UC Berkeley UC Berkeley Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC Berkeley UC Berkeley Electronic Theses and Dissertations UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Using the Birth-Death Process to Infer Changes in the Pattern of Lineage Gain and Loss Permalink https://escholarship.org/uc/item/8wr120w2 Author Hallinan, Nathaniel Malachi Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Using the Birth-Death Process to Infer Changes in the Pattern of Lineage Gain and Loss by Nathaniel Malachi Hallinan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Lindberg, Chair Professor John Huelsenbeck Professor David Aldous Fall 2011 Using the Birth-Death Process to Infer Changes in the Pattern of Lineage Gain and Loss Copyright 2011 by Nathaniel Malachi Hallinan Abstract Using the Birth-Death Process to Infer Changes in the Pattern of Lineage Gain and Loss by Nathaniel Malachi Hallinan Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor David Lindberg, Chair The birth-death process has been used to study the evolution of a wide variety of biological entities from genes to species. Much recent work has turned to detecting changes in the patterns of lineage splitting by comparing data to birth-death models in which the parameters vary between lineages or over time. Here, I develop methods to investigate how the birth- death process varies under three very different circumstances: changes in the pattern of taxon diversification through time; the effect of whole genome duplications on the pattern of chromosome gain and loss; and changes in the pattern of gene gain and loss on branches of a taxon tree. For all three cases I apply my methods to some real data. For the last fifteen years researchers have studied the distribution of branching times of a phylogeny of extant taxa in order to detect temporal changes in the process of diversification. Theoretical work on this subject has been based on different implementations of the birth- death process and has proceeded along three basic lines: the comparison of actual branching times to a birth-death process; the inference of the effects of different birth-death processes on the distribution of branching times; and the derivation of analytical results that describe various aspects of different birth-death processes. In chapter 2 I make contributions to all three lines of research for the reconstructed time variable birth-death process. Previous work had shown how to calculate the distributions of number of lineages and branching times for a reconstructed constant rate birth-death process that started with one or two reconstructed lineages at some time or ended with some number of lineages in the present. In chapter 2 I expand that work to include any time variable birth-death process that starts with any number of reconstructed lineages and/or ends with any number of reconstructed lineages at any time. I also introduce the discrete time birth-death process which operates as an efficient and accurate numerical solution to any time-variable birth death process and allows for the analytical incorporation of sampling and mass extinctions. Furthermore, I show how to simulate random trees under any of these models. In order to compare phylogenetic trees to these models, I use these methods to calculate two statistics that describe the fit of a set of branching times to any time variable birth- death model: the maximum likelihood, which can be compared to the distribution of the 1 maximum likelihood for a random sample of trees or to that the maximum likelihood of other birth-death models using the Akaike Information Criterion; and the Komolgorov-Smirnov test, which is based on the fact that the branching times should be independently and identically distributed under many time variable birth-death models. I also demonstrate two new methods for visualizing the distribution of branching times: the lineage through time null plot uses a heat map to show the distribution of the number of lineages at different times; and the waiting time null plot does the same for waiting times between branching times. These plots can be used either to see how different time variable birth-death processes affect these distributions or to compare a data set to any time variable birth-death process. I use all these methods to analyze two data sets of reconstructed taxon branching times. The study of paleopolyploidies requires the comparison of multiple whole genome sequences. If researchers could identify the branch of a phylogeny on which a whole genome duplication occurred, before sequencing the genomes of multiple taxa, then they could select taxa that would give them a better picture of that whole genome duplication. In chapter 3 I describe a likelihood model in which the number of chromosomes in a genome evolves according to a Markov process with three stochastic rates: a rate of chromosome duplication and a rate of chromosome loss that are proportional to the number of chromosomes in the genome; and a rate of whole genome duplication that is constant. I implemented software that calculates the maximum likelihood under this model for a phylogeny of taxa in which the chromosome counts are known. I compared the maximum likelihoods of a model in which the genome duplication rate varies to one in which it is fixed at zero using the Akaike information criterion, in order to determine if a model with whole genome duplications is a good fit for the data. Once it has been determined that the data does fit the model, we infer the phylogenetic position of paleopolyploidies by using this model to calculate the posterior probability that a whole genome duplication occurred on each branch of the taxon tree. I applied this model to a phylogeny of 125 molluscan taxa and inferred three places on that phylogeny where it is very likely that a whole genome duplication occurred: a single branch within the Hypsogastropoda; one of two branches at the base of the Stylommatophora; and one or two branches near the base of Cephalopoda. Thanks to the wealth of readily available comparative genomic data, it has become apparent that gene family expansion and contraction is critical for the evolution of organisms. Several researchers have developed likelihood methods that use counts of genes in gene families from a number of taxa to deduce on which branches of the phylogenetic tree there has been an unusual amount of gene duplication or gene loss in that gene family. Gene family counts are readily available, but there is a great deal of information in the gene family tree that is unavailable when using gene counts alone. In chapter 4, I develop a method that uses the gene family tree to infer changes in the process of gene gain and loss on a taxonomic tree. This method relies on calculating the probability of a gene tree given a taxon tree and a set of birth-death parameters by which that gene tree evolves on the taxon tree. I use a reversible-jump MCMC to sample from the joint posterior distribution of a set of birth- death parameters and assignments of those parameters to the branches of a taxon tree given 2 a gene tree and a taxon tree. Different assignments are compared using Bayes factors. I use simulations to show that this method has much more power than a method which relies only on counts of gene family members to determine if a gene family evolved by a different process on a pair of taxon branches, and whether that difference is a consequence of differences in the birth rate or the death rate. In section 4.5 I expand my method to include uncertainty in the gene tree topology, by using a set of gene alignments as my data rather than the fully resolved gene tree. Under this implementation I calculate the probability of those sequences given the gene tree, in addition to the probability of the gene tree given the taxon tree. I modify the reversible-jump MCMC so that it now samples from the posterior distribution of the nucleotide evolution parameters and the gene trees, in addition to the birth-death parameters and their assignments to the branches of the taxon tree. I demonstrate the use of this method on two real gene families found in the Bilateria. I found that a clade of 46 protein tyrosine kinase genes from three taxa is characterized by an increase in the gene duplication rate on the branch leading to Caenorhabditis elegans. Furthermore, a separate analysis of all the posterior hox genes from nine taxa implies that their evolution has been characterized by massive gene loss throughout the Bilateria with a lower rate of turn over in the chordates and at the base of the deuterostomes than is found in the protostomes or in the echinoderms. 3 Contents 1 Variation in the Process of Lineage Gain and Loss 1 1.1 The Birth-Death Process . .1 1.1.1 The Birth-Death Process and Macroevolution . .2 1.1.2 The Birth-Death Process and Gene Family Evolution . .3 1.2 Variation in Evolutionary Rates . .4 1.2.1 Variable Rates of Taxon Diversification . .4 1.2.2 Variable Rates of Gene Family Diversification . .6 1.3 Summary of the Chapters . .7 2 The Reconstructed Time Variable Birth-Death Process 9 2.1 Introduction . .9 2.2 Time Variable Birth-Death Process . 11 2.2.1 Definitions . 11 2.2.2 The Birth-Death Process Divided into Time Intervals . 14 2.2.3 Sampling and Mass Extinctions . 15 2.2.4 Discrete Time Birth-Death Process .
Recommended publications
  • Revision of the Systematic Position of Lindbergia Garganoensis
    Revision of the systematic position of Lindbergia garganoensis Gittenberger & Eikenboom, 2006, with reassignment to Vitrea Fitzinger, 1833 (Gastropoda, Eupulmonata, Pristilomatidae) Gianbattista Nardi Via Boschette 8A, 25064 Gussago (Brescia), Italy; [email protected] [corresponding author] Antonio Braccia Via Ischia 19, 25100 Brescia, Italy; [email protected] Simone Cianfanelli Museum System of University of Florence, Zoological Section “La Specola”, Via Romana 17, 50125 Firenze, Italy; [email protected] & Marco Bodon c/o Museum System of University of Florence, Zoological Section “La Specola”, Via Romana 17, 50125 Firenze, Italy; [email protected] Nardi, G., Braccia, A., Cianfanelli, S. & Bo- INTRODUCTION don, M., 2019. Revision of the systematic position of Lindbergia garganoensis Gittenberger & Eiken- Lindbergia garganoensis Gittenberger & Eikenboom, 2006 boom, 2006, with reassignment to Vitrea Fitzinger, is the first species of the genus, Lindbergia Riedel, 1959 to 1833 (Gastropoda, Eupulmonata, Pristilomatidae). be discovered in Italy. The genus Lindbergia encompasses – Basteria 83 (1-3): 19-28. Leiden. Published 6 April 2019 about ten different species, endemic to the Greek mainland, Crete, the Cycladic islands, Dodecanese islands, northern Aegean islands, and southern Turkey (Riedel, 1992, 1995, 2000; Welter-Schultes, 2012; Bank & Neubert, 2017). Due to Lindbergia garganoensis Gittenberger & Eikenboom, 2006, lack of anatomical data, some of these species remain ge- a taxon with mainly a south-Balkan distribution, is the only nerically questionable. Up to now, L. garganoensis was only Italian species assigned to the genus Lindbergia Riedel, 1959. known by the presence of very fine spiral striae on the tel- The assignment to this genus, as documented by the pecu- eoconch and by the general shape of its shell.
    [Show full text]
  • A New Hydrobiid Species (Caenogastropoda, Truncatelloidea) from Insular Greece
    Zoosyst. Evol. 97 (1) 2021, 111–119 | DOI 10.3897/zse.97.60254 A new hydrobiid species (Caenogastropoda, Truncatelloidea) from insular Greece Canella Radea1, Paraskevi Niki Lampri1,3, Konstantinos Bakolitsas2, Aristeidis Parmakelis1 1 Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Panepistimiopolis, Greece 2 High School, Agrinion, 3rd Parodos Kolokotroni 11, 30133 Agrinion, Greece 3 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km of Athens – Sounio ave., 19013 Anavissos Attica, Greece http://zoobank.org/FE7CB458-9459-409C-B254-DA0A1BA65B86 Corresponding author: Canella Radea ([email protected]) Academic editor: T. von Rintelen ♦ Received 1 November 2020 ♦ Accepted 18 January 2021 ♦ Published 5 February 2021 Abstract Daphniola dione sp. nov., a valvatiform hydrobiid gastropod from Western Greece, is described based on conchological, anatomical and molecular data. D. dione is distinguished from the other species of the Greek endemic genus Daphniola by a unique combination of shell and soft body character states and by a 7–13% COI sequence divergence when compared to congeneric species. The only population of D. dione inhabits a cave spring on Lefkada Island, Ionian Sea. Key Words Freshwater diversity, Lefkada Island, taxonomy, valvatiform Hydrobiidae Introduction been described so far. More than 60% of these genera inhabit the freshwater systems of the Balkan Peninsula The Mediterranean Basin numbers among the first 25 (Radea 2018; Boeters et al. 2019; Delicado et al. 2019). Global Biodiversity Hotspots due to its biological and The Mediterranean Basin, the Balkan, the Iberian and ecological biodiversity and the plethora of threatened bi- the Italian Peninsulas seem to be evolutionary centers of ota (Myers et al.
    [Show full text]
  • Gastropoda: Pulmonata: Achatinellidae) 1
    Published online: 29 May 2015 ISSN (online): 2376-3191 Records of the Hawaii Biological Survey for 2014. Part I: 49 Articles. Edited by Neal L. Evenhuis & Scott E. Miller. Bishop Museum Occasional Papers 116: 49 –51 (2015) Rediscovery of Auriculella pulchra Pease, 1868 (Gastropoda: Pulmonata: Achatinellidae) 1 NORINe W. Y eUNg 2, D ANIel CHUNg 3 Bishop Museum, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA; emails: [email protected], [email protected] DAvID R. S ISCHO Department of Land and Natural Resources, 1151 Punchbowl Street, Rm. 325, Honolulu, Hawai‘i 96813, USA; email: [email protected] KeNNetH A. H AYeS 2,3 Howard University, 415 College Street NW, Washington, DC 20059, USA; email: [email protected] Hawaii supports one of the world’s most spectacular land snail radiations and is a diversity hotspot (Solem 1983, 1984, Cowie 1996a, b). Unfortunately, much of the Hawaiian land snail fauna has been lost, with overall extinction rates as high as ~70% (Hayes et al ., unpubl. data). However, the recent rediscovery of an extinct species provides hope that all is not lost, yet continued habitat destruction, impacts of invasive species, and climate change, necessi - tate the immediate development and deployment of effective conservation strategies to save this biodiversity treasure before it vanishes entirely (Solem 1990, Rég nier et al . 2009). Achatinellidae Auriculella pulchra Pease 1868 Notable rediscovery Auriculella pulchra (Fig. 1) belongs in the Auriculellinae, a Hawaiian endemic land snail subfamily of the Achatinellidae with 32 species (Cowie et al . 1995). It was originally described from the island of O‘ahu in 1868 and was subsequently recorded throughout the Ko‘olau Mountain range.
    [Show full text]
  • Malaco Le Journal Électronique De La Malacologie Continentale Française
    MalaCo Le journal électronique de la malacologie continentale française www.journal-malaco.fr MalaCo (ISSN 1778-3941) est un journal électronique gratuit, annuel ou bisannuel pour la promotion et la connaissance des mollusques continentaux de la faune de France. Equipe éditoriale Jean-Michel BICHAIN / Paris / [email protected] Xavier CUCHERAT / Audinghen / [email protected] Benoît FONTAINE / Paris / [email protected] Olivier GARGOMINY / Paris / [email protected] Vincent PRIE / Montpellier / [email protected] Les manuscrits sont à envoyer à : Journal MalaCo Muséum national d’Histoire naturelle Equipe de Malacologie Case Postale 051 55, rue Buffon 75005 Paris Ou par Email à [email protected] MalaCo est téléchargeable gratuitement sur le site : http://www.journal-malaco.fr MalaCo (ISSN 1778-3941) est une publication de l’association Caracol Association Caracol Route de Lodève 34700 Saint-Etienne-de-Gourgas JO Association n° 0034 DE 2003 Déclaration en date du 17 juillet 2003 sous le n° 2569 Journal électronique de la malacologie continentale française MalaCo Septembre 2006 ▪ numéro 3 Au total, 119 espèces et sous-espèces de mollusques, dont quatre strictement endémiques, sont recensées dans les différents habitats du Parc naturel du Mercantour (photos Olivier Gargominy, se reporter aux figures 5, 10 et 17 de l’article d’O. Gargominy & Th. Ripken). Sommaire Page 100 Éditorial Page 101 Actualités Page 102 Librairie Page 103 Brèves & News ▪ Endémisme et extinctions : systématique des Endodontidae (Mollusca, Pulmonata) de Rurutu (Iles Australes, Polynésie française) Gabrielle ZIMMERMANN ▪ The first annual meeting of Task-Force-Limax, Bünder Naturmuseum, Chur, Switzerland, 8-10 September, 2006: presentation, outcomes and abstracts Isabel HYMAN ▪ Collecting and transporting living slugs (Pulmonata: Limacidae) Isabel HYMAN ▪ A List of type specimens of land and freshwater molluscs from France present in the national molluscs collection of the Hebrew University of Jerusalem Henk K.
    [Show full text]
  • The Malacological Society of London
    ACKNOWLEDGMENTS This meeting was made possible due to generous contributions from the following individuals and organizations: Unitas Malacologica The program committee: The American Malacological Society Lynn Bonomo, Samantha Donohoo, The Western Society of Malacologists Kelly Larkin, Emily Otstott, Lisa Paggeot David and Dixie Lindberg California Academy of Sciences Andrew Jepsen, Nick Colin The Company of Biologists. Robert Sussman, Allan Tina The American Genetics Association. Meg Burke, Katherine Piatek The Malacological Society of London The organizing committee: Pat Krug, David Lindberg, Julia Sigwart and Ellen Strong THE MALACOLOGICAL SOCIETY OF LONDON 1 SCHEDULE SUNDAY 11 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 2:00-6:00 pm Registration - Merrill Hall 10:30 am-12:00 pm Unitas Malacologica Council Meeting - Merrill Hall 1:30-3:30 pm Western Society of Malacologists Council Meeting Merrill Hall 3:30-5:30 American Malacological Society Council Meeting Merrill Hall MONDAY 12 AUGUST, 2019 (Asilomar Conference Center, Pacific Grove, CA) 7:30-8:30 am Breakfast - Crocker Dining Hall 8:30-11:30 Registration - Merrill Hall 8:30 am Welcome and Opening Session –Terry Gosliner - Merrill Hall Plenary Session: The Future of Molluscan Research - Merrill Hall 9:00 am - Genomics and the Future of Tropical Marine Ecosystems - Mónica Medina, Pennsylvania State University 9:45 am - Our New Understanding of Dead-shell Assemblages: A Powerful Tool for Deciphering Human Impacts - Sue Kidwell, University of Chicago 2 10:30-10:45
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • Gastropoda, Pulmonata, Ferussaciidae)
    BASTERIA, 64: 99-104, 2000 Nomenclatural notes on a Cecilioides species of the Italian and Swiss Alps (Gastropoda, Pulmonata, Ferussaciidae) R.A. Bank Graan voor Visch 15318, NL 2132 EL Hoofddorp, The Netherlands G. Falkner Raiffeisenstrafie 5, D 85457 Horlkofen, Germany & E. Gittenberger Nationaal Natuurhistorisch Museum, P.O. Box 9517, NL 2300 RA Leiden, The Netherlands has It is argued that the name Cecilioides veneta (Strobel, 1855) to be used for a species which has in the past been referred to as C. aciculoides or C. janii. Key words: Gastropoda, Pulmonata,Ferussaciidae, Cecilioides, Italy, Switzerland, nomenclature DATA AND DISCUSSION In northern Italy and the southernmost part of Switzerland (Tessin) two species of the Cecilioides A. The genus Ferussac, 1814, occur (Ferussaciidae Bourguignat, 1883). most C. acicula is well-known common one, (O.F. Miiller, 1774), and wide-spread throughout Europe (with the exception of Scandinavia, where it is living only in the southern tip of Norway and Sweden). The nomenclature of the second, far more local species has been the subject of much dispute. This species has a shell similar to that of C. acicula, but and broader instead of larger relatively (5-7 x 1.9 mm 4.5-5.5 x 1.2 mm), and with the about half instead of about third of the total In aperture forming a height. addition, the columella is clearly more truncate at the base (figs 1-2; Kerney & Cameron, 1979: 149-150; Falkner, 1990: 169, figs 1, 5; Turner et al., 1998: 237-238). In the more recent literature this species is known under the names C.
    [Show full text]
  • Reports and Publications Overview Database (DCBD) (
    These reports and publications can be found in the Dutch Caribbean Biodiversity Reports and Publications Overview Database (DCBD) (http://www.dcbd.nl). The DCBD is a central online storage facility for all biodiversity and conservation related information in the Dutch Caribbean. If you have research and monitoring data, the DCNA secretariat can help you to get it housed in Below you will find an overview of the reports and publications on biodiversity related subjects in the DCBD. Please e-mail us: [email protected] the Dutch Caribbean that have recently been published. “Dornburg, A. et al. (2019). “Le Bars, D., de Vries, H. and Drijfhout, S. (2019). Are Geckos Paratenic Hosts for Caribbean Island Acanthocephalans? Sea level rise and its spatial variations. Ministerie van Infrastructuur en Evidence from Gonatodes antillensis and a Global Review of Squamate Waterstaat.” Reptiles Acting as Transport Hosts. Bulletin of the Peabody Museum of Natural History, 60(1), pp. 55-79. “ “Kwong, W.K., del Campo, J., Varsha, M., Vermeij, M.J.A. & Keeling, P.J. (2019). A widespread coral-infecting apicomplexan with chlorophyll “Echevarría, L. (2019). biosynthesis genes. Nature 568, pp. 103–107.” Preliminary Study to identify Filamentous Fungi in Sands of Three Beaches of the Caribbean. PSM Microbiology.” “POP Bonaire (2019). Overzicht rapporten duurzame geitenhouderij Bonaire/ Overview reports “Erickson, H., Grubbs, B., Peachey, R., Shaw, J., Glaholt, C. (2019). sustainable Bonaire goat farming.” Using Environmental DNA (eDNA) to Improve the Accuracy and Efficiency of Managing the Invasive Pacific Red Lionfish in the Caribbean.” “Visser, P.M., Meesters, E.H., van Duyl, F.C. (2019).
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Ringiculid Bubble Snails Recovered As the Sister Group to Sea Slugs
    www.nature.com/scientificreports OPEN Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura) Received: 13 May 2016 Yasunori Kano1, Bastian Brenzinger2,3, Alexander Nützel4, Nerida G. Wilson5 & Accepted: 08 July 2016 Michael Schrödl2,3 Published: 08 August 2016 Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura—the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic ‘bubble’ shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches. The traditional gastropod subclass Euthyneura is a highly diverse clade of snails and slugs with at least 30,000 living species1,2.
    [Show full text]
  • CLECOM-Liste Österreich (Austria)
    CLECOM-Liste Österreich (Austria), mit Änderungen CLECOM-Liste Österreich (Austria) Phylum Mollusca C UVIER 1795 Classis Gastropoda C UVIER 1795 Subclassis Orthogastropoda P ONDER & L INDBERG 1995 Superordo Neritaemorphi K OKEN 1896 Ordo Neritopsina C OX & K NIGHT 1960 Superfamilia Neritoidea L AMARCK 1809 Familia Neritidae L AMARCK 1809 Subfamilia Neritinae L AMARCK 1809 Genus Theodoxus M ONTFORT 1810 Subgenus Theodoxus M ONTFORT 1810 Theodoxus ( Theodoxus ) fluviatilis fluviatilis (L INNAEUS 1758) Theodoxus ( Theodoxus ) transversalis (C. P FEIFFER 1828) Theodoxus ( Theodoxus ) danubialis danubialis (C. P FEIFFER 1828) Theodoxus ( Theodoxus ) danubialis stragulatus (C. P FEIFFER 1828) Theodoxus ( Theodoxus ) prevostianus (C. P FEIFFER 1828) Superordo Caenogastropoda C OX 1960 Ordo Architaenioglossa H ALLER 1890 Superfamilia Cyclophoroidea J. E. G RAY 1847 Familia Cochlostomatidae K OBELT 1902 Genus Cochlostoma J AN 1830 Subgenus Cochlostoma J AN 1830 Cochlostoma ( Cochlostoma ) septemspirale septemspirale (R AZOUMOWSKY 1789) Cochlostoma ( Cochlostoma ) septemspirale heydenianum (C LESSIN 1879) Cochlostoma ( Cochlostoma ) henricae henricae (S TROBEL 1851) - 1 / 36 - CLECOM-Liste Österreich (Austria), mit Änderungen Cochlostoma ( Cochlostoma ) henricae huettneri (A. J. W AGNER 1897) Subgenus Turritus W ESTERLUND 1883 Cochlostoma ( Turritus ) tergestinum (W ESTERLUND 1878) Cochlostoma ( Turritus ) waldemari (A. J. W AGNER 1897) Cochlostoma ( Turritus ) nanum (W ESTERLUND 1879) Cochlostoma ( Turritus ) anomphale B OECKEL 1939 Cochlostoma ( Turritus ) gracile stussineri (A. J. W AGNER 1897) Familia Aciculidae J. E. G RAY 1850 Genus Acicula W. H ARTMANN 1821 Acicula lineata lineata (DRAPARNAUD 1801) Acicula lineolata banki B OETERS , E. G ITTENBERGER & S UBAI 1993 Genus Platyla M OQUIN -TANDON 1856 Platyla polita polita (W. H ARTMANN 1840) Platyla gracilis (C LESSIN 1877) Genus Renea G.
    [Show full text]
  • Mollusques Terrestres De L'archipel De La Guadeloupe, Petites Antilles
    Mollusques terrestres de l’archipel de la Guadeloupe, Petites Antilles Rapport d’inventaire 2014-2015 Laurent CHARLES 2015 Mollusques terrestres de l’archipel de la Guadeloupe, Petites Antilles Rapport d’inventaire 2014-2015 Laurent CHARLES1 Ce travail a bénéficié du soutien financier de la Direction de l’Environnement de l’Aménagement et du Logement de la Guadeloupe (DEAL971, arrêté RN-2014-019). 1 Muséum d’Histoire Naturelle, 5 place Bardineau, F-33000 Bordeaux - [email protected] Citation : CHARLES L. 2015. Mollusques terrestres de l’archipel de la Guadeloupe, Petites Antilles. Rapport d’inventaire 2014-2015. DEAL Guadeloupe. 88 p., 11 pl. + annexes. Couverture : Helicina fasciata SOMMAIRE REMERCIEMENTS .................................................................................................................. 2 INTRODUCTION ...................................................................................................................... 3 MATÉRIEL ET MÉTHODES .................................................................................................... 5 RÉSULTATS ............................................................................................................................ 9 Catalogue annoté des espèces ............................................................................................ 9 Espèces citées de manière erronée ................................................................................... 35 Diversité spécifique pour l’archipel ....................................................................................
    [Show full text]