Marshite and Other Minerals from Chuquicamata, Chile

Total Page:16

File Type:pdf, Size:1020Kb

Marshite and Other Minerals from Chuquicamata, Chile MARSHITE AND OTHER MINERALS FROM CHUQUICAMATA, CHILE O. W. J.tnnnrl,, Haraard. Unitersity, Combrid,ge,Mass. A detailed account of the mineralogy and paragenesisof the copper deposit at Chuquicamata, in the arid Atacama Desert of north Chile, has recently been published by M. C. Bandy (1938). While Dr. Bandy was carrying out his investigation at Harvard University, the present writer was employed as a staff geologist at the mine. During that time and since the publication of Bandy's paper, several additional minerals have been found at Chuquicamata. Of these, salesite, a new mineral, has recently been described (Palache and Jarrell, 1939), and the present paper is intended to list the others, and thus make as complete as possible the description of the mineralogy of this remarkable deposit. M,qnsnnn CuI Marshite, the natural cuprous iodide, was discoveredby C. W. Marsh (1S93)in the oxidized zone of the lead, zinc, and silver deposit at Broken HilI in the arid region of western New South Wales. Spencer and Prior (1901) published a complete description of the crystals from Broken HilI. Aminofr. (1922) has investigated the crystal structure, and various other workers have prepared or studied synthetic material. In 1937, some crystals intimately associated with atacamite were found at the south end of the oxidized ore body at Chuquicamata. Be- cause of their color, isotropic nature, and high index of refraction, they were suspected of being marshite. Dr. Berman later confirmed this identification. Recently Mr. Lester Zeihen of the mine stafi at Chuqui- camata has sent additional specimensto Harvard University. CrystallogropZy. Marshite is isometric hextetrahedral. Professor Pa- lache examined the crystals and found that the principal faces present are the cube (100) and tetrahedron (111), which, due to oscillation, give the crystals a striated appearance, as illustrated in Fig. 1. The zone between the cube and tetrahedron is rounded due to the efiect of tris- tetrahedral faces. Several crystals were measured, one of which yielded definite signals from the two forms m(Il3) and B(223), shown in Fig. 2. The striated zonesgave weak reflectionsfrom other forms, none of which however is assured. Spencer (1901) has commented upon the similarity of the crystallography to that of sphalerite, and Aminoft (1922) has shown the crystal structure of the two minerals to be comparable. 629 O fiT. .TARRELL Physical' properties. The crystals, which range up to several milli- meters across, are transparent and have an adamantine luster. When first found, they are colorlessor light honey-colored. Some of them were kept for about a year at Chuquicamata, and showed no sign of change. Recently, however, some of the crystals that had been kept in darkness at Cambridge, but not protected from the air, have become salmon to reddish colored, although otherwise remaining intact. At the same time other crystals, kept in glass-stoppered bottles, but exposed to light, have remainedcolorless;hence the changeto a reddish color seems.tobe promoted by contact with humid air, rather than by exposure to light.* Frc. 1. Marshite. Frc. 2. Marshite. The streak of the Chuquicamata material is only faint yellow as contrastedwith the bright yellow streak that Spencer(1901) considered so striking. Mr. Zeihen fi.rst reported that marshite was fluorescent. The color under the ultraviolet light is dark red. The average of several determinations of the density on the micro- balance gave a value of 5.68. The density calculated from Aminofi's dimensions for the unit cell is 5.60. A small prism was cut and polished on one of the crystals, and the indices of refraction, shown in Fig. 3, for various wave lengths were determined on the one-circle goniometer by the minimum deviation method with a monochromatic illuminator. The indices are slightly lower than those obtained by Spenceron the Broken Hill material, but this small discrepancy is perhaps explained by the slight difierence in chemical composition of the marshite from the two localities. The ex- ceedingly high dispersion, exceeding that of diamond, is noteworthy. * It has been suggested that the reddish discoloration may be due to a chemical reac- tion with the enclosing paper. This has not, as yet, been verified. MARSHITE FROM CHILE 631 INDEX OF REFRACTION OF MARSH IT E FROM CHUQUICAMATA,CHILE c o t c Wave length Frc. 3 Chemical co?nplsition. The analyses of the Broken Hill arrd Chuqui- camata material, together with the ideal composition of CuI, are given below. Coupostrtor ol Mansrttr tzJ Cu 33.0170 32.35 33.37 r 66.67 65.8.5 66.63 Ag None I.l9 cl 0.33 100.01 99.39 100.00 1. Marshite from Chuquicamata, Chile. F. A. Gonyer, analyst. 2. Marshite from Broken Hill, N.S.W. G. T. Prior, analyst (1902). 3. Ideal composition of CuI. For the analysis of the marshite from Chuquicamata, it was necessary to eliminate numerous tiny crystals of atacamite. This was done with the electromagnet, and before the analysis was made the sample was estimated to contain less than l/6 atacamite. The amount of chlorine present in the analysis would demand abofi 5/6 of atacamite. In addi- tion, the presenceof such a large quantity of atacamite would require more copper and less iodine than the analysis shows, while in its present form the Cu-I ratio of the analysis agreeswell with the ideal composition of CuI. It therefore seemsbest to consider most of the chlorine of the 632 O. W. JARRELL Chuquicamata material to be present in the mineral itself, and not due to mechanically admixed atacamite. Upon heating in the closed tube, purple fumes of iodine are given off, which condensehigher up the tube as purple crystals of iodine. Occurrence.AII the specimens come from the south end of the open pit, within 12 to 24 meters of the original surface. The marshite, with atacamite, Iines fractures in the sericitized and kaolinized granodiorite. In this section of the mine, antlerite, otherwise the principal oxidized copper mineral at Chuquicamata, is not stable. The marshite crystals penetrate the atacamite and perch upon it. Probably the deposition of the minerals was essentially contemporane- ous, although some of the atacamite formed after the marshite. The atacamite does not contain any appreciable amount of iodine, for its indices of refraction are normal, and no iodine is given ofi during heating in a closed tube. It is interesting to note that on several occasionsafter blasting opera- tions, small clouds of purplish smoke, which was shown to contain iodine, have been observed at Chuquicamata. Examination of the rock from which this gas came revealed no visible marshite or salesite.Diesel- dorf (1899) has shown that several copper deposits in the arid portion of New South Wales similarly contain small quantities of iodine, al- though it is not present in sufficient quantities for its mineralogical nature to be recognized. Or-rvBNrrn CugAszOs.Cu(OH)z At rare intervals specimens of olivenite have been found at Chuqui- camata. Excellent crystals were measured by Professor Palache and yielded the forms m(ll}), o(101) and e(011), shown in Fig. 4. The following optical properties were measured on specimens sent by Mr. Zeihen: a:1.780 Biaxial positive p:1.820 2V near90" z:1.865 r<?,, Strong Olivenite, when found here, has always been as small crystals em- bedded in porous aggregatesof a green arsenate, which approximates chenevixite in composition. Occasionally small amounts of an uniden- tified blue arsenate (?) are also present. MARSHITE FROM CHILE 633 In previous descriptions of Chuquicamata, arsenatesare stated to be relatively rare in the oxidized ore. Actually chenevixite is a common mineral in the center of the pit, and is occasionally found elsewhere. Specimensof it and the other arsenates that still contain remnants of enargite show that, where primary enargite is exposed to oxidation, copper arsenateswill form in situ. Frc. 4. Olivenite. LrnBruBrqrrn CusPzOs'Cu(OH)z A few specimens of dark olive-green crystals of libethenite perched on white, extremely kaolinized granodiorite were found on the west side of Bench E-4. This immediate area of kaolinized granodiorite contains suftcient copper to be classifi.edas ore, although most of the rock in the vicinity is iron stained and barren of copper. Professor Palache first recognized the identity of the crystals by crystallographic measure- ments. The crystals show a combination of unit prism zz(110) and unit pyramid s(111)about in the proportionsof Fig. 5. The measurementsare very close to those of crystals from the older known localities: No. of Mean measured angles Calculated faces6pQp {110} 3 46"13', 90'00' 46"10t 90"00' {1111 4 46 16 45 24 46 10 45 23 634 O. W. JARRELL These crystals are apparently the first to be described on which there is no trace of the dome e(011),usually more prominent than the pyramid. The optical properties of the crystals, which agreewell with previously described material are: a:1.702 Biaxial negative F:I.7as 2V: *80" z:1 .785 />?r, strong Frc. 5. Libethenite. With the exception of turquoise, libethenite is the only phosphate so far found in the oxidized ore. rts rare occurrencecan only be regarded as exceptional, and it cannot be fitted into any general paragenetic sequencefor the deposit. DanepsxrrB NaNOs.Na2SO4.H2O Wetzel (1928) briefly noted that darapskite occurred at Chuqui- camata. Actually it is a common mineral in certain zones within a few meters of the surface. The following distinctive optical properties make it easily recognizable in aggregateswith other minerals: a:1.390 Biaxial negative B:r.481 2Y: +25" :r:1.488 /> ?,strong The material available proved to be too intimately admixed with other minerals to permit of separating a pure sample for analysis.
Recommended publications
  • Structure and Composition OXIDATION ZONE
    OXIDATION ZONE Structure and Composition The first scanty information on the oxidation zone of the Rubtsovskoe deposit was obtained as a result of drilling in the early 1970s. Three major subzones were distinguished downward: (1) a leached oxidized ore zone largely composed of iron hydroxides and kaolinite; (2) a secondary oxide enrichment subzone with cuprite, native copper, malachite, azurite, cerus - site; and (3) a secondary sulfide enrichment subzone (that transitions to an underlying zone of mixed ores) with chalcocite and covellite (Stroitelev et al. , 1996). As a result of our observation in underground workings, the structure, min - eralogy, and genetic features of the oxidation zone of the deposit were spec - ified substantially. The top of the orebody is supergene altered to the highest degree at the WSW flank, where it is located higher in altitude. The upper boundary of the orebody gently plunges ENE and the oxidation zone (we do not discuss the mixed ores) gradually pinches out; the oxidation zone extends along the strike of the orebody for approximately 300 m. In the WSW part of the ore - body, the oxidized ores occur in the altitude interval from +137–138 to +163 m. The lower boundary of the oxidized ores rise toward the ESE and the main part of the oxidation zone occurs in the range of +144–145 to +153–157 m. The oxidized part of the orebody varies from 2 to 8 m in thickness, reaching 15–17 m in swells and occasionally more than 20 m. Both underlying and overlapping rocks are dominated by clayey minerals; these are wall-rock argillaceous alterations, frequently altered as a result of ore oxidation especially adjacent to the contact of the orebody.
    [Show full text]
  • 1 Revision 1 Single-Crystal Elastic Properties of Minerals and Related
    Revision 1 Single-Crystal Elastic Properties of Minerals and Related Materials with Cubic Symmetry Thomas S. Duffy Department of Geosciences Princeton University Abstract The single-crystal elastic moduli of minerals and related materials with cubic symmetry have been collected and evaluated. The compiled dataset covers measurements made over an approximately seventy year period and consists of 206 compositions. More than 80% of the database is comprised of silicates, oxides, and halides, and approximately 90% of the entries correspond to one of six crystal structures (garnet, rocksalt, spinel, perovskite, sphalerite, and fluorite). Primary data recorded are the composition of each material, its crystal structure, density, and the three independent nonzero adiabatic elastic moduli (C11, C12, and C44). From these, a variety of additional elastic and acoustic properties are calculated and compiled, including polycrystalline aggregate elastic properties, sound velocities, and anisotropy factors. The database is used to evaluate trends in cubic mineral elasticity through consideration of normalized elastic moduli (Blackman diagrams) and the Cauchy pressure. The elastic anisotropy and auxetic behavior of these materials are also examined. Compilations of single-crystal elastic moduli provide a useful tool for investigation structure-property relationships of minerals. 1 Introduction The elastic moduli are among the most fundamental and important properties of minerals (Anderson et al. 1968). They are central to understanding mechanical behavior and have applications across many disciplines of the geosciences. They control the stress-strain relationship under elastic loading and are relevant to understanding strength, hardness, brittle/ductile behavior, damage tolerance, and mechanical stability. Elastic moduli govern the propagation of elastic waves and hence are essential to the interpretation of seismic data, including seismic anisotropy in the crust and mantle (Bass et al.
    [Show full text]
  • The Albert Silver Mine and Trippkeite Occurrence, Mpumalanga, South Africa
    The Albert silver mine and trippkeite occurrence, Mpumalanga, South Africa Paul M.P.B. Meulenbeld, Department of Water Affairs PO Box 1675 Bronkhorstspruit South Africa, [email protected]. Wiebke Grote, Department of Geology University of Pretoria, Private bag X20 Hatfield, Pretoria 0028, [email protected] Sabine Verryn, XRD Analytical & Consulting, Pretoria, 75 Kafue street Lynnwood Glen, 0081, [email protected] Dr. Paul M.P.B. Meulenbeld is a scientific manager with the Department of Water Affairs, a trained geophysicist and mineral collector. He has a sound knowledge about southern Africa’s mineral deposits and visits abandoned mines in his spare time. One of his last remarkable discoveries was the occurrence of chapmanite at the old Argent silver and lead deposit, Delmas, Mpumalanga, South Africa. Wiebke Grote is responsible for XRD analysis at the Department of Geology, University of Pretoria where prior to this position she was the curator of the geological museum at the same institution. Dr. Sabine Verryn is the owner of XRD Analytical & Consulting. She is the current Vice chair of the Mineralogical Association of South Africa. INTRODUCTION Around 1885 the ore deposit of the Albert Silver mine was discovered and production continued intermittently until 1914 (Robb, Robb, and Walraven 1994). The Albert Silver mine is situated on the farm Roodepoortjie 250JR, north of Bronkhorstspruit, some 80 km east-northeast of Pretoria in Mpumalanga, South Africa (Figure 1) (Robb, Robb, and Walraven 1994). No detailed description of the mine is known to have been published, but a layout plan and a plan indicating the extent of the underground workings (Figure 2), amongst a surface geophysical study of the ore bodies was given by Van Zijl (1965).
    [Show full text]
  • General Index Vols. XLI-L, Third Series
    GENERAL INDEX OF VOLUMES XLI-L OF THE THIRD SERIES. WInthe references to volumes xli to I, only the numerals i to ir we given. NOTE.-The names of mineral8 nre inaerted under the head ol' ~~IBERALB:all ohitllary notices are referred to under OBITUARY. Under the heads BO'PANY,CHK~I~TRY, OEOLO~Y, Roo~s,the refereuces to the topics in these department8 are grouped together; in many cases, the same references appear also elsewhere. Alabama, geological survey, see GEOL. REPORTSand SURVEYS. Abbe, C., atmospheric radiation of Industrial and Scientific Society, heat, iii, 364 ; RIechnnics of the i. 267. Earth's Atmosphere, v, 442. Alnska, expedition to, Russell, ii, 171. Aberration, Rayleigh, iii, 432. Albirnpean studies, Uhler, iv, 333. Absorption by alum, Hutchins, iii, Alps, section of, Rothpletz, vii, 482. 526--. Alternating currents. Bedell and Cre- Absorption fipectra, Julius, v, 254. hore, v, 435 ; reronance analysis, ilcadeiny of Sciences, French, ix, 328. Pupin, viii, 379, 473. academy, National, meeting at Al- Altitudes in the United States, dic- bany, vi, 483: Baltimore, iv, ,504 : tionary of, Gannett, iv. 262. New Haven, viii, 513 ; New York, Alum crystals, anomalies in the ii. 523: Washington, i, 521, iii, growth, JIiers, viii, 350. 441, v, 527, vii, 484, ix, 428. Aluminum, Tvave length of ultra-violet on electrical measurements, ix, lines of, Runge, 1, 71. 236, 316. American Association of Chemists, i, Texas, Transactions, v, 78. 927 . Acoustics, rrsearchesin, RIayer, vii, 1. Geological Society, see GEOL. Acton, E. H., Practical physiology of SOCIETYof AMERICA. plants, ix, 77. Nuseu~nof Sat. Hist., bulletin, Adams, F.
    [Show full text]
  • Mineral Formation on Metallic Copper in A'future Repository Site
    riVI n L no *7 SE9800146 SKI Report 98:7 Mineral Formation on Metallic Copper in a "Future Repository Site Environment": Textural Considerations Based on Natural Analogs Orjan Amcoff January 1998 ISSN 1104-1374 ISRN SKI-R-9/7-SE • / STATENS KARNKRAFTINSPEKTION v;"- Swedish Nuclear Power Inspectorate SKI Report 98:7 Mineral Formation on Metallic Copper in a "Future Repository Site Environment7': Textural Considerations Based on Natural Analogs Orjan Amcoff University of Uppsala, Institute of Earth Sciences, Norbyvagen 18B, SE-752 36 Uppsala, Sweden January 1998 SKI Project Number 95112 This report concerns a study which has been conducted for the Swedish Nuclear Powei Inspectorate (SKI). The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the SKI. Norstedts Tryckeri AB Stockholm 1998 TABLE OF CONTENTS 1 INTRODUCTION 4 2 ORE MINERAL TEXTURES 5 2.1 GENERAL 5 2.2 SPECIFIC TEXTURES 6 2.2.1 The eutectoid texture 6 2.2.2 Exsolution textures 7 2.2.3 Textures formed during growth of new minerals in a pre-existing rock matrix 8 2.2.4 Dendritic textures 10 2.3 SPECIFIC TEXTURES IN THE LOW-TEMPERATURE ENVIRONMENT 11 2.4 SPECIFIC MINERAL TEXTURES 12 2.4.1 Native copper 13 2.4.2 Chalcocite 13 2.4.3 Bornite 14 2.4.4 Covellite 14 2.4.5 Chalcopyrite 15 2.4.6 Bornite 15 2.4.7 Tenorite 15 2.4.8 Malachite and Azurite 16 3 LOW-TEMPERATURE COPPER ORE DEPOSITS 16 3.1 FORMATION OF ORE MINERALS: GENERAL PRINCIPLES 16 3.2 DEPOSITS WITH NATIVE COPPER 18 3.2.1 Low-temperature primary sulphide ores of the Red Bed type 21 4 DISCUSSION 23 4.1 NATURAL ANALOGS 23 4.2 COPPER-MINERAL INTERACTIONS ON THE CANISTERS: TEXTURAL AND CHEMICAL CONSIDERATIONS 25 4.2.1 Halogens in copper phases at the repository 30 5 CONCLUDING REMARKS 30 6 REFERENCES 33 7 FIGURE LEGENDS 38 SUMMARY.
    [Show full text]
  • Densitie @F Minerals , and ~Ela I Ed
    Selecte,d , ~-ray . ( I Crystallo ~raphic Data Molar· v~ lumes,.and ~ Densitie @f Minerals , and ~ela i ed. Substances , GEO ,LOGICAL ~"l!JRVEY BULLETIN 1248 I ' " \ f • . J ( \ ' ' Se Iecte d .L\.-ray~~~T Crystallo:~~raphic Data Molar v·olumes, and Densities of Minerals and Related Substances By RICHARD A. ROBIE, PHILIP M. BETHKE, and KEITH M. BEARDSLEY GEOLOGICAL SURVEY BULLETIN 1248 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 67-276 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 3 5 cents (paper cover) OC)NTENTS Page Acknowledgments ________ ·-·· ·- _____________ -· ___ __ __ __ __ __ _ _ __ __ __ _ _ _ IV Abstract___________________________________________________________ 1 Introduction______________________________________________________ 1 Arrangement of data _______ .. ________________________________________ 2 X-ray crystallographic data of minerals________________________________ 4 Molar volumes and densities. of minerals_______________________________ 42 References_________________________________________________________ 73 III ACKNOWLEDGMENTS We wish to acknowledge the help given in the preparation of these tables by our colleagues at the U.S. Geological Survey, particularly Mrs. Martha S. Toulmin who aided greatly in compiling and checking the unit-cell parameters of the sulfides and related minerals and Jerry L. Edwards who checked most of the other data and prepared the bibliography. Wayne Buehrer wrote the computer program for the calculation of the cell volumes, molar volumes, and densities. We especially wish to thank Ernest L. Dixon who wrote the control programs for the photo composing machine. IV SELECTED X-RAY CRYSTALLOGRAPHIC DATA, MOLAR VOLUMES, AND DENSITIES OF !'.IINERALS AND RELATED SUBSTANCES By RICHARD A.
    [Show full text]
  • Download the Scanned
    INDEX TO VOLUME 24 Leading articles are in bold face type; notes, abstracts and reviews are in ordinary type. Only minerals for which definite data are siven are indexed. Abukumalite(ShinHata)....... 66 Brandenberger, E. Angewandte Adinolesof D.inasHead, Cornwall. Kristallstrukturlehre. IBook (Agrell). 63 review] 276 Agrell,S. O.. 63 Bray, J. M. Ilmenite-hematite- Alderman, A 277 magnetite relations in some Allen,V. T.. 194 emery ores. 162,183 Alurgite from California, new oc- Brochantite. (Palache,Richmond) 463 currenceof. (Webb). I z.t Brunckite. (Herzenberg) 350 Ammonium mica synthesized from Buerger,M. J. Crystal structure of vermiculite. (Gruner) 428 gudmundite.. 183 Anderson,B. W... 528 Bullard, F. M. Rosebudmeteorite, AngewandteKristallstrukturleh re. Milam Co., Texas 184,242 (Brandenberger)[Book review] 276 Burns,B. D. 528 Antlerite. (Palache). 293 Apatite, fluorescent,from Center Calcite,Fe-Mn. (Yosimura). 660 Strafford, N. Hamp. (Stewart) 274 Caledonite. (Palache, Richmond) 441 Australitesof unusualform. (Single- Canyon Diablo iron, identification ton). 63 of diamond in. (Ksanda, Awariute.(Owens, Burns). 528 Henderson).... 677 CesAro,G..... 280 "Baddelyite" from Alno-an error. Chao,S.H...... 277 (vonEckermann). 528 Chemicalanalyses of minerals,pres- Bannister,F. A. ....64,66 entationof. (Hey). 347 Barksdale, J. D. Silicified wood in Chlorite veins in serpentine near dolomite. .. ..181,699 Kings River, Calif. (Durrell, Bavenite,ne\\r occurrence of. (Clar- Macdonald). 452 ingbull). 277 Chrysoberyl occurrence near Behre,C. H., Jr. 181 Golden, Colo. (Waldschmidt, Beliankin,D. S.. 279 Gaines). 193,267 Bell,J. F. 181 Cinnabar,darkening of, in sunlight. Berman, H. Torsion microbalance (Dreyer).. +57 for determining specific grav- Claringbull,G. F.. 277,347 ity of minerals 182,434 Clay, Hawaiian ceramic, mineral -- and Gonyer, F, A.
    [Show full text]
  • Download Full Article 875.8KB .Pdf File
    Memoirs of the National Museum of Victoria 18 May 1970 https://doi.org/10.24199/j.mmv.1970.31.01 GROWTH OF THE MINERAL, ROCK, METEORITE AND TEKTITE COLLECTIONS IN THE NATIONAL MUSEUM OF VICTORIA By A. W. Beasley Curator of Minerals, National Museum of Victoria Abstract The rate of growth of the Collections has varied considerably during different periods since the Museum was founded 115 years ago. Growth was rapid during the period when the first Director, Professor McCoy, made numerous purchases of overseas minerals and rocks. When there was no full-time Curator of the Collections, and during periods when there was no Curator, the rate of growth was generally slow and erratic. The Collections began to increase markedly in size and importance following the appointment of a full-time Curator in 1946, and this increase has been maintained to the present time. Beneficial results also followed the appointment of Honorary Associates in Mineralogy, and through them many hundreds of specimens have been donated. During the past 115 years large numbers of speci- mens have been amassed, and the collection of overseas minerals and rocks is the most ex- tensive in an Australian museum. Much information is recorded for the first time, and references are given to publications associated with this historical research. As the Collections of minerals, rocks, meteorites and tektites have grown they have been arranged more systematically, and greater use has been made of them by the general public, students and research workers. This increase in use of the Collections is continuing and may be related to greater interest, particularly in economic geology, planetary science, gemmology and lapidary.
    [Show full text]
  • ( 12 ) United States Patent
    US010208241B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 ,208 ,241 B2 Agrawal et al. ( 45 ) Date of Patent: Feb . 19 , 2019 ( 54 ) RESIN COATED PROPPANTS WITH ( 58 ) Field of Classification Search ANTIMICROBIAL ADDITIVES None See application file for complete search history . (71 ) Applicant : Agienic Inc (72 ) Inventors: Anoop Agrawal, Tucson , AZ ( US ) ; ( 56 ) References Cited Donald R . Uhlmann , Tucson , AZ (US ) ; Nicholas R . Krasnow , Tucson , AZ U . S . PATENT DOCUMENTS ( US ) 4 ,978 , 527 A 12 / 1990 Brink et al. 5 , 180 ,585 A 1/ 1993 Jacobson et al. ( 73 ) Assignee : Agienic , Inc. , Tucson , AZ ( US ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U . S . C . 154 (b ) by 0 days . CA 2735793 AL 3 / 2010 CA 2746980 AL 7 / 2010 (21 ) Appl. No. : 15 / 154 ,458 (Continued ) (22 ) Filed : May 13, 2016 OTHER PUBLICATIONS (65 ) Prior Publication Data US Silica, “ 40 /70 US Silica WhiteTM ” © 2014 U . S . Silica Com US 2016 / 0251571 A1 Sep . 1 , 2016 pany, p . 1 - 2 . * (Continued ) Related U . S . Application Data (63 ) Continuation - in - part of application No . 14 / 866 , 400 , Primary Examiner - Monica A Shin filed on Sep . 25 , 2015 , now abandoned , which is a ( 74 ) Attorney , Agent, or Firm — Rothwell, Figg , Ernst & ( Continued ) Manbeck , P . C . (51 ) Int. Ci. CO9K 8 /80 ( 2006 .01 ) ( 57 ) ABSTRACT CO9K 8 / 60 ( 2006 .01 ) Proppants are used in oil and gas extraction , particularly in (Continued ) fracking operations . The invention relates to resin coated ( 52 ) U . S . CI. proppants . The coatings on proppants have antimicrobial CPC CO9K 8 /805 (2013 .
    [Show full text]
  • NEW ACQUISITIONS to the FERSMAN MINERALOGICAL MUSEUM RAS: the REVIEW for 2009–2010 Dmitriy I
    New Data on Minerals. 2011. Vol. 46 139 NEW ACQUISITIONS TO THE FERSMAN MINERALOGICAL MUSEUM RAS: THE REVIEW FOR 2009–2010 Dmitriy I. Belakovskiy Fersman Mineralogical Museum, RAS, Moscow, [email protected] In 2009–2010 to the main collection of the Fersman Mineralogical museum RAS were acquired 840 specimens of minerals, meteorites, tectites, stone artpieces etc. The systematic collection was replenished with 339 mineral species including 90 new mineral species for the Museum, 42 of which are represented by the type specimens (holotypes, co-types and their fragments). 5 of them were discovered with help of the Museum researchers. Two species were discovered in the specimens from the Museum collection. Geography of acquisitions includes 62 countries and also extraterrestrial objects. More than 77% of all the acquisitions were donated by 105 private per- sons and 2 organizations. Museum collecting resulted in slightly over 12% of acquisitions; 6,5% arrived from an exchange and 3% was purchased. Less than 2% is represented by another types of acquisitions. In this paper, the new acquisitions are described by mineral species, geography, acquisition type and donors. The list of the new acquisitions is given. 2 tables, 19 photographs, 6 references. Keywords: new arrivals, Mineralogical museum, collection, minerals, meteorites, donors. In 2009–2010 period 840 items were acquired from the authors of description. Five added to the main collections of the Fersman of these mineral species were discovered in Mineralogical museum RAS. The majority of collaboration with the Museum staff. Two them (480 items) was cataloged to the system- new mineral species, pertsevite-OH and atic collection, 156 specimens – to the cбmaraite, were discovered on the specimens deposits collection, 108 – to the collection of from the Museum collection.
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Anderson, C., 1920. Mineralogical notes no. x. Beryl. Torrington, N. S. Wales. Records of the Australian Museum 13(1): 1–32. [16 March 1920]. doi:10.3853/j.0067-1975.13.1920.853 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia MINERALOGICAL NOTES: No. X. BY C. ANDI!:RSON, M.A., D.Se., Mineralogist, Australian Museum. (Plates i.-viii.). BERYL. Torrington, N.S.Wales. (PIs. i., ii.) Beryl is a fairly common mineral in the granite area of New England, occurring both in situ. and, more frequently, as rolled crystals and fragments in alluvial deposits. Fine crystals, some of considerable size, have been found in the Torrington district, and in a previous paperl crystals from Hefl'ernan's Mine in this locality have been described and figured. 'fhe crystals measured up to 6 X 5 cm. and were verY13imple consisting merely of the prism "Ill (1010) and the ba,se (0001); recently choice crystals of greater complexity have been obtained from this mine and others in the vicinity, and are here described. All interesting feature of some of the crystals is the curious markings they exhibit, particularly on the basal plane. The zonal and parallel growth .shown by many of them is also instructive aud may afl'ord a clue to the conditions under whioh they were formed.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    E^l Admin. NBS MONOGRAPH 25—SECTION 5 Refecii^M not to be ^ferlrom the library. Standard X-ray Diffraction Powder Patterns ^\ / U.S. DEPARTMENT OF COMMERCE S NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics— -Laboratory Astrophysics^—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce.
    [Show full text]