Acrochordiceratidae, Late Early Triassic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Or Early Callovian) Ammonites from Alaska and Montana
Jurassic (Bathonian or Early Callovian) Ammonites From Alaska and Montana By RALPH W. IMLAY SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 374-C Descr$tions and illustrations of ctphalopods of possible late Middle Jurasric (Bathonian) age UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page C- 1 Age of the faunas-Continued C- 1 Callovian versus Bathonian in Greenland- - - - _ - - _ - - C-2 Callovian versus Bathonian in Alaska and Montana- -- - Stratigraphic summary- __ --______ _ - - - -- - ---.- -- -.- - - C-2 Paleogeographic considerations- - -_-- -- ---- ---- Cook Inlet region, Alaska -______--------.-.--..--c-2 Summation of the evidence- - - _._ _ - _ _ - - - - - - - - - - - - Iniskin Peninsula-_-_______----.--------~.--C-2 Comparisons with other faunas---------___----------- Peninsula north of Chinitna Bay----- __._ _ _._ - C-3 \Vestern interior of Canada- - - -- -- -____------- --- Talkeetna Mountains ----___-_ - - -- ---- - - -- - -- C-3 Arctic region-_-_---___-_----------------------- Western Montana- - -----__-----------------.---C-5 other regions--__-__-____----------------------- Rocky Mountain front north of the Sun River- (2-5 Geographic distribution ___-___ --- - ---------- ------ -- - Drummond area--- ---_____ _--- -- -.-- ---- -- - C-10 Summary of results- --_-____-_----_---_-_----------- Age ofthe faunas-----------_----------------------- GI0 Systematic descriptions--_ _ _ - _ - - - - - - - - - - - - - - - - - - - - - - - Evidence from Alaska---____________--------------C-10 Literature cited _-_-_---______----------------------- Evidence from Montana --_-_____ --- - - -- .--- --- - - C-12 Index---__--___-_-_------------------------------- ILLUSTRATIONS [Plates 1-3 follow index] PLATE 1. Holcophylloceras, Oecotraustes (Paroecotraustes) ?, and Arctocephalites (Cranocephalites). 2. -
The Cretaceous of North Greenland
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zitteliana - Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Histor. Geologie Jahr/Year: 1982 Band/Volume: 10 Autor(en)/Author(s): Birkelund Tove, Hakansson Eckhart Artikel/Article: The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis 7-25 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 7 Zitteliana 10 7-25 München, 1. Juli 1983 ISSN 0373-9627 The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis By TOVE BIRKELUND & ECKART HÄKANSSON*) With 6 text figures and 3 plates ABSTRACT Mapping of the Wandel Sea Basin (81-84°N) has revealed realites, Peregrinoceras, Neotollia, Polyptycbites, Astieripty- an unusually complete Late Jurassic to Cretaceous sequence chites) are Boreal and Sub-Boreal, related to forms primarily in the extreme Arctic. The Cretaceous pan of the sequence in known from circum-arctic regions (Sverdrup Basin, Svalbard, cludes marine Ryazanian, Valanginian, Aptian, Albian, Tu Northern and Western Siberia), but they also have affinities to ranian and Coniacian deposits, as well as outliers of marine occurrences as far south as Transcaspia. The Early Albian Santonian in a major fault zone (the Harder Fjord Fault Zone) contains a mixing of forms belonging to different faunal pro west of the main basin. Non-marine PHauterivian-Barremian vinces (e. g. Freboldiceras, Leymeriella, Arctboplites), linking and Late Cretaceous deposits are also present in addition to North Pacific, Atlantic, Boreal/Russian platform and Trans Late Cretaceous volcanics. caspian faunas nicely together. Endemic Turonian-Coniacian Scapbites faunas represent new forms related to European An integrated dinoflagellate-ammonite-5«c/;D stratigra species. -
Systematic Paleontology.……………………………………………………18
A NOVEL ASSEMBLAGE OF DECAPOD CRUSTACEA, FROM A TITHONIAN CORAL REEF OLISTOLITH, PURCĂRENI, ROMANIA: SYSTEMATICAL ARRANGEMENT AND BIOGEOGRAPHICAL PERSPECTIVE A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Masters of Science by Aubrey M. Shirk December, 2006 Thesis written by Aubrey M. Shirk B.S., South Dakota School of Mines and Technology, 2003 M.S., Kent State University, 2006 Approved by _________________________________________, Advisor Dr. Rodney Feldmann _________________________________________, Chair, Department of Geology Dr. Donald Palmer _________________________________________, Associate Dean, College of Arts and Dr. John R. Stalvey Sciences ii DEPARMENT OF GEOLOGY THESIS APPROVAL FORM This thesis entitled A NOVEL ASSEMBLAGE OF DECAPOD CRUSTACEA, FROM A TITHONIAN CORAL REEF OLISTOLITH, PURCĂRENI, ROMANIA: SYSTEMATICAL ARRANGEMENT AND BIOGEOGRAPHICAL PERSPECTIVE has been submitted by Aubrey Mae Shirk in partial fulfillment of the requirements for the Master of Science in Geology. The undersigned members of the student’s thesis committee have read this thesis and indicate their approval or disapproval of same. Approval Date Disapproval Date __________________________________ ______________________________ Dr. Rodney Feldmann 11/16/2006 ___________________________________ ______________________________ Dr. Carrie Schweitzer 11/16/2006 ___________________________________ ______________________________ Dr. Neil Wells 11/16/2006 iii TABLE OF CONTENTS ACKNOWLEDGMENTS…..………………………………………………….………...xi -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Large Igneous Provinces and Mass Extinctions: an Update
Downloaded from specialpapers.gsapubs.org on April 29, 2015 OLD G The Geological Society of America Special Paper 505 2014 OPEN ACCESS Large igneous provinces and mass extinctions: An update David P.G. Bond* Department of Geography, Environment and Earth Science, University of Hull, Hull HU6 7RX, UK, and Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway Paul B. Wignall School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK ABSTRACT The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capi- tanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always suffi cient recovery time between individual eruptions to negate any cumulative effect of successive fl ood basalt erup- tions. Instead, the environmental and climatic damage must be attributed to single- pulse gas effusions. It is notable that the best-constrained examples of death-by- volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO2 and SO2) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinc- tion scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. -
Ammonites from Bathonian and Callovian (Middle Jurassic)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 253 Zitteliana 89 Ammonites from Bathonian and Callovian (Middle Jurassic) North of Damghan, Paläontologie Bayerische EasternGeoBio- Alborz, North Iran & Geobiologie Staatssammlung Center LMU München LMU München für Paläontologie und Geologie Kazem Seyed-Emami1* & Ahmad Raoufian2 München, 01.07.2017 1School of Mining Engineering, University College of Engineering, University of Tehran, Manuscript received P.O. Box 11365-4563, Tehran, Iran 2 26.09.2016; revision Daneshvar Center, Farhangian University, Neyshapour, Iran accepted 30.10.2016 *Corresponding author; E-mail: [email protected] ISSN 0373-9627 ISBN 978-3-946705-00-0 Zitteliana 89, 253–270. Abstract The following Middle Jurassic ammonite families (subfamilies) are described from the Dalichai Formation north of Damghan (eastern Alborz), some of them for the first time: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Stephanoceratidae (Cadomitinae), Tulitidae and Reineckeiidae. The fauna is typically Northwest-Tethyan and closely related to Central Europe (Subboreal – Submediterra- nean Provinces). Key words: Ammonites, Dalichai Formation, Middle Jurassic, Alborz, Iran Zusammenfassung Aus der Dalichai Formation nördlich von Damghan (Ostalborz) werden einige mitteljurassische Ammoniten, teils zum ersten Mal, beschrieben. Folgende Familien und Unterfamilien sind vertreten: Phylloceratidae, Lytoceratidae, Oppeliidae (Hecticoceratinae), Steph- anoceratidae (Cadomitinae), Tulitidae und Reineckeiidae. Die Fauna ist typisch für die Nordwest-Tethys und zeigt enge Beziehungen zu Zentraleuropa (Subboreale und Submediterrane Faunenprovinz). Schlüsselwörter: Ammoniten, Dalichai Formation, Mittlerer Jura, Alborz, Iran Introduction the frame of a MSc. thesis. For the present study, a new section nearby was chosen and collections The present study is a continuation of a larger re- were made by A. -
Upper Jurassic Mollusks from Eastern Oregon and Western Idaho
Upper Jurassic Mollusks from Eastern Oregon and Western Idaho GEOLOGICAL SURVEY PROFESSIONAL PAPER 483-D Upper Jurassic Mollusks from Eastern Oregon and Western Idaho By RALPH W. IMLAY CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 483-D Faunal evidence for the presence of Upper Jurassic sedimentary rocks in eastern Oregon and westernmost Idaho UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Abstract.__________________________________________ Dl Ages and correlations Continued Introduction.______________________________________ 1 Trowbridge Formation of Lupher, 1941, in east- Biologic analysis..._________________________________ 2 central Oregon.__________---_-_-__-_-____---_ D9 Stratigraphic summary._____________________________ 2 Lonesome Formation of Lupher, 1941, in east-central Northeastern Oregon and adjoining Idaho. ________ 2 Oregon..________________-_--_____--_--_---__ 9 Mineral area, western Idaho.____________________ 2 Comparisons with other faunas.______________________ 10 East-central Oregon_____________________________ 4 Alaska and western British Columbia-____________ 10 Conditions of deposition.____________________________ 6 Calif ornia. ... _ __-_________--____-___-__---___-_ 10 Ages and correlations______________________________ 6 Unnamed beds in northeastern Oregon and adjoining Western interior of North America._______________ 10 Idaho_______________________________________ Geographic distribution________-_-_____---_---_-.__ 11 Unnamed beds near Mineral, Idaho.______________ Systematic descriptions..._--_--__-__________________ 13 Snowshoe Formation of Lupher, 1941, in east-central Literature cited_____-__-_____---------_-_--_--__-___ 17 Oregon._____________________________________ Index_.______________--____---------_-__---_-_-___ 21 ILLUSTRATIONS [Plates 1-4 follow index] PLATE 1. -
The Evolution of Canaliculate Rudists in The
[Palaeontology, Vol. 57, Part 5, 2014, pp. 951–962] THE EVOLUTION OF CANALICULATE RUDISTS IN THE LIGHT OF A NEW CANALICULATE POLYCONITID RUDIST FROM THE ALBIAN OF THE CENTRAL PACIFIC by SHIN-ICHI SANO1*, YASUHIRO IBA2,PETERW.SKELTON3, JEAN-PIERRE MASSE4,YOLANDAM.AGUILAR5 and TOMOKI KASE6 1Fukui Prefectural Dinosaur Museum, Katsuyama, Fukui 911-8601, Japan; e-mail: [email protected] 2Department of Natural History Sciences, Hokkaido University, N10 W8, Sapporo, 060-0810, Japan; e-mail: [email protected] 3Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes, MK7 6AA, UK; e-mail: [email protected] 4Aix-Marseille Universite, CEREGE, Centre Saint-Charles, 13331, Marseille Cedex 03, France; e-mail: [email protected] 5Mines and Geosciences Bureau, North Avenue, Diliman, Quezon City, 1101, Philippines; e-mail: [email protected] 6Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki 305-0005, Japan; e-mail: [email protected] *Corresponding author Typescript received 31 October 2013; accepted in revised form 16 December 2013 Abstract: A new polyconitid rudist, Magallanesia canalicu- the same time in different regions of the Tethyan Realm, lata gen. et sp. nov., of probably late Albian age, is suggesting the presence of common global biological and/or described from the Pulangbato area, central Cebu Island, environmental factors stimulating the evolution of the the Philippines in the western Central Pacific and canals despite such endemism. Furthermore, the finding of Takuyo-Daini Seamount, now located in the Northwest a canaliculate polyconitid provides evidence in favour of the Pacific. -
Taxonomic Revision of the Genus Ichthyosarcolites Demarest, 1812, and Description of A
ACCEPTED MANUSCRIPT MANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Taxonomic revision of the genus Ichthyosarcolites Demarest, 1812, and description of a 2 new canaliculate rudist from the Cenomanian of Slovenia: Oryxia sulcata gen. et sp. 3 nov. (Bivalvia, Hippuritida). 4 Valentin Rineau and Loïc Villier 5 UMR 7207 CR2P, Sorbonne Université/CNRS/MNHN/UPMC, 43 rue Buffon, F-75231 6 Paris cedex 05, France 7 Corresponding author: Valentin Rineau. E-mail: [email protected] MANUSCRIPT ACCEPTED 1 ACCEPTED MANUSCRIPT 8 Taxonomic revision of the genus Ichthyosarcolites 9 Desmarest, 1812, and description of Oryxia sulcata gen. 10 et sp. nov. (Bivalvia, Hippuritida), a new canaliculate 11 rudist from the Cenomanian of Slovenia: 12 Abstract 13 Ichthyosarcolites was amongst the first rudist genera to be described. Nineteen species 14 have been assigned to this genus since its introduction in 1812, all from shallow-marine 15 tropical carbonates of Albian and Cenomanian age (mid-Cretaceous). Almost all 16 nominal species suffer from vague original descriptions, and some forms were 17 inaccurately assigned to the genus. Several species were defined on the basis of the 18 number of flanges along the shell, such as Ichthyosarcolites rotundus , I. monocarinatus , 19 I. triangularis , I. bicarinatus , I. tricarinatus , I.MANUSCRIPT alatus and I. polycarinatus . An analysis 20 of the relative position of the flanges on the shell by hierarchical clustering helps with 21 taxon definition. Two species with a single flange are here recognised, one with a dorsal 22 flange ( I. monocarinatus ), the other with a ventral one (I. triangularis ). There is no 23 consistency in flange distribution on the shells whatever their number is, i.e., two or 24 more, and homology of individual flanges cannot be demonstrated. -
Geologic Map of the Lone Pine 15' Quadrangle, Inyo County, California
U.S. DEPARTMENT OF THE INTERIOR GEOLOGIC INVESTIGATIONS SERIES U.S. GEOLOGICAL SURVEY MAP I–2617 118°15' 118°10' 118°5' 118°00' ° 36°45' 36 45' CORRELATION OF MAP UNITS Alabama Hills Early Cretaceous age. In northern Alabama Hills, dikes and irregular hy- SW1/4NE1/4 sec. 19, T. 15 S., R. 37 E., about 500 m east of the boundary with the Lone tures that define the fault zone experienced movement or were initiated at the time of the Kah Alabama Hills Granite (Late Cretaceous)—Hypidiomorphic seriate to pabyssal intrusions constitute more than 50 percent, and locally as much Pine 15' quadrangle. Modal analyses of 15 samples determined from stained-slab and 1872 earthquake. SURFICIAL DEPOSITS d faintly porphyritic, medium-grained biotite monzogranite that locally as 90 percent, of the total rock volume over a large area (indicated by thin-section point counts indicate that the unit is composed of monzogranite (fig. 4). Ad- Most traces of the Owens Valley Fault Zone in the quadrangle cut inactive alluvium contains equant, pale-pink phenocrysts of potassium feldspar as large as pattern). Some of these dikes may be genetically associated with the ditional description and interpretation of this unusual pluton are provided by Griffis (Qai) and older lake deposits (Qlo). Some scarps, however, cut active alluvial deposits Qa 1 cm. Outcrop color very pale orange to pinkish gray. Stipple indicates lower part of the volcanic complex of the Alabama Hills (Javl) (1986, 1987). (Qa) that fringe the Alabama Hills north of Lone Pine, and the most southeasterly trace of Qly Qs local fine-grained, hypabyssal(?) facies. -
THE Geologlcal SURVEY of INDIA Melvioirs
MEMOIRS OF THE GEOLOGlCAL SURVEY OF INDIA MElVIOIRS OF THE GEOLOGICAL SURVEY OF INDIA VOLUME XXXVI, PART 3 THE TRIAS OF THE HIMALAYAS. By C. DIENER, PH.0., Professor of Palceontology at the Universz'ty of Vienna Published by order of the Government of India __ ______ _ ____ __ ___ r§'~-CIL04l.~y_, ~ ,.. __ ..::-;:;_·.•,· ' .' ,~P-- - _. - •1~ r_. 1..1-l -. --~ ·~-'. .. ~--- .,,- .'~._. - CALCU'l"l'A: V:/f/ .. -:-~,_'."'' SOLD AT THE Ol<'FICE OF THE GEOLOGICAL SURVEY o'U-1kI>i'A,- 27, CHOWRINGHim ROAD LONDON: MESSRS. KEGAN PAUT,, TRENCH, TRUBNER & CO. BERLIN : MESSRS. FRIEDLANDEH UND SOHN 1912. CONTENTS. am I• PA.GE, 1.-INTBODUCTION l 11.-LJ'rERA.TURE • • 3· III.-GENERAL DE\'ELOPMEKT OF THE Hrn:ALAYA.K TRIAS 111 A. Himalayan Facies 15 1.-The Lower Trias 15 (a) Spiti . Ip (b) Painkhanda . ·20 (c) Eastern Johar 25 (d) Byans . 26 (e) Kashmir 27 (/) Interregional Correlation of fossiliferous horizons 30 (g) Correlation with the Ceratite beds of the Salt Range 33 (Ti) Correlation with the Lower Trias of Europe, Xorth America and Siberia . 36 (i) The Permo-Triassic boundary . 42 II.-The l\Iiddle Trias. (Muschelkalk and Ladinic stage) 55 (a) The Muschelkalk of Spiti and Painkhanda v5 (b) The Muschelkalk of Kashmir . 67 (c) The llluschelka)k of Eastern Johar 68 (d) The l\Iuschelkalk of Byans 68 (e) The Ladinic stage.of Spiti 71 (f) The Ladinic stage of Painkhanda, Johar and Byans 75 (g) Correl;i.tion "ith the Middle Triassic deposits of Europe and America . 77 III.-The Upper Trias (Carnie, Korie, and Rhretic stages) 85 (a) Classification of the Upper Trias in Spiti and Painkhanda 85 (b) The Carnie stage in Spiti and Painkhanda 86 (c) The Korie and Rhretic stages in Spiti and Painkhanda 94 (d) Interregional correlation and homotaxis of the Upper Triassic deposits of Spiti and Painkhanda with those of Europe and America 108 (e) The Upper Trias of Kashmir and the Pamir 114 A.-Kashmir . -
2019 Abstract Volume
Department of Geological Sciences California State University, Fullerton Fullerton Arboretum Friday, April 12, 2019 This special event showcases the hard work of our student researchers and their faculty mentors. This event provides the opportunity for our students to “close-the-loop” regarding the communication-focused steps of the scientific method: students early in the research process present “proposal” posters, outlining the approach they intend to take in testing a hypothesis, while students nearing the end of their projects present their research and interpretations. To that end, we are particularly grateful to members of the South Coast Geological Society for volunteering to judge the posters, provide feedback to the undergraduate and graduate researchers, and recognize the top presentations with cash awards. Thanks to everyone—cherished alumni, community college students, local geoscientists, families and friends—for spending the afternoon with the Department. We hope you enjoy good company and food in this beautiful setting. Most importantly, go talk to our students— challenge them, and help them grow as scientists! The Department of Geological Sciences at California State University, Fullerton is an interdisciplinary education and research community whose members are active mentors and role models. Our mission is to provide a student-centered educational and research experience that emphasizes critical thinking, communication, and scientific citizenship. 10th Annual Geology Research Day California State University, Fullerton Department of Geological Sciences Fullerton Arboretum April 12, 2019 Abstract Volume Table of Contents Undergraduate BA/BS Proposal Category Developing a Yosemite National Park virtual field trip website for teachers to utilize in their high school classrooms Student: Rebekah King1 Faculty Advisor: Dr.