Paracentrotus Lividus Sea Urchin, and of a SubAntarctic Species, Arbacia Dufresnei

Total Page:16

File Type:pdf, Size:1020Kb

Paracentrotus Lividus Sea Urchin, and of a Sub�Antarctic Species, Arbacia Dufresnei UNIVERSITÉ LIBRE DE BRUXELLES Faculté des Sciences Département de Biologie des Organismes Laboratoire de Biologie Marine Temperate and cold water sea urchin species in an acidifying world: coping with change? Ana Isabel DOS RAMOS CATARINO Thèse présentée en vue de l’obtention du titre de Docteur en Sciences Juin 2011 Promoteurs de thèse (ULB) Dr Philippe Dubois Dr Chantal De Ridder UNIVERSITÉ LIBRE DE BRUXELLES Faculté des Sciences Département de Biologie des Organismes Laboratoire de Biologie Marine Temperate and cold water sea urchin species in an acidifying world: coping with change? Ana Isabel DOS RAMOS CATARINO Thèse présentée en vue de l’obtention du titre de Docteur en Sciences Juin 2011 Promoteurs de thèse (ULB) Dr Philippe Dubois Dr Chantal De Ridder Comité de lecture Dr Lei Chou (ULB) Dr Philippe Grosjean (UMons) Dr Guy Josens (ULB) Dr Denis Allemand (Centre Scientifique de Monaco) ACKNOWLEDGMENTS It all started some years ago: the Belgian adventure. Moving to another country, enrolling in changeling projects, meeting new colleagues and friends was a challenging step. It has been a pleasure to meet, to work and to learn from you all. I would like to start by thanking Prof. Michel Jangoux. Your knowledge and experience inspired me to start this adventure. It was still in Portugal that I came across with some of your work and that was how the idea “to leave” and come here was born. Your passion for these interesting little creatures, the echinoderms, has been of great inspiration for my research. I wish to express my sincerest thanks to my supervisor, Philippe Dubois... or should I say, “thankful am I”! During these years you provided encouragement, sound advice and good company. Your guidance, accuracy, knowledge and patience kept me on the right path. You were not only a great advisor, but also a good and supportive friend. Thank you for trusting in me and for always keeping me looking on the bright side of... science ( ♪). I would also like to thank my co-supervisor, Chantal De Ridder. I am grateful for the motivating discussions and collaborations. You always had a positive attitude whenever I came around with questions and it was a pleasure to work together. I am also grateful to Dr. Lei Chou (ULB) and Dr. Philippe Grosjean (UMons), from my graduate committee. Your guidance and advice was precious and helped me structuring my ideas and work. I am also thankful to all the BIANZO, MRAC, Erasme Hospital and Liège University collaborators. Working with you was gratifying and your expertise greatly improved my work. A special acknowledgement to Prof. Luc André and N. Dahkani (Royal Museum for Central Africa), Prof. Philippe Compère (Université de Liège ) and Dr. De Bruyn (Hôpital Erasme). I am grateful to the research groups that hosted me both in Chile and in Croatia. I was warmly welcomed and it was a pleasure to work in these two beautiful places. A special thank you to the INACH (Instituto Antártico Chileno) research group, especially to Dr. Marcelo Gonzalez, Carla, Geraldine and Tania. Also to Emma, Carlos, César and to all the new good friends I made in Punta Arenas. I am grateful to the Laredo personnel, in particular to Dr. Pablo Gallardo. Also, to all the Ruđer Bošković Institute (Croatia) research group a big thank you, especially to Prof. Davorin Medakovic, Dr. Daniel Lyons, Dr. B. Hamer and to sweet Adriana. I am grateful for technical and theoretical advice to Prof Fred Mackenzie (University of Hawaii at Manoa), Dr. Alberto Borges (Université de Liège), Dr. Jerome Harlay (ULB), Dr. Caroline De Bodt (ULB), Dr. Pol Gosselin (UMons), Dr. Bruno Danis (Royal Belgian Institute of Natural Sciences), Prof. Maria Byrne (University of Sydney), Prof. N. Heisler (H- U Berlin), Prof. J. Rohlf (Stony Brooks University), Prof. P. Doncaster (University of Southampton) and Prof. J. H. McDonald (University of Delaware), Dr. N. (Ameziane, Muséum National d’Histoire Naturelle, Paris), Dr. D. Néraudeau (Université de Rennes). Un très grand merci à toute l’équipe de BIOMAR. To Edith and Saloua, Mathieu and Philippe P., Thierry and now also to Jorge, Viviane, a big big THANK YOU! Your work and concern were priceless! Virginie, Laure, Thomas, Marie. It has been a pleasure to collaborate with you. Believe me when I say that I have learned a lot from you. And that it is a great pleasure to see Laure and Marie continuing in the group. I am also grateful to Lindsay and David for their help. Colin, Gauthier, Bea, Catherine, Bruno... It was a pleasure to meet great professionals, always seeking a good opportunity... to have a “scientific” chat! The lab was surely livelier with you. A special acknowledgement to the girls from the Biomineralization- Climate-Change-Ocean-Acidification-PhD-Gang! Claire, Julie, Steph, you were amazing! Thank you ever so much for answering all my questions, for the debates, for the lunch and tea time chats. Of course this thesis would not have been possible without the.... (wait for it).... LEGENDARY Article-Portuguese-Mafia! Caros amigos mafiosos e traficantes de saber, β, Rui, Ju e Super Mário, não há nada melhor do que networking. Se algum dia precisarem seja do que for, seja (a)onde for, basta um email e eu estarei do outro lado para vos fornecer um qualquer “papel” sobre assuntos obscuros, mas de extremo interesse para O bem maior: a Ciência! I am also grateful to the last minute “reviewers” and “advisers” of this thesis! Thank you Bea, Claire, Mathieu, Ju, Namita and Nikos. Finally I am deeply grateful to my friends and family! What would I have done without you?!?!? My friends, B-expats and some other expats all over the world, thank you for your time. I usually don’t blabber much about work (thank God, right?), but the social and human part definitely helped me balancing the other half of my life. Um abraço apertado ao Gang Tuga de Bruxelas e um beijinho às Bioloucas Ju, Joaninha e β. To my Parents and my Brother André! Vocês são pessoas extraordinárias. Além de terem sido em muitos momentos uma ajuda vital, foram os grandes incentivadores desta aventura! Foi o vosso exemplo de perseverança, trabalho árduo e coragem que em muitas ocasiões me serviu de bússola e me guiou. Pai e Mãe, obrigada por todas as oportunidades que me proporcionaram ao longo dos tempos e que me levaram a chegar aqui. Devo-vos tudo e por isso estou profundamente agradecida! To Nikos. Who heroically dealt with my bad moods during the hardest times. Thank you for being by my side, always! I would also like to thank Brussels, yeah... the city! Brussels and I had a tough start. The lack of sun is not something easy to deal with. Still, Brussels has an affectionate and caring side. You won’t find this much diversity and easygoing life in many other places around the world. You need to have a couple of beers with Brussels, date Brussels, fall in love with Brussels, and then this small, intense and crazy city will slowly conquer your heart and eventually will become home. There are not enough words to thank all the people that helped me building this project. To all that believed in me, motivated me, shared their knowledge with me, guided me, listened to me and took care of me: thank you, gracias, dank u wel, obrigada, hvala vam, merci, ευχαριστώ. Summary SUMMARY Anthropogenic carbon dioxide (CO 2) emissions are increasing the atmospheric CO 2 concentration and the oceans are absorbing around 1/3 them. The CO 2 hydrolysis increases + - 2- the H concentration, decreasing the pH, while the proportions of the HCO 3 and CO 3 ions are also affected. This process already led to a decrease of 0.1 pH units in surface seawater. According to "business-as-usual" models, provided by the Intergovernmental Panel on Climate Change (IPCC), the pH is expected to decrease 0.3-0.5 units by 2100 and 0.7-0.8 by 2300. As a result the surface ocean carbonates chemistry will also change: with increasing pCO 2, dissolved inorganic carbon will increase and the equilibrium of the carbonate system – 2– will shift to higher CO 2 and HCO 3 levels, while CO 3 concentration will decrease. Surface seawaters will progressively become less saturated towards calcite and aragonite saturation state and some particular polar and cold water regions could even become completely undersaturated within the next 50 years. Responses of marine organisms to environmental hypercapnia, i.e. to an excess of CO 2 in the aquatic environment, can be extremely variable and the degree of sensitivity varies between species and life stages. Sea urchins are key stone species in many marine ecosystems. They are considered to be particularly vulnerable to ocean acidification effects not only due to the nature of their skeleton (magnesium calcite) whose solubility is similar or higher than that of aragonite, but also because they lack an efficient ion regulatory machinery, being therefore considered poor acid-base regulators. Populations from polar regions are expected to be at an even higher risk since the carbonate chemical changes in surface ocean waters are happening there at a faster rate. The goal of this work was to study the effects of low seawater pH exposure of different life stages of sea urchins, in order to better understand how species from different environments and/or geographic origins would respond and if there would be scope for possible adaptation and/or acclimatization. In a first stage we investigated the effects of ocean acidification on the early stages of an intertidal species from temperate regions, the Atlantic Paracentrotus lividus sea urchin, and of a sub-Antarctic species, Arbacia dufresnei .
Recommended publications
  • Asociación a Sustratos De Los Erizos Regulares (Echinodermata: Echinoidea) En La Laguna Arrecifal De Isla Verde, Veracruz, México
    Asociación a sustratos de los erizos regulares (Echinodermata: Echinoidea) en la laguna arrecifal de Isla Verde, Veracruz, México E.V. Celaya-Hernández, F.A. Solís-Marín, A. Laguarda-Figueras., A. de la L. Durán-González & T. Ruiz Rodríguez Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM), Apdo. Post. 70-305, México D.F. 04510, México; e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] Recibido 15-VIII-2007. Corregido 06-V-2008. Aceptado 17-IX-2008. Abstract: Regular sea urchins substrate association (Echinodermata: Echinoidea) on Isla Verde lagoon reef, Veracruz, Mexico. The diversity, abundance, distribution and substrate association of the regular sea urchins found at the South part of Isla Verde lagoon reef, Veracruz, Mexico is presented. Four field sampling trips where made between October, 2000 and October, 2002. One sampling quadrant (23 716 m2) the more representative, where selected in the southwest zone of the lagoon reef, but other sampling sites where choose in order to cover the south part of the reef lagoon. The species found were: Eucidaris tribuloides tribuloides, Diadema antillarum, Centrostephanus longispinus rubicingulus, Echinometra lucunter lucunter, Echinometra viridis, Lytechinus variegatus and Tripneustes ventricosus. The relation analysis between the density of the echi- noids species found in the study area and the type of substrate was made using the Canonical Correspondence Analysis (CCA). The substrates types considerate in the analysis where: coral-rocks, rocks, rocks-sand, and sand and Thalassia testudinum.
    [Show full text]
  • The Role of Body Size in Complex Food Webs: a Cold Case
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.
    [Show full text]
  • Elpidia Soyoae, a New Species of Deep-Sea Holothurian (Echinodermata) from the Japan Trench Area
    Species Diversity 25: 153–162 Published online 7 August 2020 DOI: 10.12782/specdiv.25.153 Elpidia soyoae, a New Species of Deep-sea Holothurian (Echinodermata) from the Japan Trench Area Akito Ogawa1,2,4, Takami Morita3 and Toshihiko Fujita1,2 1 Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan E-mail: [email protected] 2 Department of Zoology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan 3 National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan 4 Corresponding author (Received 23 October 2019; Accepted 28 May 2020) http://zoobank.org/00B865F7-1923-4F75-9075-14CB51A96782 A new species of holothurian, Elpidia soyoae sp. nov., is described from the Japan Trench area, at depths of 3570– 4145 m. It is distinguished from its congeners in having: four or five paired papillae and unpaired papillae present along entire dorsal radii (four to seven papillae on each radius), with wide separation between second and third paired papillae; maximum length of Elpidia-type ossicles in dorsal body wall exceeds 1000 µm; axis diameter of dorsal Elpidia-type ossicles less than 40 µm; tentacle Elpidia-type ossicles with arched axis and shortened, occasionally completely reduced arms and apophyses. Purple pigmentation spots composed of small purple particles on both dorsal and ventral body wall. This is the second species of Elpidia Théel, 1876 from Japanese abyssal depths. The diagnosis of the genus Elpidia is modified to distin- guish from all other elpidiid genera.
    [Show full text]
  • Distribution and Abundance Patterns of Echinoderms in the Fjord and Channel Complex from a Subantarctic North Patagonian Ice Field, Magellan Region
    Distribution and abundance patterns of echinoderms in the fjord and channel complex from a subantarctic north Patagonian Ice field, Magellan region Erika Mutschke1, Dieter Gerdes2 & Carlos Ríos1 1. Laboratorio de Hidrobiología, Instituto de la Patagonia, Universidad de Magallanes, Av Bulnes 01855, P.O. Box 113-D. Punta Arenas, Chile; [email protected] 2. Alfred Wegener Institut. Helmholtz-Zentrum für Polar und Meeresforschung. Columbusstr. 27570 Bremerhaven, Germany. Received 26-IV-2017. Corrected 15-V-2017. Accepted 25-VI-2017. Abstract: The existence of latitudinal marine biodiversity gradients from low to high-southern latitudes is a controversial issue regarding the marine biogeographic division in the Southeastern Pacific. In this region, the Northern Patagonian Icefield is considered a break point for faunistic elements derived from more northern or southern biogeographical realms. However, the division seems to be better defined by distribution patterns and endemism of specific marine taxa. There have been no exhaustive latitudinal benthic inventories compiled along the southern-eastern Pacific Chilean coastline. This study focuses on the spatial distribution variability and relative abundance of the sublittoral echinoderm assemblages and uses them to establish an evaluation of zoogeographic relationship in the Southeastern Pacific and Atlantic Oceans. This is the first time echinoderms have been used for this purpose. A total 3 665 echinoderm specimens were collected in two cruises. Within this organism pool, 29 species were distinguished, belonging to the asteroids (17 species), echinoids (6 species), ophiuroids (4 species) and holothurians (2 species); crinoids were not found. The dominant species were the asteroid Ctenodiscus procurator, the echinoid Pseudechinus magellanicus, the ophiuroid Ophiuroglypha lymani, and the irregular sea urchin Tripylaster philippii.
    [Show full text]
  • Deep–Sea Research I
    Deep–Sea Research Part I 122 (2017) 81–94 Contents lists available at ScienceDirect Deep–Sea Research I journal homepage: www.elsevier.com/locate/dsri Dynamic benthic megafaunal communities: Assessing temporal variations MARK in structure, composition and diversity at the Arctic deep-sea observatory HAUSGARTEN between 2004 and 2015 ⁎ J. Taylor , T. Krumpen, T. Soltwedel, J. Gutt, M. Bergmann Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar‐ und Meeresforschung, Am Handelshafen 12, D-27570 Bremerhaven, Germany ARTICLE INFO ABSTRACT Keywords: Established in the Fram Strait in 1999, the LTER (Long-Term Ecological Research) observatory HAUSGARTEN Arctic enables us to study ecological changes on the deep Arctic seafloor. Repeated deployments of a towed camera Deep sea system (Ocean Floor Observation System) along the same tracks allowed us to build a time series longer than a Image analysis decade (2004–2015). Here, we present the first time-series results from a northern and the southernmost Epibenthic megafauna station of the observatory (N3 and S3, ~2650 m and 2350 m depth respectively) obtained via the analysis of still Long-term ecological research imagery. We assess temporal variability in community structure, megafaunal densities and diversity, and use a Photo/video system Time series range of biotic factors, environmental sediment parameters and habitat features to explain the patterns observed. There were significant temporal differences in megafaunal abundances, diversity and habitat features at both stations. A particularly high increase in megafaunal abundance was recorded at N3 from 12.08 ( ± 0.39; 2004) individuals m−2 to 35.21 ( ± 0.97; 2007) ind. m−2 alongside a ten-fold increase in (drop-)stones.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 15: 135–144, 2012 AQUATIC BIOLOGY Published May 15 doi: 10.3354/ab00410 Aquat Biol Green sea urchins structure invertebrate and macroalgal communities in the Magellan Strait, southern Chile Emma M. Newcombe1,2,4, César A. Cárdenas2,3,*, Shane W. Geange3 1Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile 2Centro de Estudios del Cuaternario (CEQUA), 21 de Mayo 1690, Punta Arenas, Chile 3School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand 4Present address: Cawthron Institute, Nelson 7010, New Zealand ABSTRACT: Although sea urchins play a central role in determining the structure and functioning of macroalgal communities in many parts of the world, past research in southern Chile has failed to identify strong effects of urchin grazing, despite the prevalence of coralline-dominated commu- nities and abundant urchins, which indicate a likely structuring role for urchins. Here, we con- ducted experimental removals of the most common urchin, the green sea urchin Arbacia dufres- nii, on a single bedrock wall in the Magellan Strait, Chile. We monitored the responses of invertebrate and macroalgal communities relative to a control wall 6 times over 64 wk. The struc- ture of macroalgal communities on each wall remained similar until more than 40 wk after urchin removal, at which time the community structure diverged, with significantly more macroalgae present on the urchin removal wall. These changes coincided with the onset of early summer and were likely driven by greater settlement, recruitment and growth of algae in the absence of urchins. After 64 wk, the abundance of chitons, bryozoans, mussels and the small bivalve Hiatella solida was also significantly greater on the urchin removal wall.
    [Show full text]
  • Photoperiod in Aquaculture of the Sea Urchin Arbacia Dufresnii (Echinodermata: Echinoidea): Effects on Gamete Production and Maturity
    Sepúlveda, L.R., Fernandez, J.P., Vera-Piombo, M., Chaar, F.B., & Rubilar, T. (2021). Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity. Revista de Biología Tropical, 69(S1), 464- 473. DOI 10.15517/rbt.v69iSuppl.1.46386 DOI 10.15517/rbt.v69iSuppl.1.46386 Photoperiod in aquaculture of the sea urchin Arbacia dufresnii (Echinodermata: Echinoidea): Effects on gamete production and maturity Lucas R. Sepúlveda1,2 Jimena Pía Fernandez1,2 Mercedes Vera-Piombo1,2 Florencia Belén Chaar2,3 Tamara Rubilar 1,2* 1. Biological Oceanography Laboratory, Centro para el Estudio de Sistemas Marinos, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Bv. Alte. Brown 2915, Puerto Madryn, Argentina; [email protected], [email protected], [email protected] 2. Laboratory of Chemistry of Marine Organisms. Instituto Patagónico el Mar. Faculty of Natural Sciences and Health Sciences. National University of Patagonia San Juan Bosco. Puerto Madryn. Argentina; [email protected] (*Correspondence). 3. National University of Patagonia San Juan Bosco, Bv. Alte. Brown 3051, Puerto Madryn, Argentina; [email protected] Received 17-VII-2020. Corrected 25-VIII-2020. Accepted 05-X-2020. ABSTRACT Introduction: Photoperiod is, together with temperature and food availability, one of the main stimuli in the regulation of gametogenesis in a wide variety of species. Objective: To evaluate the effect of photoperiod on the production of mature gametes in cultured Arbacia dufresnii. Methods: An experiment was carried out with three varying light-dark regimes/treatments: constant light (24 h light), neutral photoperiod (12 h light, 12 h darkness), and constant darkness (24 h darkness).
    [Show full text]
  • Guide to Theecological Systemsof Puerto Rico
    United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299.
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2010
    Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O.
    [Show full text]
  • Friends of Echinoderm, NA
    Northeast Gulf Science Volume 11 Article 10 Number 1 Number 1 7-1990 Proceedings of the "Friends of Echinoderm, N.A." June 1-2 1989, Dauphin Island, Alabama DOI: 10.18785/negs.1101.10 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation 1990. Proceedings of the "Friends of Echinoderm, N.A." June 1-2 1989, Dauphin Island, Alabama. Northeast Gulf Science 11 (1). Retrieved from https://aquila.usm.edu/goms/vol11/iss1/10 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. et al.: Proceedings of the "Friends of Echinoderm, N.A." June 1-2 1989, D Northeast Gulf Science Vol. 11, No. 1 July 1990 p. 79·92 PROCEEDINGS OF THE "FRIENDS OF ECHINODERM, N.A." JUNE 1·2, 1989 DAUPHIN ISLAND, ALABAMA In June 1989, approximately 75 scientist, whose research is based on some aspect of the biology of echinoderms, met to discuss current research efforts and present findings. The meeting attracted participants from as far away as California, Canada, Japan, Puerto Rico and the northeast U.S. This meeting will become an annual event to be held during the year before the triannual "International Echino­ derm Conference" which meets in Japan during 1990. The next meeting for the North American group will be in 1992 at the University of California at Santa Cruz, and hosted by Dr.
    [Show full text]
  • Rostocker Meeresbiologische Beiträge
    Rostocker Meeresbiologische Beiträge Beiträge Zum Rostocker Forschungstauchersymposium 2019 Heft 30 Universität Rostock Institut für Biowissenschaften 2020 HERAUSGEBER DIESES HEFTES: Hendrik Schubert REDAKTION: Dirk Schories Gerd Niedzwiedz Hendrik Schubert HERSTELLUNG DER DRUCKVORLAGE: Christian Porsche CIP-KURZTITELAUFNAHME Rostocker Meeresbiologische Beiträge. Universität Rostock, Institut für Biowissenschaften. – Rostock, 2020. – 136 S. (Rostocker Meeresbiologische Beiträge; 30) ISSN 0943-822X © Universität Rostock, Institut für Biowissenschaften, 18051 Rostock REDAKTIONSADRESSE: Universität Rostock Institut für Biowissenschaften 18051 Rostock e-mail: [email protected] Tel. 0381 / 498-6071 Fax. 0381 / 498-6072 BEZUGSMÖGLICHKEITEN: Universität Rostock Universitätsbibliothek, Schriftentausch 18051 Rostock e-mail: [email protected] DRUCK: Druckerei Kühne & Partner GmbH & Co KG Umschlagfoto Titel: Unterwasseraufnahmen und Abbildung des Riffs in Nienhagen, [Uwe Friedrich, style-kueste.de] Rückseite: Gruppenbild der Forschungstauchertagung [Thomas Rahr, Universität Rostock, ITMZ] 2 Inhalt Seite FISCHER, P. 5 Vorwort NIEDZWIEDZ, G. 7 25 Jahre Forschungstaucherausbildung in Rostock – eine Geschichte mit langer Vorgeschichte VAN LAAK, U. 39 Der Tauchunfall als misslungene Prävention: Ergebnisse aus der DAN Europe Feldforschung MOHR, T. 51 Überblick zum Forschungsprojekt „Riffe in der Ostsee“ NIEDZWIEDZ, G. & SCHORIES, D. 65 Georeferenzierung von Unterwasserdaten: Iststand und Perspektiven SCHORIES, D. 81 Ein kurzer Ausschnitt über wissenschaftliches Fotografieren Unter- wasser und deren Anwendung WEIGELT, R., HENNICKE, J. & VON NORDHEIM, H. 93 Ein Blick zurück, zwei nach vorne – Forschungstauchen am Bundes- amt für Naturschutz zum Schutz der Meere AUGUSTIN, C. B., BÜHLER, A. & SCHUBERT, H. 103 Comparison of different methods for determination of seagrass distribution in the Southern Baltic Sea Coast SCHORIES, D., DÍAZ, M.-J., GARRIDO, I., HERAN, T., HOLTHEUER, J., KAPPES, J. 117 J., KOHLBERG, G.
    [Show full text]
  • Final Report Form
    Appendix K – OSRI Grant Policy Manual Final Report Form - Oil Spill Recovery Institute An electronic copy of this report shall be submitted by mail, or e-mail to the OSRI Research Program Manager [email protected] and Financial Office [email protected] Mailing address: P.O. Box 705 - Cordova, AK 99574 - Deadline for this report: Submittal within 90 days of grant/award expiration. Also, note that a summary Financial Statement shall be submitted within 45 days of the grant expiration. The final invoice and financial statement is due within 90 days of the grant/award expiration. Today’s date: 15 April 2014 Name of awardee/grantee: Bodil Bluhm OSRI Contract Number: 11-10-14 Project title: Data rescue: Epibenthic invertebrates from the Beaufort Sea sampled during WEBSEC and OCS cruises in the 1970s Dates project began and ended: PART I - Outline for Final Program or Technical Report This report must be submitted by all grantees. However, for those whose project work resulted in a peer reviewed publication (whether in draft or final form), this report may be abbreviated and the publication attached as part of the report. A. Non-technical Abstract or summary of project work that does not exceed 2 pages and includes an overview of the project. This abstract should describe the nature and significance of the project. It may be provided to the Advisory Board and could be used by OSRI staff to answer inquiries as to the nature and significance of the project. This project sought to rescue data on epibenthic invertebrates and fish sampled by trawls and photographs in the Alaskan Beaufort Sea during Western Beaufort Sea Ecological Cruise (WEBSEC) and Outer Continental Shelf (OCS) surveys in the 1970s.
    [Show full text]