ported for the fi rst time from the Korean peninsula.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds?
    Mar. Drugs 2015, 13, 5237-5275; doi:10.3390/md13085237 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Are the Traditional Medical Uses of Muricidae Molluscs Substantiated by Their Pharmacological Properties and Bioactive Compounds? Kirsten Benkendorff 1,*, David Rudd 2, Bijayalakshmi Devi Nongmaithem 1, Lei Liu 3, Fiona Young 4,5, Vicki Edwards 4,5, Cathy Avila 6 and Catherine A. Abbott 2,5 1 Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 2 School of Biological Sciences, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (D.R.); [email protected] (C.A.A.) 3 Southern Cross Plant Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] 4 Medical Biotechnology, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia; E-Mails: [email protected] (F.Y.); [email protected] (V.E.) 5 Flinders Centre for Innovation in Cancer, Flinders University, G.P.O. Box 2100, Adelaide 5001, Australia 6 School of Health Science, Southern Cross University, G.P.O. Box 157, Lismore, NSW 2480, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-8201-3577. Academic Editor: Peer B. Jacobson Received: 2 July 2015 / Accepted: 7 August 2015 / Published: 18 August 2015 Abstract: Marine molluscs from the family Muricidae hold great potential for development as a source of therapeutically useful compounds.
    [Show full text]
  • Xenophoridae, Cypraeoidea, Mitriforms and Terebridae (Caenogastropoda)
    Taxonomic study on the molluscs collected in Marion-Dufresne expedition (MD55) to SE Brazil: Xenophoridae, Cypraeoidea, mitriforms and Terebridae (Caenogastropoda) Luiz Ricardo L. SIMONE Carlo M. CUNHA Museu de Zoologia da Universidade de São Paulo, caixa postal 42494, 04218-970 São Paulo, SP (Brazil) [email protected] [email protected] Simone L. R. L. & Cunha C. M. 2012. — Taxonomic study on the molluscs collected in Marion-Dufresne expedition (MD55) to SE Brazil: Xenophoridae, Cypraeoidea, mitriforms and Terebridae (Caenogastropoda). Zoosystema 34 (4): 745-781. http://dx.doi.org/10.5252/z2012n4a6 ABSTRACT The deep-water molluscs collected during the expedition MD55 off SE Brazil have been gradually studied in some previous papers. The present one is focused on samples belonging to caenogastropod taxa Xenophoridae Troschel, 1852, Cypraeoidea Rafinesque, 1815, mitriforms and Terebridae Mörch, 1852. Regarding the Xenophoridae, Onustus aquitanus n. sp. is a new species, collected off the littoral of Espírito Santo and Rio de Janeiro, Brazil, 430-637 m depth (continental slope). The main characters of the species include the small size (c. 20 mm), the proportionally wide shell, the white colour, the short peripheral flange, the oblique riblets weakly developed and a brown multispiral protoconch. This appears to be the smallest living species of the family, resembling in this aspect fossil species. In respect to the Cypraeoidea, the following results were obtained: family Cypraeidae Rafinesque, 1815: Erosaria acicularis (Gmelin, 1791) and Luria cinerea (Gmelin, 1791) had the deepest record, respectively 607-620 m and 295-940 m, although the samples were all dead, eroded shells. Family Lamellariidae d’Orbigny, 1841: a total of three lots were collected, provisionally identified as Lamellaria spp.
    [Show full text]
  • The Chiton Stripe Tease
    Mar Biodiv DOI 10.1007/s12526-016-0590-2 OCEANARIUM The chiton stripe tease Julia D. Sigwart1,2 Received: 15 February 2016 /Revised: 1 October 2016 /Accepted: 2 October 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com The chiton Tonicella lineata (Wood, 1815) is distinctive for its between specimens that have apparently similar ornamental vivid colouration and striking patterns of colour blocks and patterns, close examination will find differences on at least stripes. The kaleidoscopic colours of this species is a familiar one shell valve (Fig. 1a, cf. images in the lower row). feature of the NE Pacific coastal fauna. Despite extensive study of the biology of Tonicella spp., their colour and patterns have never been the subject of rigorous investigation; thus, a few key preliminary observations are documented here. Shell colours in Tonicella spp. are anecdotally presumed to be de- rived from their primary diet of coralline algae (Piercy 1987), but this has not been tested chemically to date. Some pigments are evidentially unstable as the colours, particularly blue and pale pink, fade extremely rapidly in preserved specimens or around the site of shell breakage injuries in living animals (Fig. 1a, cf. image at upper right). Tonicella lineata range in shade from dark red, to pink, orange, purple or cyan blue, with an underlying pattern of divergent diagonal banding com- posed of these colours, faintly present even when the valve colour appears superficially solid (Fig. 1a, cf. image at the centre, which is solid blue). Consistent differences in pattern- ing have been used as one feature of taxonomic separation of species within the genus (Clark 1999).
    [Show full text]
  • Gastropoda Muricidae Ocenebrinae) from Southern Spain (Mediter- Ranean Sea)
    Biodiversity Journal, 2020,11 (2): 565–571, https://doi.org/10.31396/Biodiv.Jour.2020.11.2.565.571 http://zoobank.org/e463b374-c552-4725-90d9-415d13382c9f A new species of the genus Ocenebra Gray, 1847 (Gastropoda Muricidae Ocenebrinae) from southern Spain (Mediter- ranean Sea) Brian Cunningham Aparicio University of Murcia, Biology Faculty. Puerto de Mazarrón, Murcia, 30860, C/ Aconcagua 11, Spain; e-mail: [email protected] ABSTRACT Based on morphological characters of the shell and animal, a small new species of gastropod of the genus Ocenebra Gray, 1847 (Gastropoda Muricidae Ocenebrinae), Ocenebra aparicioae n. sp., is here described from the infralittoral coast of Murcia, southern Spain, a poorly known area in the Mediterranean Sea, and it is compared with other close related species of the family Muricidae, such as O. nicolai (Monterosato, 1884), O. helleri (Brusina, 1865), O. vazzanai Crocetta, Houart et Bonomolo, 2020 and Ocinebrina reinai Bonomolo et Crocetta, 2012. KEY WORDS Mollusca; Muricidae; Ocenebra aparicioae n. sp; Mediterranean. Received 16.05.2020; accepted 18.06.2020; published online 30.06.2020 INTRODUCTION (Barco et al., 2013a) and the description of Ocine- brina reinai Bonomolo et Crocetta, 2012 in Cro- After a series of recently published studies fo- cetta et al. (2012) and Ocinebrina aegeensis cused on the Ocenebra edwardsii complex (Barco Aissaoui, Barco et Oliverio, in Barco et al. (2017) et al., 2013a, 2013b, 2016) and on the Ocinebrina as new species. However, Ocenebra nicolai (Mon- aciculata complex (Barco et al., 2017; Crocetta et terosato, 1884), Ocenebra helleri (Brusina, 1865) al., 2012) and performed on the basis of molecular and Ocenebra paddeui (Bonomolo & Buzzurro, and morphological features, the cluttered situation 2006) still need molecular analysis.
    [Show full text]