A Monster Tale: a Review on Borcherds' Proof of Monstrous Moonshine Conjecture

Total Page:16

File Type:pdf, Size:1020Kb

A Monster Tale: a Review on Borcherds' Proof of Monstrous Moonshine Conjecture A monster tale: a review on Borcherds’ proof of monstrous moonshine conjecture by Alan Gerardo Reyes Figueroa Instituto de Matem´atica Pura e Aplicada IMPA A monster tale: a review on Borcherds’ proof of monstrous moonshine conjecture by Alan Gerardo Reyes Figueroa Disserta¸c˜ao Presented in partial fulfillment of the requirements for the degree of Mestre em Matem´atica Instituto de Matem´atica Pura e Aplicada IMPA Maio de 2010 A monster tale: a review on Borcherds’ proof of monstrous moonshine conjecture Alan Gerardo Reyes Figueroa Instituto de Matem´atica Pura e Aplicada APPROVED: 26.05.2010 Hossein Movasati, Ph.D. Henrique Bursztyn, Ph.D. Am´ılcar Pacheco, Ph.D. Fr´ed´eric Paugam, Ph.D. Advisor: Hossein Movasati, Ph.D. v Abstract The Monster M is the largest of the sporadic simple groups. In 1979 Conway and Norton published the remarkable paper ‘Monstrous Moonshine’ [38], proposing a completely unex- pected relationship between finite simple groups and modular functions, in which related the Monster to the theory of modular forms. Conway and Norton conjectured in this paper that there is a close connection between the conjugacy classes of the Monster and the action of certain subgroups of SL2(R) on the upper half plane H. This conjecture implies that extensive information on the representations of the Monster is contained in the classical picture describing the action of SL2(R) on the upper half plane. Monstrous Moonshine is the collection of questions (and few answers) that these observations had directly inspired. In 1988, the book ‘Vertex Operator Algebras and the Monster’ [67] by Frenkel, Lepowsky and Meurman appeared. This book gave an explanation of why the Monster is related to the theory of modular forms, by showing that it acts as an automorphism group of a vertex algebra V ♮ of central charge 24, constructed in terms of the Leech lattice. Vertex operators also arise in mathematical physics contexts, such as conformal field theory and string the- ory. Although Frenkel et al. did not prove the Conway-Norton conjecture, they provided the raw material with which this conjecture could be approached. The main conjecture was eventually proved by Borcherds in 1992 in his paper ‘Monstrous moonshine and monstrous Lie superalgebras’ [12]. A key role in the proof was played by a class of infinite dimensional Lie algebras —called by Borcherds— generalized Kac-Moody algebras. Borcherds proved properties of the monster Lie algebra which turned out to be sufficient to complete the Conway-Norton conjecture. A key step in the proof was an application of the ‘no-ghost’ theorem from string theory. Borcherds also obtained many other remarkable connections between sporadic finite simple groups and modular forms in this and other papers. He was awarded a Fields medal in 1998 for his contributions. The principal interest of Moonshine is that it constitutes a new bridge between algebraic structures and modular apparatus, and a new era of collaboration between mathematics and physics. This work is a modest review of the Moonshine phenomena: the main conjectures, Borcherds’ proof, open problems and actual areas of research. vii Resumo O Monstro M ´eo maior dos grupos simples espor´adicos. Em 1979 Conway e Norton pub- licaram um remarc´avel artigo ‘Monstrous Moonshine’ [38], onde proporam uma rela¸c˜ao inesperada entre grupos finitos simples e fun¸c˜oes modulares, na qual relacionaram o Mon- stro `ateoria de formas modulares. Conway e Norton conjeturaram neste artigo que existe uma forte conex˜ao entre as classes de conjuga¸c˜ao do Monstro e a a¸c˜ao de certos subgru- pos de SL2(R) no semi-plano superior H. Tal conjetura implica que muita informa¸c˜ao das representa¸c˜oes do Monstro est´acontida na imagem que descreve a a¸c˜ao de SL2(R) no semi-plano superior. Monstrous Moonshine ´ea cole¸c˜ao de quest˜oes (e umas poucas respostas) diretamente inspiradas por essas observa¸c˜oes. Em 1988, apareceu o livro ‘Vertex Operator Algebras and the Monster’ [67] de Frenkel, Lep- owsky and Meurman. Este livro deu uma explica¸c˜ao de por que o Monstro est´arelacionado com a teoria de formas modulares, mostrando que M age como um grupo de automorfismos de uma ´algebra de vˆertices V ♮ de carga central 24, construida em termos do ret´ıculo de Leech. Os operadores vˆertice ocorrem tamb´em em contextos da f´ısica matem´atica, tais como teoria de campos conformes e teoria das cordas. Embora Frenkel et al. n˜ao provaram a conjetura de Conway-Norton, eles proporcionaram a ferramenta b´asica com a qual esta conjetura pode-se provar. A conjetura principal eventualmente foi provada por Borcherds em 1992 no seu artigo ‘Monstrous moonshine and monstrous Lie superalgebras’ [12]. Um papel chave na prova ´efeito por uma classe de ´algebras de Lie infinito dimensionales —chamadas por Borcherds— de ´algebras de Kac-Moody geralizadas. Borcherds provou propriedades da ´algebra de Lie monstro que foram suficentes para completar a conjetura Conway-Norton. Um papel fundamental na prova foi uma aplica¸c˜ao do teorema ‘no-ghost’ da teoria das cordas. Borcherds obteve tamb´em muitas outras conex˜oes entre grupos simples espor´adicos e for- mas modulares em este e outros artigos. Ele foi galardoado com a medalha Fields em 1998 pelas suas contribu¸c˜oes. O inter´es principal de Moonshine ´eque ele estabelece uma nova ponte entre as estruturas alg´ebricas e as modulares, e come¸ca uma nova era de coopera¸c˜ao entre a matem´atica e a f´ısica. Esta disserta¸c˜ao ´euma revis˜ao somera do fen´omeno Moonshine: as conjeturas principais, a prova de Borcherds, problemas abertos e ´areas atuais de pesquisa. ix Preface Monstrous Moonshine is probably one of the most esoteric achievements arising in math- ematics. The fact that the Monster has connections to other parts of mathematics shows that there is something very deep going on here. No one fully understands it, and the links to the fields of physics and geometry are tantalizing. The Moonshine connections have spawned a lot of work by a several mathematicians and mathematical physicists recently, and have opened intriguing conjectures, most of them remaining open until today. This work grew out in a attempt to explain the mysteries about the Monster and its relation with number theory, specially the j modular invariant. The idea about work with this topic was given to me by Prof. Hossein Movasati, with the purpose to have a better understand on some connections occurring between automorphic functions, geometry and physics. The original idea was to write a complete and detailed proof of the Moonshines conjectures, but by obviously reasons, a complete proof was somewhat voluminous to be given here. I have decided to restrict attention to the original Conway-Norton conjecture. Other aspects of Moonshine are mentioned only as a matter of general culture on the subject. I have written with special attention to the non initiated. In fact, I have included so many theory on the first chapters in order to give sufficient background to understand all material in the later ones, and to make easier most of the ideas of Borcherds’ proof. For the sake of background material, the proofs of theorems and propositions are omitted. The idea is to give only the proof of the Conway-Norton conjecture, making the material accessible to the level of a second year graduate student. Unfortunately, this work is by no means complete. There are several references included, with the purpose of encourage readers to specialize topics of their interest. Perhaps, the recent [72] is the most complete review of the Moon- shine phenomenon. A good resume of [72] is the paper [71]. For the non-mathematician reader, [160] is good source, basically for its divulgation style. Main differences between this work and [72, 71] is the devoted attention to the number theory of moonshine, and the detailed exposition of the proof of the Conway-Norton conjecture. In Chapter 1 I present an historical introduction, in order to facilitate a quickly access to the main conjecture. Several concepts appear, most of them explained more detailed in subsequent chapters. Chapters 2 and 3 give background material on algebra, particularly on Lie algebras. Chap- ter 2 also includes other classic material on algebra, such as representation of finite groups, modules, tensor products and some constructions. The main topic of Chapter 2 is to ex- plain affine Lie algebras (Section 2.8), which appear later. Chapter 3 introduce important concepts in Lie algebra theory, such as the Cartan subalgebras, the root systems and the xi Weyl group. Main topics of this chapter are the Theorem of Highest Weights (Section 3.7) and the Weyl Character formula (Section 3.8). Chapter 4 introduces the concept of vertex operator algebras, and relate it to the repre- sentation theory of Kac-Moody algebras, including a bit of lattice theory. At the final of Chapter 4, I give some interesting data relating Moonshine to the E8 classical Lie algebra and the Leech lattice. Chapter 5 is devoted exclusively to a partial construction of the Moonshine module V ♮ given by Frenkel-Lepowsky-Meurman. It also includes some aspects of other ‘unusual’ algebraic structures, such as the Golay code C24, the Leech lattice Λ24 and the Griess algebra B. In Chapters 6 and Chapter 7, I explain in more detail the j-function and the original Conway-Norton conjecture. This is the only chapter where the proofs are given (mainly due to the fact that my principal area is number theory, and I have decided give more attention to this). Chapter 7 includes important useful material to understand the ideas of Borcherds’ proof: congruence subgroups of SL2(R), replicable functions and the so called replication formulae.
Recommended publications
  • On the Classification of Finite Simple Groups
    On the Classification of Finite Simple Groups Niclas Bernhoff Division for Engineering Sciences, Physics and Mathemathics Karlstad University April6,2004 Abstract This paper is a small note on the classification of finite simple groups for the course ”Symmetries, Groups and Algebras” given at the Depart- ment of Physics at Karlstad University in the Spring 2004. 1Introduction In 1892 Otto Hölder began an article in Mathematische Annalen with the sen- tence ”It would be of the greatest interest if it were possible to give an overview of the entire collection of finite simple groups” (translation from German). This can be seen as the starting point of the classification of simple finite groups. In 1980 the following classification theorem could be claimed. Theorem 1 (The Classification theorem) Let G be a finite simple group. Then G is either (a) a cyclic group of prime order; (b) an alternating group of degree n 5; (c) a finite simple group of Lie type;≥ or (d) one of 26 sporadic finite simple groups. However, the work comprises in total about 10000-15000 pages in around 500 journal articles by some 100 authors. This opens for the question of possible mistakes. In fact, around 1989 Aschbacher noticed that an 800-page manuscript on quasithin groups by Mason was incomplete in various ways; especially it lacked a treatment of certain ”small” cases. Together with S. Smith, Aschbacher is still working to finish this ”last” part of the proof. Solomon predicted this to be finished in 2001-2002, but still until today the paper is not completely finished (see the homepage of S.
    [Show full text]
  • Flavor Moonshine
    Prog. Theor. Exp. Phys. 2020, 013B03 (20 pages) DOI: 10.1093/ptep/ptz137 Flavor moonshine Shotaro Shiba Funai1,∗ Hirotaka Sugawara2,∗ 1Physics and Biology Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan 2High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ∗E-mail: [email protected], [email protected] Received August 30, 2019; Revised October 17, 2019; Accepted October 23, 2019; Published January 13, 2020 ................................................................................................................... The flavor moonshine hypothesis is formulated to suppose that all particle masses (leptons, quarks, Higgs, and gauge particles—more precisely, their mass ratios) are expressed as coef- ficients in the Fourier expansion of some modular forms just as, in mathematics, dimensions of representations of a certain group are expressed as coefficients in the Fourier expansion of some modular forms. The mysterious hierarchical structure of the quark and lepton masses is thus attributed to that of the Fourier coefficient matrices of certain modular forms. Our inten- tion here is not to prove this hypothesis starting from some physical assumptions but rather to demonstrate that this hypothesis is experimentally verified and, assuming that the string theory correctly describes the natural law, to calculate the geometry (Kähler potential and the metric) of the moduli space of the Calabi–Yau manifold, thus providing a way to calculate the metric of the Calabi–Yau manifold itself directly from the experimental data. ................................................................................................................... Subject Index B41, B55 1. Introduction Some researchers, including one of the authors of this work (H.S.), have been working on flavor physics, assuming that some discrete symmetry plays an important role in its understanding [1–9]; S3, S4, A4, etc.
    [Show full text]
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • Janko's Sporadic Simple Groups
    Janko’s Sporadic Simple Groups: a bit of history Algebra, Geometry and Computation CARMA, Workshop on Mathematics and Computation Terry Gagen and Don Taylor The University of Sydney 20 June 2015 Fifty years ago: the discovery In January 1965, a surprising announcement was communicated to the international mathematical community. Zvonimir Janko, working as a Research Fellow at the Institute of Advanced Study within the Australian National University had constructed a new sporadic simple group. Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained in 1900 by G. A. Miller. Finite simple groups: earliest examples É The cyclic groups Zp of prime order and the alternating groups Alt(n) of even permutations of n 5 items were the earliest simple groups to be studied (Gauss,≥ Euler, Abel, etc.) É Evariste Galois knew about PSL(2,p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel. É Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The ‘groupes abéliens’ of Jordan are now called symplectic groups and his ‘groupes hypoabéliens’ are orthogonal groups in characteristic 2. É Émile Mathieu introduced the five groups M11, M12, M22, M23 and M24 in 1861 and 1873. The classical groups, G2 and E6 É In his PhD thesis Leonard Eugene Dickson extended Jordan’s work to linear groups over all finite fields and included the unitary groups.
    [Show full text]
  • Umbral Moonshine and K3 Surfaces Arxiv:1406.0619V3 [Hep-Th]
    SLAC-PUB-16469 Umbral Moonshine and K3 Surfaces Miranda C. N. Cheng∗1 and Sarah Harrisony2 1Institute of Physics and Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, the Netherlandsz 2Stanford Institute for Theoretical Physics, Department of Physics, and Theory Group, SLAC, Stanford University, Stanford, CA 94305, USA Abstract Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups, have been discovered in the context of the 23 even unimodular Niemeier lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of K3 non-linear sigma models. In this paper we establish a uniform relation between all 23 cases of umbral moonshine and K3 sigma models, and thereby take a first step in placing umbral moonshine into a geometric and physical context. This is achieved by relating the ADE root systems of the Niemeier lattices to the ADE du Val singularities that a K3 surface can develop, and the configuration of smooth rational curves in their resolutions. A geometric interpretation of our results is given in terms of the marking of K3 surfaces by Niemeier lattices. arXiv:1406.0619v3 [hep-th] 18 Mar 2015 ∗[email protected] [email protected] zOn leave from CNRS, Paris. 1 This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515 and HEP. Umbral Moonshine and K3 Surfaces 2 Contents 1 Introduction and Summary 3 2 The Elliptic Genus of Du Val Singularities 8 3 Umbral Moonshine and Niemeier Lattices 14 4 Umbral Moonshine and the (Twined) K3 Elliptic Genus 20 5 Geometric Interpretation 27 6 Discussion 30 A Special Functions 32 B Calculations and Proofs 34 C The Twining Functions 41 References 48 Umbral Moonshine and K3 Surfaces 3 1 Introduction and Summary Mock modular forms are interesting functions playing an increasingly important role in various areas of mathematics and theoretical physics.
    [Show full text]
  • Arxiv:Math/0612474V3 [Math.NT] 23 May 2017 20D08
    KAC-MOODY ALGEBRAS, THE MONSTROUS MOONSHINE, JACOBI FORMS AND INFINITE PRODUCTS Jae-Hyun Yang Table of Contents 1. Introduction Notations 2. Kac-Moody Lie Algebras Appendix : Generalized Kac-Moody Algebras 3. The Moonshine Conjectures and the Monster Lie Algebra Appendix : The No-Ghost Theorem 4. Jacobi Forms 5. Infinite Products and Modular Forms 6. Final Remarks 6.1. The Fake Monster Lie Algebras 6.2. Generalized Kac-Moody Algebras of the Arithmetic Type 6.3. Open Problems Appendix A : Classical Modular Forms Appendix B : Kohnen Plus Space and Maass Space arXiv:math/0612474v3 [math.NT] 23 May 2017 Appendix C : The Orthogonal Group Os+2,2(R) Appendix D : The Leech Lattice Λ References This work was in part supported by TGRC-KOSEF. Mathematics Subject Classification (1991) : Primary 11F30, 11F55, 17B65, 17B67, 20C34, 20D08. Typeset by AMS-TEX 1 2 JAE-HYUN YANG 1. Introduction Recently R. E. Borcherds obtained some quite interesting results in [Bo6-7]. First he solved the Moonshine Conjectures made by Conway and Norton([C-N]). Secondly he constructed automorphic forms on the orthogonal group Os+2,2(R) which are modular products and then wrote some of the well-known meromorphic modular forms as infinite products. Modular products roughly mean infinite prod- ucts whose exponents are the coefficients of certain nearly holomorphic modular forms. The theory of Jacobi forms plays an important role in his second work in [Bo7]. More than 10 years ago Feingold and Frenkel([F-F]) realized the connec- tion between the theory of a special hyperbolic Kac-Moody Lie algebra of the type (1) HA1 and that of Jacobi forms of degree one and then generalized the results of H.
    [Show full text]
  • The Cohomologies of the Sylow 2-Subgroups of a Symplectic Group of Degree Six and of the Third Conway Group
    THE COHOMOLOGIES OF THE SYLOW 2-SUBGROUPS OF A SYMPLECTIC GROUP OF DEGREE SIX AND OF THE THIRD CONWAY GROUP JOHN MAGINNIS Abstract. The third Conway group Co3 is one of the twenty-six sporadic finite simple groups. The cohomology of its Sylow 2-subgroup S is computed, an important step in calculating the mod 2 cohomology of Co3. The spectral sequence for the central extension of S is described and collapses at the sixth page. Generators are described in terms of the Evens norm or transfers from subgroups. The central quotient S0 = S=2 is the Sylow 2-subgroup of the symplectic group Sp6(F2) of six by six matrices over the field of two elements. The cohomology of S0 is computed, and is detected by restriction to elementary abelian 2-subgroups. 1. Introduction A presentation for the Sylow 2-subgroup S of the sporadic finite simple group Co3 is given by Benson [1]. We will use a different presentation, with generators which can be described in terms of Benson's generators fa1; a2; a3; a4; b1; b2; c1; c2; eg as follows. w = c3; x = b2c1c2; y = ec3; z = a4; a = a3a4c2; b = a3a4b1c2; c = a3; t = a4c1; u = a2; v = a1: We have the following set of relations for the generators fw; x; y; z; a; b; c; t; u; vg. w2 = x2 = y2 = z2 = c2 = u2 = v2 = [w; y] = [w; z] = [w; c] = [w; v] = [x; z] = [x; u] = [x; v] = [y; c] = [y; u] = [y; v] = [a; z] = [c; z] = [u; z] = [v; z] = [c; t] = [c; u] = [c; v] = [a; u] = [a; v] = [b; c] = [b; t] = [b; u] = [b; v] = [t; u] = [t; v] = [u; v] = 1; tu = [a; y]; t = [w; b]; av = [w; x]; b = [x; y]; c = [y; z] u = b2 = [x; c] = [b; z] = [b; y] = [b; x]; uv = [t; x] = [a; b]; v = t2 = a2 = [w; u] = [a; c] = [t; z] = [a; w] = [t; w] = [t; a] = [t; y] = [a; x]: The group S has order 1024 and a center Z(S) of order two, generated by v = a1.
    [Show full text]
  • Near Polygons and Fischer Spaces
    Near polygons and Fischer spaces Citation for published version (APA): Brouwer, A. E., Cohen, A. M., Hall, J. I., & Wilbrink, H. A. (1994). Near polygons and Fischer spaces. Geometriae Dedicata, 49(3), 349-368. https://doi.org/10.1007/BF01264034 DOI: 10.1007/BF01264034 Document status and date: Published: 01/01/1994 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Arxiv:1911.10534V3 [Math.AT] 17 Apr 2020 Statement
    THE ANDO-HOPKINS-REZK ORIENTATION IS SURJECTIVE SANATH DEVALAPURKAR Abstract. We show that the map π∗MString ! π∗tmf induced by the Ando-Hopkins-Rezk orientation is surjective. This proves an unpublished claim of Hopkins and Mahowald. We do so by constructing an E1-ring B and a map B ! MString such that the composite B ! MString ! tmf is surjective on homotopy. Applications to differential topology, and in particular to Hirzebruch's prize question, are discussed. 1. Introduction The goal of this paper is to show the following result. Theorem 1.1. The map π∗MString ! π∗tmf induced by the Ando-Hopkins-Rezk orientation is surjective. This integral result was originally stated as [Hop02, Theorem 6.25], but, to the best of our knowledge, no proof has appeared in the literature. In [HM02], Hopkins and Mahowald give a proof sketch of Theorem 1.1 for elements of π∗tmf of Adams-Novikov filtration 0. The analogue of Theorem 1.1 for bo (namely, the statement that the map π∗MSpin ! π∗bo induced by the Atiyah-Bott-Shapiro orientation is surjective) is classical [Mil63]. In Section2, we present (as a warmup) a proof of this surjectivity result for bo via a technique which generalizes to prove Theorem 1.1. We construct an E1-ring A with an E1-map A ! MSpin. The E1-ring A is a particular E1-Thom spectrum whose mod 2 homology is given by the polynomial subalgebra 4 F2[ζ1 ] of the mod 2 dual Steenrod algebra. The Atiyah-Bott-Shapiro orientation MSpin ! bo is an E1-map, and so the composite A ! MSpin ! bo is an E1-map.
    [Show full text]
  • Our Mathematical Universe: I. How the Monster Group Dictates All of Physics
    October, 2011 PROGRESS IN PHYSICS Volume 4 Our Mathematical Universe: I. How the Monster Group Dictates All of Physics Franklin Potter Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646. E-mail: [email protected] A 4th family b’ quark would confirm that our physical Universe is mathematical and is discrete at the Planck scale. I explain how the Fischer-Greiss Monster Group dic- tates the Standard Model of leptons and quarks in discrete 4-D internal symmetry space and, combined with discrete 4-D spacetime, uniquely produces the finite group Weyl E8 x Weyl E8 = “Weyl” SO(9,1). The Monster’s j-invariant function determines mass ratios of the particles in finite binary rotational subgroups of the Standard Model gauge group, dictates Mobius¨ transformations that lead to the conservation laws, and connects interactions to triality, the Leech lattice, and Golay-24 information coding. 1 Introduction 5. Both 4-D spacetime and 4-D internal symmetry space are discrete at the Planck scale, and both spaces can The ultimate idea that our physical Universe is mathematical be telescoped upwards mathematically by icosians to at the fundamental scale has been conjectured for many cen- 8-D spaces that uniquely combine into 10-D discrete turies. In the past, our marginal understanding of the origin spacetime with discrete Weyl E x Weyl E symmetry of the physical rules of the Universe has been peppered with 8 8 (not the E x E Lie group of superstrings/M-theory). huge gaps, but today our increased understanding of funda- 8 8 mental particles promises to eliminate most of those gaps to 6.
    [Show full text]
  • The Moonshine Module for Conway's Group
    Forum of Mathematics, Sigma (2015), Vol. 3, e10, 52 pages 1 doi:10.1017/fms.2015.7 THE MOONSHINE MODULE FOR CONWAY’S GROUP JOHN F. R. DUNCAN and SANDER MACK-CRANE Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA; email: [email protected], [email protected] Received 26 September 2014; accepted 30 April 2015 Abstract We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing constant terms in their Fourier expansion. Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for Conway’s group. The super vertex operator algebra we consider admits a natural characterization, in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra. It also admits a unique canonically twisted module, and the action of the Conway group naturally extends. We prove a special case of generalized moonshine for the Conway group, by showing that the graded trace functions arising from its action on the canonically twisted module are constant in the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero groups otherwise. 2010 Mathematics Subject Classification: 11F11, 11F22, 17B69, 20C34 1. Introduction Taking the upper half-plane H τ C (τ/ > 0 , together with the Poincare´ 2 2 2 2 VD f 2 j = g metric ds y− .dx dy /, we obtain the Poincare´ half-plane model of the D C hyperbolic plane.
    [Show full text]
  • Recent Progress in the Symmetric Generation of Groups, to Appear in the Proceedings of the Conference Groups St Andrews 2009 [28] B
    RECENT PROGRESS IN THE SYMMETRIC GENERATION OF GROUPS BEN FAIRBAIRN Abstract. Many groups possess highly symmetric generating sets that are naturally endowed with an underlying combinatorial struc- ture. Such generating sets can prove to be extremely useful both theoretically in providing new existence proofs for groups and prac- tically by providing succinct means of representing group elements. We give a survey of results obtained in the study of these symmet- ric generating sets. In keeping with earlier surveys on this matter, we emphasize the sporadic simple groups. ADDENDUM: This is an updated version of a survey article orig- inally accepted for inclusion in the proceedings of the 2009 ‘Groups St Andrews’ conference [27]. Since [27] was accepted the author has become aware of other recent work in the subject that we incorporate to provide an updated version here (the most notable addition being the contents of Section 3.4). 1. Introduction This article is concerned with groups that are generated by highly symmetric subsets of their elements: that is to say by subsets of el- ements whose set normalizer within the group they generate acts on them by conjugation in a highly symmetric manner. Rather than inves- tigate the behaviour of known groups we turn this procedure around and ask what groups can be generated by a set of elements that pos- sesses a certain assigned set of symmetries. This enables constructions arXiv:1004.2272v2 [math.GR] 21 Apr 2010 by hand of a number of interesting groups, including many of the spo- radic simple groups. Much of the emphasis of the research project to date has been concerned with using these techniques to construct spo- radic simple groups, and this article will emphasize this important spe- cial case.
    [Show full text]