JAVA CONCURRENCY ONLINE TRAINING – Java2aspire

Total Page:16

File Type:pdf, Size:1020Kb

JAVA CONCURRENCY ONLINE TRAINING – Java2aspire JAVA CONCURRENCY, JAVA PROFILING, THREAD POOLING, JAVA 8 Features, MAVEN and DESIGN PATTERNS ONLINE TRAINING By K.Ramesh Curriculum THREAD POOLING Day 01: Executor Framework 20 min Day 01: Java Profiling 10 min Day 01: Executor 10 min Day 01: ExecutorService 10 min Day 01: Executors 15 min Day 02: ThreadPoolExecutor 20 min Day 02: BlockingQueue 10 min Day 02: Callable vs Runnable 15 min Day 02: Future 15 min JAVA CONCURRENCY Day 03: ConcurrentHashMap 30 min Day 03: Producer Consumer 30 min Day 04: CountDownLatch 20 min Day 04: CyclicBarrier 20 min Day 04: Deadlock Condition 20 min Day 05: Race Condition 30 min Day 05: Semaphore 30 min JAVA 8 FEATURES Day 06: Lambda Expressions 40 min Day 06: Functional Interfaces 10 min Day 06: Functional Programming 10 min Day 07: Method References 10 min Day 07: Default Methods 40 min Day 07: Optional 10 min Day 08: Stream API 1 hour MAVEN Day 09: Project Object Model (POM) 20 min Day 09: Project Description 10 min Day 09: Public Repository 10 min Day 09: Dependency Management 10 min Day 09: Build Configuration 10 min Day 10: Installation 15 min Day 10: Dependency Scope 15 min Day 10: Proprietary Dependencies 15 min Day 10: Project Inheritance 15 min Day 11: Maven life cycle 20 min Day 11: Maven Directory Structure 20 min Day 11: Archetypes 20 min Day 12: Applications 1 hour DESIGN PATTERNS Day 13: Factory Pattern 20 min Day 13: Abstract Factory Pattern 10 min Day 13: Single Pattern 20 min Day 13: Prototype Pattern 10 min Day 14: Composite Pattern 10 min Day 14: Facade Pattern 15 min Day 14: DAO Pattern 10 min Day 14: Service Locator Pattern 25 min COLLECTIONS INTRODUCTION Day 15: Array vs Collection 10 min Day 15: Collection Operations 10 min Day 15: Collection Hierarchy 20 min Day 15: Collection Properties 20 min List Interface Day 16: Hierarchy 10 min Day 16: Vector 20 min Day 16: Enumeration vs Iterator vs ListIterator 30 min Day 17: Soring 30 min Day 17: ArrayList, LinkedList 20 min Day 17: Stack 10 min Set Interface Day 18: Hierarchy 15 min Day 18: Application 15 min Day 18: hashCode() and equals() methods 10 min Queue Interface Day 18: Hierarchy 10 min Day 18: Application 10 min Map Interface Day 19: Hierarchy 10 min Day 19: Application 15 min Day 19: Customized Key 10 min Day 19: IdentityHashMap 15 min Day 19: WeakHashMap 15 min Generic Types Day 20: Introduction 10 min Day 20: Refactor from non-generic to generic code 10 min Day 20: Mixing generic and non-generic types 10 min Day 20: Type erasure 30 min Day 21: Polymorphism with Generics 10 min Day 21: Wildcard character (?) 20 min Day 21: Generic classes 20 min Day 21: Generic methods 10 min Course Info Hours : 21 hour Duration : 3-4 weeks [6 days per week] Slot : 6AM-7AM | 7AM-8AM | 8AM-9AM Mode : LIVE Online Training Join : Goto Meeting Demo : Day-1 & Day-2 Downloads : Materials, Workspace, etc Re Attend : One time with-in 6 months. Price : 5,000 INR Mail : [email protected] Mobile : 7799208899 / 9885407683 .
Recommended publications
  • (GOF) Java Design Patterns Mock Exams
    Gang of Four (GOF) Java Design Patterns Mock Exams http://www.JavaChamp.com Open Certification Plattform Authors: N. Ibrahim, Y. Ibrahim Copyright (c) 2009-2010 Introducing JavaChamp.com Website JavaChamp.com is an Open Certification Platform. What does this mean? JavaChamp is the best place to learn, share, and certify your professional skills. We help you develop yourself in the field of computer science and programming Here are the most significant features offered by JavaChamp: Online Exams Start Online Certification Exams in SCJP, SCEA, EJB, JMS, JPA and more... Top quality mock exams for SCJP, SCEA, EJB, JMS, JPA. Start Express or topic-wise customized exam. * We offer you unlimited free mock exams * Exams cover subjects like SCJP, SCEA, EJB, JMS, JPA,.. * You can take as many exams as you want and at any time and for no charges * Each exam contains 20 multiple choice questions * You can save the exams taken in your exams history * Your exams history saves the exams you took, the scores you got, time took you to finish the exam, date of examination and also saves your answers to the questions for later revision * You can re-take the same exam to monitor your progress * Your exams history helps the system to offer you variant new questions every time you take a new exam, therefore we encourage you to register and maintain an exams history Network Find guidance through the maze, meet Study-Mates, Coaches or Trainees... Studying together is fun, productive and helps you in building your professional network and collecting leads Bookshelf JavaChamp Bookshelf full of PDF eBooks..
    [Show full text]
  • Ioc Containers in Spring
    301AA - Advanced Programming Lecturer: Andrea Corradini [email protected] http://pages.di.unipi.it/corradini/ AP-2018-11: Frameworks and Inversion of Control Frameworks and Inversion of Control • Recap: JavaBeans as Components • Frameworks, Component Frameworks and their features • Frameworks vs IDEs • Inversion of Control and Containers • Frameworks vs Libraries • Decoupling Components • Dependency Injection • IoC Containers in Spring 2 Components: a recap A software component is a unit of composition with contractually specified interfaces and explicit context dependencies only. A software component can be deployed independently and is subject to composition by third party. Clemens Szyperski, ECOOP 1996 • Examples: Java Beans, CLR Assemblies • Contractually specified interfaces: events, methods and properties • Explicit context dependencies: serializable, constructor with no argument • Subject to composition: connection to other beans – Using connection oriented programming (event source and listeners/delegates) 3 Towards Component Frameworks • Software Framework: A collection of common code providing generic functionality that can be selectively overridden or specialized by user code providing specific functionality • Application Framework: A software framework used to implement the standard structure of an application for a specific development environment. • Examples: – GUI Frameworks – Web Frameworks – Concurrency Frameworks 4 Examples of Frameworks Web Application Frameworks GUI Toolkits 5 Examples: General Software Frameworks – .NET – Windows platform. Provides language interoperability – Android SDK – Supports development of apps in Java (but does not use a JVM!) – Cocoa – Apple’s native OO API for macOS. Includes C standard library and the Objective-C runtime. – Eclipse – Cross-platform, easily extensible IDE with plugins 6 Examples: GUI Frameworks • Frameworks for Application with GUI – MFC - Microsoft Foundation Class Library.
    [Show full text]
  • Design Pattern Interview Questions
    DDEESSIIGGNN PPAATTTTEERRNN -- IINNTTEERRVVIIEEWW QQUUEESSTTIIOONNSS http://www.tutorialspoint.com/design_pattern/design_pattern_interview_questions.htm Copyright © tutorialspoint.com Dear readers, these Design Pattern Interview Questions have been designed specially to get you acquainted with the nature of questions you may encounter during your interview for the subject of Design Pattern. As per my experience good interviewers hardly plan to ask any particular question during your interview, normally questions start with some basic concept of the subject and later they continue based on further discussion and what you answer: What are Design Patterns? Design patterns represent the best practices used by experienced object-oriented software developers. Design patterns are solutions to general problems that software developers faced during software development. These solutions were obtained by trial and error by numerous software developers over quite a substantial period of time. What is Gang of Four GOF? In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides published a book titled Design Patterns - Elements of Reusable Object-Oriented Software which initiated the concept of Design Pattern in Software development. These authors are collectively known as Gang of Four GOF. Name types of Design Patterns? Design patterns can be classified in three categories: Creational, Structural and Behavioral patterns. Creational Patterns - These design patterns provide a way to create objects while hiding the creation logic, rather than instantiating objects directly using new opreator. This gives program more flexibility in deciding which objects need to be created for a given use case. Structural Patterns - These design patterns concern class and object composition. Concept of inheritance is used to compose interfaces and define ways to compose objects to obtain new functionalities.
    [Show full text]
  • Learning Javascript Design Patterns
    Learning JavaScript Design Patterns Addy Osmani Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo Learning JavaScript Design Patterns by Addy Osmani Copyright © 2012 Addy Osmani. All rights reserved. Revision History for the : 2012-05-01 Early release revision 1 See http://oreilly.com/catalog/errata.csp?isbn=9781449331818 for release details. ISBN: 978-1-449-33181-8 1335906805 Table of Contents Preface ..................................................................... ix 1. Introduction ........................................................... 1 2. What is a Pattern? ...................................................... 3 We already use patterns everyday 4 3. 'Pattern'-ity Testing, Proto-Patterns & The Rule Of Three ...................... 7 4. The Structure Of A Design Pattern ......................................... 9 5. Writing Design Patterns ................................................. 11 6. Anti-Patterns ......................................................... 13 7. Categories Of Design Pattern ............................................ 15 Creational Design Patterns 15 Structural Design Patterns 16 Behavioral Design Patterns 16 8. Design Pattern Categorization ........................................... 17 A brief note on classes 17 9. JavaScript Design Patterns .............................................. 21 The Creational Pattern 22 The Constructor Pattern 23 Basic Constructors 23 Constructors With Prototypes 24 The Singleton Pattern 24 The Module Pattern 27 iii Modules 27 Object Literals 27 The Module Pattern
    [Show full text]
  • Dependency Injection with Unity
    D EPEN DEPENDENCY INJECTION WITH UNITY Over the years software systems have evolutionarily become more and more patterns & practices D ENCY complex. One of the techniques for dealing with this inherent complexity Proven practices for predictable results of software systems is dependency injection – a design pattern that I allows the removal of hard-coded dependencies and makes it possible to Save time and reduce risk on your NJECT assemble a service by changing dependencies easily, whether at run-time software development projects by or compile-time. It promotes code reuse and loosely-coupled design which incorporating patterns & practices, I leads to more easily maintainable and flexible code. Microsoft’s applied engineering ON guidance that includes both production The guide you are holding in your hands is a primer on using dependency quality source code and documentation. W I injection with Unity – a lightweight extensible dependency injection TH DEPENDENCY INJECTION container built by the Microsoft patterns & practices team. It covers The guidance is designed to help U software development teams: various styles of dependency injection and also additional capabilities N I of Unity container, such as object lifetime management, interception, Make critical design and technology TY and registration by convention. It also discusses the advanced topics of selection decisions by highlighting WITH UNITY enhancing Unity with your custom extensions. the appropriate solution architectures, technologies, and Microsoft products The guide contains plenty of trade-off discussions and tips and tricks for for common scenarios managing your application cross-cutting concerns and making the most out of both dependency injection and Unity. These are accompanied by a Understand the most important Dominic Betts real world example that will help you master the techniques.
    [Show full text]
  • Designpatternsphp Documentation Release 1.0
    DesignPatternsPHP Documentation Release 1.0 Dominik Liebler and contributors Jul 18, 2021 Contents 1 Patterns 3 1.1 Creational................................................3 1.1.1 Abstract Factory........................................3 1.1.2 Builder.............................................8 1.1.3 Factory Method......................................... 13 1.1.4 Pool............................................... 18 1.1.5 Prototype............................................ 21 1.1.6 Simple Factory......................................... 24 1.1.7 Singleton............................................ 26 1.1.8 Static Factory.......................................... 28 1.2 Structural................................................. 30 1.2.1 Adapter / Wrapper....................................... 31 1.2.2 Bridge.............................................. 35 1.2.3 Composite............................................ 39 1.2.4 Data Mapper.......................................... 42 1.2.5 Decorator............................................ 46 1.2.6 Dependency Injection...................................... 50 1.2.7 Facade.............................................. 53 1.2.8 Fluent Interface......................................... 56 1.2.9 Flyweight............................................ 59 1.2.10 Proxy.............................................. 62 1.2.11 Registry............................................. 66 1.3 Behavioral................................................ 69 1.3.1 Chain Of Responsibilities...................................
    [Show full text]
  • Design Patterns in Ocaml
    Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project.
    [Show full text]
  • A Survey of Design Pattern Based Web Applications
    JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009 Vol. 8, No. 2, March-April 2009 A Survey of Design Pattern Based Web Applications Sridaran R, Campus Head, ICFAI National College, Vellore-632 006 India. Padmavathi G, Professor and Head, Department of Computer Science, Avinashilingam University for Women, Coimbatore-641 043, India. Iyakutti K, Senior Professor, School of Physics, Madurai Kamaraj University, Madurai-625 019, India. Abstract Pattern-based web applications have become popular since they promote reusability and consistency. In few cases, patterns do not produce the desired effect because of lack of experience in applying them. This situation forces one to think of a suitable re- engineering solution for such applications. The objectives of the paper are three fold. It provides a survey of different pattern-based web applications that will be useful for the application designers. It highlights some of the web applications where patterns have been inappropriately handled. A few re-engineering initiatives for such cases are also analyzed. Key Words: Patterns, Web Applications, Re-engineering, Hypermedia, Semantic web, Partitioning. 1 INTRODUCTION Web application designers need to address many challenges during development in order to comply the quality of service requirements including speed, scalability and security. In recent years numerous non-web based applications have been re-written as web based because of the ever growing business needs. These migration activities are much more complicated and time consuming than a new software development. Most of these challenges are with data handling, organizing, or structuring of the web applications.
    [Show full text]
  • Semantic Description of Services and Service Factories for Ambient Intelligence Rémi Emonet
    Semantic Description of Services and Service Factories for Ambient Intelligence Rémi Emonet To cite this version: Rémi Emonet. Semantic Description of Services and Service Factories for Ambient Intelligence. Soft- ware Engineering [cs.SE]. Institut National Polytechnique de Grenoble - INPG, 2009. English. tel- 00450479 HAL Id: tel-00450479 https://tel.archives-ouvertes.fr/tel-00450479 Submitted on 26 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GRENOBLE INP n◦ attribu´epar la biblioth`eque THESE` pour obtenir le grade de ❉♦❝❡✉ ❉✉ ●♦✉♣❡ ●❡♥♦❜❧❡ ■◆ Sp´ecialit´e: Informatique pr´epar´eeau Laboratoire d’Informatique de Grenoble dans le cadre de l’Ecole´ Doctorale Math´ematiques, Sciences et Technologies de l’Information, Informatique pr´esent´eeet soutenue publiquement par R´emi ❊♠♦♥❡ le 23 septembre 2009 ❉❡❝✐♣✐♦♥ ❙♠❛♥✐✉❡ ❞❡ ❙❡✈✐❝❡ ❡ ❞✬❯✐♥❡ à ❙❡✈✐❝❡ ♣♦✉ ❧✬■♥❡❧❧✐❣❡♥❝❡ ❆♠❜✐❛♥❡ ❙❡♠❛♥✐❝ ❉❡❝✐♣✐♦♥ ♦❢ ❙❡✈✐❝❡ ❛♥❞ ❙❡✈✐❝❡ ❋❛❝♦✐❡ ❢♦ ❆♠❜✐❡♥ ■♥❡❧❧✐❣❡♥❝❡ Directeur de th`ese : James L. ❈♦✇❧❡② Co-directeur de th`ese : Dominique ❱❛✉❢❡②❞❛③ JURY Pr. Marie-Christine Rousset Pr´esident Pr. James L. Crowley Directeur de th`ese Dr. Dominique Vaufreydaz Co-directeur de th`ese Pr. Gregory D. Abowd Rapporteur Pr. David Simplot-Ryl Rapporteur Pr. Michel Riveill Examinateur 2 R´esum´e Ce manuscrit ´etudie l’ad´equation des approches `aservices, ainsi que leur am´elioration, pour l’int´egration dynamique et la r´eutilisation logicielle dans le cadre de l’informatique ambiante.
    [Show full text]
  • Course Title
    "Charting the Course ... ... to Your Success!" JavaScript Advanced Course Summary Description This course will review the basics of JavaScript and provide instruction on advanced topics such as advanced features of JavaScript functions, Object-Oriented programming in JavaScript (Inheritance, encapsulation) with prototypes, using closures, understanding JavaScript promises and advanced best practices. Objectives At the end of this course, students will be able to: Review Learn function expressions/function declarations/immediately executable functions Use JavaScript objects to implement Inheritance and encapsulation Understand JavaScript closures Learn JavaScript promises Discuss how to best use the advanced topics in this course in your JavaScript projects. Topics Basics Review Object-Oriented Programming Function Expressions Error Handling And Debugging Advanced Techniques Audience This course is intended for JavaScript programmers Prerequisites JavaScript introduction Duration Two days Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these names generically "Charting the Course ... ... to Your Success!" JavaScript Advanced Course Outline I. Basics Review IV. Error Handling And Debugging A. Browser Error Reporting II. Object-Oriented Programming B. Internet Explorer A. Understanding Objects C. Firefox B. Types of Properties D. Chrome C. Defining Multiple Properties E. Error Handling D. Reading Property Attributes F. The try-catch Statement E. Object Creation G. Throwing Errors F. The Factory Pattern H. The error Event G. The Constructor Pattern I.
    [Show full text]
  • Creational Patterns
    9. Creational Pattern Venkat Subramaniam CDP-1 Creational Patterns • Abstracts instantiation process • Makes system independent of how its objects are œ created œ composed œ represented • Encapsulates knowledge about which concrete classes the system uses • Hides how instances of these classes are created and put together Venkat Subramaniam CDP-2 Abstract Factory Provide an interface for creating families of related or dependent objects without specifying their concrete classes Venkat Subramaniam CDP-3 Example that would benefit from Abstract Factory ComputerModelA MemoryType A CPUTypeA ModemTypeA BuildComputer(ComputerModelA& comp) { comp.Add(new MemoryTypeA); comp.Add(new CPUTypeA); comp.Add(new ModemTypeA); } What if I want to build a Computer of Model B with Model B Memory,CPU and Modem? Venkat Subramaniam CDP-4 Using Abstract Factory ComputerFactory Client Computer createComputer() createMemory() createCPU() Computer Computer createModem() ModelA ModelB Memory CompFactoryB CompFactoryA createComputer() createComputer() Memory Memory createMemory() createMemory() ModelA ModelB createCPU() createCPU() createModem() createModem() Venkat Subramaniam CDP-5 Using Abstract Factory... BuildComputer(Computer& comp, ComputerFactory& compFactory) { comp.Add(compFactory.createMemory()) ; comp.Add(compFactory.createCPU()); comp.Add(compFactory.createModem()); } Venkat Subramaniam CDP-6 .hen to use Abstract Factory? • Use Abstract Factory when: œ system should be independent of how its products are created, composed and represented œ system should
    [Show full text]
  • Sun Certified Enterprise Architect for Java EE Study Guide / Mark Cade, Humphrey Sheil
    Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in this publication. In particular, and without limitation, these intellectual property rights may include one or more U.S. patents, foreign patents, or pending applications. Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. This publication could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein; these changes will be incorporated in new editions of the publication. Sun Microsystems, Inc. may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time. The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.
    [Show full text]