Symmetry, Integrability and Geometry: Methods and Applications SIGMA 15 (2019), 030, 36 pages A Self-Dual Integral Form of the Moonshine Module Scott CARNAHAN University of Tsukuba, Japan E-mail:
[email protected] URL: http://www.math.tsukuba.ac.jp/~carnahan/ Received February 13, 2018, in final form April 06, 2019; Published online April 19, 2019 https://doi.org/10.3842/SIGMA.2019.030 Abstract. We construct a self-dual integral form of the moonshine vertex operator algebra, and show that it has symmetries given by the Fischer{Griess monster simple group. The existence of this form resolves the last remaining open assumption in the proof of the modular moonshine conjecture by Borcherds and Ryba. As a corollary, we find that Griess's original 196884-dimensional representation of the monster admits a positive-definite self-dual integral form with monster symmetry. Key words: moonshine; vertex operator algebra; orbifold; integral form 2010 Mathematics Subject Classification: 17B69; 11F22; 20C10; 20C20; 20C34 Contents 1 Introduction 1 2 Cyclic orbifolds over subrings of the complex numbers3 2.1 Descent and gluing for finite projective modules and bilinear forms........3 2.2 Vertex operator algebras over commutative rings..................9 2.3 Abelian intertwining algebras over subrings of complex numbers......... 15 2.4 The standard form for a lattice vertex operator algebra.............. 21 2.5 The cyclic orbifold construction............................ 24 3 Forms of the monster vertex operator algebra 25 3.1 The Abe{Lam{Yamada method............................ 25 3.2 Monster symmetry................................... 28 3.3 Comparison of monster-symmetric forms....................... 29 3.4 Descent of self-dual forms..............................