Mathematics and Statistics at the University of Vermont

Total Page:16

File Type:pdf, Size:1020Kb

Mathematics and Statistics at the University of Vermont MATHEMATICS AND STATISTICS AT THE UNIVERSITY OF VERMONT: 1800–2000 Two Centuries of Achievement April 2018 Overleaf: Lord House at 16 Colchester Avenue, main office of the Department of Mathematics and Statistics since the 1980s. Copyright c UVM Department of Mathematics and Statistics, 2018 Contents Preface iii Sources iii The Administrative Support Staff iv The Context of UVM Mathematics iv ADigression:WhoReadsanAmericanBook? v Chapter 1. The Early Years, 1800–1825 1 1. The Curriculum 2 2. JamesDean,1807–1814and1822–1825 4 3. Mathematical Instruction 21 4. Students 23 Chapter2. TheBenedictineEra,1825–1854 25 1. George Wyllys Benedict 25 2. George Russell Huntington 27 3. Farrand Northrup Benedict 27 4. Curriculum 28 5. Students 29 6. The Library 30 7. The Williams Professorship 32 Chapter3. AGenerationofStruggle,1854–1885 35 1. The Second Williams Professor 35 2. Curriculum 36 3. The University Environment 37 4. UVMBecomesaLand-grantInstitution 38 5. Women Come to UVM 39 6. UVM Reaches Out to Vermont High Schools 40 7. A Digression: Religion at UVM 41 Chapter4. TheBeginningsofGrowth,1885–1914 43 1. Personnel 43 2. Curriculum 47 3. New personnel 48 Chapter5. AnotherGenerationofStruggle,1915–1954 51 1. Other New Personnel 52 2. Curriculum 55 3. The Financial Situation 56 4. The Mathematical Environment 56 5. The Kenney Award 58 i ii CONTENTS Chapter6. IntotheMainstream:1955–1975 59 1. Personnel 59 2. Research. Graduate Degrees 62 Chapter 7. Statistics Comes to UVM 67 Chapter 8. UVM in the Worldwide Community: 1975–2000 69 1. Reorganization. Lecturers 69 2. Reorganization:ResearchGroups,1975–1988 70 3. ThePh.D.Program:theRockyRoadtoRenewal 71 UVM Mathematics and Statistics Faculty, 1800–2000 75 Bibliography 79 Subject Index 81 Name Index 91 Preface As the bicentennial of the founding of UVM approached in 1990, a committee was formed to organize a proper celebration of the occasion. This committee so- licited proposals from the faculty for projects suitable to the celebration. At the suggestion of my colleague Jeff Dinitz, I proposed to write the history of mathe- matics at UVM. The essays that follow constitute a revised and updated version of the article that resulted from that proposal. Many of the people named in the original essay have died in the quarter-century that has elapsed since the writing. That sad fact, and the wish to correct what I now see as the wrong slant on certain events, has prompted the present revision. The reader is warned, however, that I have certain cantankerous political and historical opinions that I do not attempt to disguise. (It goes without saying that no one is obliged to agree with them.) The general organizing principle for what follows is that of a matrix whose rows are indexed by historical periods and whose columns are indexed by the areas of rele- vance to the mathematical history: personalities, teaching, research, students, and the mathematical environment. Not every position in this matrix will be occupied, but these are the general categories that will be discussed. The reader will notice early on that I appear to wander away from the subject matter of mathematics and statistics. That deviation from the straight and narrow path is deliberate. I believe that the greatest interest in this story lies in the people who were involved. The promotion of teaching and research is a human enterprise, and I have chosen to follow a number of story lines that are tangential to the subject whenever they involve human activities that give a flavor of what it was like to be at UVM at a given time. In any case, I think a strict, orderly recital of what was taught and what was discovered would be deadly dull. To that end, it will be noticeable that I give the exact date of birth for all the people referred to, the only exceptions being personalities from ancient Greece and Rome, famous authors, Presidents of the United States, Supreme Court justices, and United States senators and representatives, whom I consider well-enough known from general history books. Sources The following material was gleaned from a wide variety of sources. The most important source of documentary material was the University Archives. I am partic- ularly indebted to David Blow, the University Archivist at the time of the original writing, for his constant and efficient help and suggestions in locating the docu- ments I needed. These documents include the personnel files on the characters involved, the minutes of the meetings of the Board of Trustees (known originally as the Corporation), and the University Catalogs. The Wilbur Collection at the iii iv Preface Bailey–Howe Library has also been a valuable source of material. Finally, I am in- debted to various retired colleagues for their personal reminiscences: Heath Riggs, Ivan Hershner, N. James Schoonmaker, Joseph Izzo, and most especially George Nicholson, whose mathematical career spanned more than one-third of the history of mathematics at UVM up to the time when this project was begun. Note added 24 March 2018: I am especially grateful to my fellow emeritus professor John Lawlor for reading the semi-final version of this document and sending me many suggestions that have greatly improved it. For that, and for many other things, especially hundreds of cryptic puzzles from Cox–Rathvon, and Maltby, I am much indebted to you, Jack. The Administrative Support Staff Because of the way records are kept, it is a nearly impossible task to report on the activities of the essential support staff, without which no office can function. These administrators are the unsung warriors in the battle against ignorance. They generally do not get recognized, and are forgotten by history. They were the ones who booked travel, handled textbook requisitions, sent notices around to the faculty, and facilitated the ceremonial and social occasions—the student awards, the fall picnic, the end-of-semester potlucks, and much else—that helped to knit us all together. I can only note with gratitude the invaluable help I received during my years on the UVM faculty and mention the names of the three that I remember best during the years from 1970 to the present. To Jackie Marlow, Janet Ferguson, and Karen Wright, thank you! for all that you did to keep the Department of Mathematics and Statistics running smoothly. Having mentioned the social and ceremonial occasions, I find this an appropri- ate place to express the joy I have had in belonging to this wonderful organization, as a faculty member for 35 years, and now 15 years in retirement. I remember with particular fondness the quarter-century of playing softball with the “Eulers.” To all my colleagues among the faculty and staff, and to the students who made the whole enterprise worthwhile, thank you! Roger Cooke 25 March 2018 And now, to work. The Context of UVM Mathematics For the general history of UVM there are various secondary sources, for example Lindsay ([3]). For that reason, the details of many issues that have come before the trustees of the University since its founding will be neglected. Only the issues that have led to fundamental changes in the way the University operates will be discussed. Before we begin expounding the details of the mathematical development of UVM, it may be well to expend a few words on the perspective within which this mathematics is to be judged, whether local, national, or global. We might consider UVM in the context of its educational mission in Vermont and northern New England, or as an example of an early American university, or in the context of world mathematics. Each of these perspectives provides a special kind of insight into the mathematical activity that has taken place at UVM. ADIGRESSION:WHOREADSANAMERICANBOOK? v Taking the local point of view, we find some rather well-educated mathemati- cians at UVM, even in the early nineteenth century, when large parts of Vermont were a howling wilderness, and Burlington was two long days’ journey in a horse- drawn carriage distant from better established institutions such as Dartmouth and Williams College. These professors were teaching mathematics in some depth to ordinary citizens aspiring to careers as lawyers, physicians, clergy, or farmers. Some of them even conducted original research and published it. The national perspective reminds us that, although UVM is the twentieth old- est university in America, there was already in existence at the time of its founding in 1791 a considerable number of New England institutions. These institutions provided the early UVM faculty. Harvard, which was founded before Newton was born, had already celebrated its sesquicentennial before UVM was even conceived. The national point of view also brings an awareness of the expansion and democ- ratization of education after the Civil War, in which UVM faculty participated. A Digression: Who Reads an American Book? The perspective of worldwide mathematics invites comparison with European universities founded about the same time as UVM but on the periphery of the scholarly world whose primary centers were in Paris, G¨ottingen, Berlin, and Lon- don, universities such as Christiania (Oslo) in Norway (founded in 1811 as Royal Frederick University) and Kazan in Russia (founded 1804). From this perspec- tive one can see clearly the retarding influence exerted by an ocean 3,000 miles wide that separated American scholars from the great centers of European learn- ing. The University of Oslo, for example, was hardly founded when it produced one of the giants of nineteenth-century mathematics, Niels Henrik Abel (5 August 1802–6 April 1829), who died at the age of 26, but not before producing some of the most profound work ever done on elliptic functions, theory of equations, and analysis. Oslo went on to produce a steady stream of such figures throughout the nineteenth century.
Recommended publications
  • The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc.
    [Show full text]
  • Der Vierfarbensatz. Geschichte, Topologische Grundlagen Und
    Der Vierfarbensatz Geschichte, topologische Grundlagen und Beweisidee von Prof. Dr. RudolfjFritsch Universität München unter Mitarbeit von Gerda Fritsch, Gräfelfing Wissenschaftsverlag Mannheim • Leipzig - Wien • Zürich Mathematische Institut dar Universität München Die Deutsche Bibliothek - CIP-Einheitsaufnahme Fritsch, Rudolf: Der Vierfarbensatz: Geschichte, topologische Grundlagen und Beweisidee / von Rudolf Fritsch. Unter Mitarb. von Gerda Fritsch. - Mannheim; Leipzig; Wien; Zürich: BI-Wiss.-Verl., 1994 ISBN 3-411-15141-2 Gedruckt auf säurefreiem Papier mit neutralem pH-Wert (bibliotheksfest) Alle Rechte, auch die der Übersetzung in fremde Sprachen, vorbehalten. Kein Teil dieses Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. © Bibliographisches Institut & F. A. Brockhaus AG, Mannheim 1994 Druck: RK Offsetdruck GmbH, Speyer Bindearbeit: Progressdruck GmbH, Speyer Printed in Germany ISBN 3-411-15141-2 Für Dorothee Veronika Bernhard Inhalt s Verzeichnis Statt eines Vorworts 3 Wie man dieses Buch lesen kann 6 1 Geschichte 7 2 (Topologische) Landkarten 45 2.1 Heuristische Vorüberlegungen 45 2.2 Grenzlinien 48 2.3 Formale Definition 61 Ecken 63 Länder 64 Zusammenhang von Landkarten 66 Reduktion auf Landkarten aus Streckenzügen 67 2.4 Grundlegende Beispiele 70 2.5 Landesgrenzen 75 2.6 Gemeinsame Grenzlinien
    [Show full text]
  • Mathematical Genealogy of the Union College Department of Mathematics
    Gemma (Jemme Reinerszoon) Frisius Mathematical Genealogy of the Union College Department of Mathematics Université Catholique de Louvain 1529, 1536 The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. Johannes (Jan van Ostaeyen) Stadius http://www.genealogy.math.ndsu.nodak.edu/ Université Paris IX - Dauphine / Université Catholique de Louvain Justus (Joost Lips) Lipsius Martinus Antonius del Rio Adam Haslmayr Université Catholique de Louvain 1569 Collège de France / Université Catholique de Louvain / Universidad de Salamanca 1572, 1574 Erycius (Henrick van den Putte) Puteanus Jean Baptiste Van Helmont Jacobus Stupaeus Primary Advisor Secondary Advisor Universität zu Köln / Université Catholique de Louvain 1595 Université Catholique de Louvain Erhard Weigel Arnold Geulincx Franciscus de le Boë Sylvius Universität Leipzig 1650 Université Catholique de Louvain / Universiteit Leiden 1646, 1658 Universität Basel 1637 Union College Faculty in Mathematics Otto Mencke Gottfried Wilhelm Leibniz Ehrenfried Walter von Tschirnhaus Key Universität Leipzig 1665, 1666 Universität Altdorf 1666 Universiteit Leiden 1669, 1674 Johann Christoph Wichmannshausen Jacob Bernoulli Christian M. von Wolff Universität Leipzig 1685 Universität Basel 1684 Universität Leipzig 1704 Christian August Hausen Johann Bernoulli Martin Knutzen Marcus Herz Martin-Luther-Universität Halle-Wittenberg 1713 Universität Basel 1694 Leonhard Euler Abraham Gotthelf Kästner Franz Josef Ritter von Gerstner Immanuel Kant
    [Show full text]
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • Reconstructing the Lost Contours of Charles Hutton
    Reconstructing the lost contours of Charles Hutton Karen Rann a, David Fairbairn b, *, Ella Southern c a Queens University, Belfast, UK; [email protected] b Newcastle University, Newcastle upon Tyne, UK; [email protected] c Newcastle University, Newcastle upon Tyne, UK; [email protected] * Corresponding author Keywords: Historical land surveying, contour mapping This study reports on an historical investigation of map-making practice and achievement from the late 18th century, and attempts to reconstruct the practices and outcomes of an innovative surveying and mapping exercise, using historical data and contemporary geospatial data handling. The episode involves the processing of data captured as part of an extensive project by the then (British) Astronomer Royal, Maskelyne, in the mid 1770s, to measure the gravitational attraction and density of the earth. This experiment was conducted on the isolated mountain of Schiehallion in Central Scotland, and resulted in several differing approaches to calculating the mass of the mountain, and determining and interpreting the resultant effect on gravity measurements on its slopes. In order to do this, an accurate determination of “the figure and dimensions of the hill” (Maskelyne, 1775) was required. The survey work was undertaken under Maskelyne’s supervision by his previous assistant, Barrow, and local surveyor, Menzies. The data collected included astronomical observations to establish latitudinal positions, lengths of fixed base lines (one to the north of the mountain and one to the south), a standard traverse around the mountain to establish fixed points, and transects/vertical profiles radiating from those points. The land surveying techniques were known and widely used, although at the time having only been recently documented, in the book ‘A Treatise on Mensuration’.
    [Show full text]
  • Cavendish the Experimental Life
    Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.
    [Show full text]
  • Mathematical Genealogy of the Wellesley College Department Of
    Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe
    [Show full text]
  • A History of Mathematics in America Before 1900.Pdf
    THE BOOK WAS DRENCHED 00 S< OU_1 60514 > CD CO THE CARUS MATHEMATICAL MONOGRAPHS Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Publication Committee GILBERT AMES BLISS DAVID RAYMOND CURTISS AUBREY JOHN KEMPNER HERBERT ELLSWORTH SLAUGHT CARUS MATHEMATICAL MONOGRAPHS are an expression of THEthe desire of Mrs. Mary Hegeler Carus, and of her son, Dr. Edward H. Carus, to contribute to the dissemination of mathe- matical knowledge by making accessible at nominal cost a series of expository presenta- tions of the best thoughts and keenest re- searches in pure and applied mathematics. The publication of these monographs was made possible by a notable gift to the Mathematical Association of America by Mrs. Carus as sole trustee of the Edward C. Hegeler Trust Fund. The expositions of mathematical subjects which the monographs will contain are to be set forth in a manner comprehensible not only to teach- ers and students specializing in mathematics, but also to scientific workers in other fields, and especially to the wide circle of thoughtful people who, having a moderate acquaintance with elementary mathematics, wish to extend their knowledge without prolonged and critical study of the mathematical journals and trea- tises. The scope of this series includes also historical and biographical monographs. The Carus Mathematical Monographs NUMBER FIVE A HISTORY OF MATHEMATICS IN AMERICA BEFORE 1900 By DAVID EUGENE SMITH Professor Emeritus of Mathematics Teacliers College, Columbia University and JEKUTHIEL GINSBURG Professor of Mathematics in Yeshiva College New York and Editor of "Scripta Mathematica" Published by THE MATHEMATICAL ASSOCIATION OF AMERICA with the cooperation of THE OPEN COURT PUBLISHING COMPANY CHICAGO, ILLINOIS THE OPEN COURT COMPANY Copyright 1934 by THE MATHEMATICAL ASSOCIATION OF AMKRICA Published March, 1934 Composed, Printed and Bound by tClfe QlolUgUt* $Jrr George Banta Publishing Company Menasha, Wisconsin, U.
    [Show full text]
  • Reconstructing the Lost Contours of Charles Hutton
    Reconstructing the lost contours of Charles Hutton Karen Rann a, David Fairbairn b, *, Ella Southern c a Queens University, Belfast, UK; [email protected] b Newcastle University, Newcastle upon Tyne, UK; [email protected] c Newcastle University, Newcastle upon Tyne, UK; [email protected] * Corresponding author Keywords: Historical land surveying, contour mapping This study reports on an historical investigation of map-making practice and achievement from the late 18th century, and attempts to reconstruct the practices and outcomes of an innovative surveying and mapping exercise, using historical data and contemporary geospatial data handling. The episode involves the processing of data captured as part of an extensive project by the then (British) Astronomer Royal, Maskelyne, in the mid 1770s, to measure the gravitational attraction and density of the earth. This experiment was conducted on the isolated mountain of Schiehallion in Central Scotland, and resulted in several differing approaches to calculating the mass of the mountain, and determining and interpreting the resultant effect on gravity measurements on its slopes. In order to do this, an accurate determination of “the figure and dimensions of the hill” (Maskelyne, 1775) was required. The survey work was undertaken under Maskelyne’s supervision by his previous assistant, Barrow, and local surveyor, Menzies. The data collected included astronomical observations to establish latitudinal positions, lengths of fixed base lines (one to the north of the mountain and one to the south), a standard traverse around the mountain to establish fixed points, and transects/vertical profiles radiating from those points. The land surveying techniques were known and widely used, although at the time having only been recently documented, in the book ‘A Treatise on Mensuration’.
    [Show full text]
  • Charles Hutton: Scientist, Mathematician and the Density of the Earth
    Charles Hutton: scientist, mathematician and the density of the Earth Robin Johnson Outline his life his science his mathematics & teaching the Schiehallion experiment overview & summary 2 Charles Hutton: his life 3 Born on Percy Street; father Henry, mother Eleanor. Taught to read (Percy St.), and then to write (Benwell). Educated at Rev. Mr. Ivison’s school in Jesmond – and he then took over the school. 1737-1823 He moved the school to Stotes Hall, with three further moves as the school expanded. 3 Teaching by day, studying mathematics in the 4 evenings at Mr. James’ Mathematical School in Newcastle. Started teaching at the school; married Isabella in 1760; took over the school (advert). Pupils included John Scott (later Lord Eldon, Lord High Chancellor of England), his wife-to-be Elizabeth Surtees, and the children of Robert Shafto. 4 In 1773, he was appointed 5 Professor of Mathematics at the Royal Military Academy in Woolwich. Left Isabella and his children in Newcastle. Elected to the Royal Society in 1774, and was its foreign secretary 1779-’83. 5 Isabella died in 1785; he remarried (Margaret). 6 Four daughters by first wife and one by his second, but two predeceased him. In 1786 he began to suffer from pulmonary disorders, so decided to move away from the Thames. New Royal Military Academy – closed in 1939 by Andrew Morton (1802–1845) 6 Ill health forced him to resign his Chair in 1807; he died in 1823. 7 In his last year, a fund was set up to honour him: to cover the cost of a marble bust and, so much was raised, also a medal.
    [Show full text]
  • James Hutton's Reputation Among Geologists in the Late Eighteenth and Nineteenth Centuries
    The Geological Society of America Memoir 216 Revising the Revisions: James Hutton’s Reputation among Geologists in the Late Eighteenth and Nineteenth Centuries A. M. Celâl Şengör* İTÜ Avrasya Yerbilimleri Enstitüsü ve Maden Fakültesi, Jeoloji Bölümü, Ayazağa 34469 İstanbul, Turkey ABSTRACT A recent fad in the historiography of geology is to consider the Scottish polymath James Hutton’s Theory of the Earth the last of the “theories of the earth” genre of publications that had begun developing in the seventeenth century and to regard it as something behind the times already in the late eighteenth century and which was subsequently remembered only because some later geologists, particularly Hutton’s countryman Sir Archibald Geikie, found it convenient to represent it as a precursor of the prevailing opinions of the day. By contrast, the available documentation, pub- lished and unpublished, shows that Hutton’s theory was considered as something completely new by his contemporaries, very different from anything that preceded it, whether they agreed with him or not, and that it was widely discussed both in his own country and abroad—from St. Petersburg through Europe to New York. By the end of the third decade in the nineteenth century, many very respectable geologists began seeing in him “the father of modern geology” even before Sir Archibald was born (in 1835). Before long, even popular books on geology and general encyclopedias began spreading the same conviction. A review of the geological literature of the late eighteenth and the nineteenth centuries shows that Hutton was not only remembered, but his ideas were in fact considered part of the current science and discussed accord- ingly.
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]