Cartograplzic Perspectives 1:1, March 1989 Was Passed and Signed by the Cartography Is the Science and Your Reply to Mr

Total Page:16

File Type:pdf, Size:1020Kb

Cartograplzic Perspectives 1:1, March 1989 Was Passed and Signed by the Cartography Is the Science and Your Reply to Mr 4 cartograplzic perspectives 1:1, March 1989 was passed and signed by the Cartography is the science and your reply to Mr. Grigar of Texas. President. This Act requires the technology of analyzing and That leads into the third item. In Director of the Office of Charting interpreting geographic relation­ that letter you list the prices for and Geodetic Services, NOAA, in ships, and communicating the single copies of Which Map Is Best? consultation with the Director of results by means of maps. and Choosing a World Map. But the U.S. Geological Survey that reminded me of a fact less (USGS), to submit to the Congress A definition suitable for the ICA well-known, namely that Choosing a plan for preparing maps of the Dictionary: a World Map is available at a dis­ shoreline of the Great Lakes. count when 10 or more copies are The plan will define the respon­ Cartography is the science and ordered, made possible by gener­ sibilities of NOAA and USGS, set technology of analyzing, inter­ ous grants from several carto­ up a mapping schedule, with high­ preting and communicating graphic/ geographic organizations. risk areas (erosion or flooding) spatial relationships normally by The prices are as follows: given first priority, a completion means of maps." date, and recommended funding. Copies Cost The committee set up by NOAA (BCS Newsletter Number 1, 1989) and USGS expects to complete 10-19 $2.00 their report to Congress during Editors note: One wonders why the 20-29 $1.50 the next year. For further infor­ BCS is willing to admit to the general 30-39 $1.25 mation, contact: Mr. Dennis public -- but not to "practicing 40-49 $1.10 Carroll at (301) 443-8742. cartographers" or the ICA -- that 50+ $1.00 (C&GS Update, Winter 1989) cartography is as much an art as a science or a set of technologies. Plus $2.00 shipping and handling for all orders. This was done with TOWARD A REDEFINITION OF the hope that schools might find it CARTOGRAPHY LETTER TO THE EDITOR a useful resource. The International Cartographic January 4, 1989 Association (ICA) is soliciting Professor Ruth A. Rowles, Editor Very best regards, views on a redefinition of "ca~tog­ Cartographic Information Arthur H. Robinson raphy" for its forthcoming Dic­ tionary of Cartographic Terms. Dear Ruth: The British Cartographic Society NEW VISUALIZATION CENTER offers the following: I have just read with interest, The State of California has given and much profit, the issue No. 31, the San Diego Supercomputer " .. .in defining cartography we are December, 1988. It is an informa­ Center $6 million to develop a speaking to more than just ICA tive and useful publication. There scientific visualization facility that but to many other interested are three items on which I wish to the state hopes will help attract parties. In the light of the recent comment. high-technology business. BCS Council policy to broaden the First, Alan MacEachren' s piece Scientific visualization uses appeal of cartography to both on "Renewed Interest in Map Pro­ graphics to express information -­ prospective members and the jections" is very well done, and I particularly complex dynamic general public as a whole we have hope he is right. One small item: systems with complicated time included two further definitions, he stated that the Robinson scales, flow patterns, and spatial one for professional cartographers projection was patented in 1963. relationships -- with which scien­ and the other for the public at Devised then, yes; but patented, tists often work. It requires sophis­ large. no. Van der Grinten's projection ticated software and powerful "A definition for use in commu­ was patented in ca. 1903, but computers to manipulate the data, nication with the general public sometime later I believe the Patent and specialists who understand and prospective members not yet Office declined to accept patent how to represent numeric data engaged in cartography: applications for projections. Also using form, line, and color. map projections cannot be copy­ The supercomputer center, lo­ Cartography is the art, science righted, but of course, maps can. cated at the University of Califor­ and technology of making maps. In any case, the Robinson projec­ nia at San Diego, is supported by tion has been in the public domain the National Science Foundation. A definition for practicing cartog­ ever since it was devised. (Chronicle of Higher Education, raphers: Second, I compliment you on 2/15/89) 1:1, March 1989 cartographic perspectives 5 featured article The Aeronautical Charting Division (ACD), National Ocean Service Automated (NOS), National Oceanic and Atmospheric Administration (NOAA) produces the Radar Video Maps (RVM's) used by air traffic controllers Radar Video Map to monitor and control the Nation's airspace. These complex maps depict the local Federal Aviation Administration (FAA) airspace Production definition and show airways, intersections, holding patterns, selected navigational aids, special-use airspace boundaries, and other radar at NOS display elements critical to the traffic controller's radar scope displays. Previously produced by tedious manual methods, the ACD's Aero­ Ronald M. Bolton nautical Chart Automated Production (ACAP) system now provides the tools for automated production of this integral part of the FAA air and traffic control system. Russell A. Hoover rior to 1967, Radar Video Maps (RVM's) were constructed individ­ INTRODUCTION AND P ually by cartographers at FAA Air Route Traffic Control Centers (ARTCC's) and towers. The cartographers prepared inked compilations BACKGROUND (drawings) on various media, using several different projections and scales. These compilations were taken to local contractors for reduction and processing into negatives which were then trimmed to the required sizes and placed between two pieces of glass or plastic. The composite plates were then oriented to the traffic controller's radar scope. There were many problems with these early plates. Some scales and projections used were not suitable for the map areas covered. The com­ pilations were prepared on paper rather than dimensionally stable mylar. The symbology varied and line weights were not uniform. Overlapping areas did not match and frequently revisions were not received when needed. As a result of these and other problems, the FAA, realizing the need for establishing a program for Radar Video Maps, assigned the U.S. Coast and Geodetic Survey (U.S.C&GS, the predecessor of NOAA) the task of Radar Video Map production in 1967. The current Radar Video Map final product is in the form of a negative map image (Fiure 1) depicted on either 2.3 or 3.0 inch square plastic plates, depending upon the type of Airport Surveillance Radar (ASR) Ronald M. Bolton is Chief of the equipment. As many as five slides can be mounted in the ASR equipment Aeronautical Chart Branch, and at one time, and projected on the video screen through multichannel dis­ Russell A. Hoover is Staff play. The plates cover 10 to 60 nautical miles in range and are depicted Cartographer with the Aeronautical at scales from 1:100,000 to 1:400,000. The choice of data to be depicted on Charting Division, National Ocean each map is left to the discretion of the FAA requesting facility. These Service, NOAA, 6010 Executive data might consist of obstructions, landmark features, control zones, vec­ Boulevard, Rockville, MD 20852 toring altitudes, geographic boundaries, or any other features that the traffic controller feels might assist in the traffic control for that particular ARTCC. Currently, 95 percent of all compilation is being performed using the MANUAL automated procedures. Special or unusual requests are still being handled by manual operating procedures. Under the manual operating PROCEDURES procedures, the production process is initiated when a request Form 7910-1 for a new RVM is submitted by the FAA. This request specifies the type of video display, plate size, quantity, map range, radar site co­ ordinates, and data to be depicted on the map. All requested data are verified and obtained either directly from support units within the Aeronautical Chart Branch (ACB), or through terminal queries of the 6 cartograpltic perspectives 1:1, March 1989 Figure 1: Radar Video Map and legend detail. flllt:~"1. AVIATIOH ADMINl!TllATION ANTENNA SITE SACRAMENTO TRACON. CA 39 "07'48 J • 121"27'35.8 ' l 7" F ASR-5 60 NM VIDEO MAP MVA-EMERGENCY I "; 4.8 NAUTICAL MILES 9C"1.E: I :350,000 •M- - '"ll .. , P'H~AIHP ., '"'' "141f'°"At O< f.a.,_ ' · .. ,,. • Af I ... Dl•ICf oON Ut l"t f t:DllUW. 4\'l._.tO,. AOM••&tlUlhOfl 1';P-oK- n 1 1:1, March 1989 cartographic perspectives 7 ACAP aeronautical database. Once all the necessary data have been defined and collected, they are manually key-entered through remote terminals to create Map Definition Language (MDL) sets for creating rough computer generated pen plots of the map. A typical RVM plate may require one hundred to two hundred manual data entries. Some The main problem requests may take up to one thousand data entries. Cultural features such as rivers, shorelines, or major roads must be drawn manually. was developing Two compilation plots are produced on dimensionally stable mylar. a database The first plot depicts only data requested by the FAA facility, the second plot contains all data generated to produce the final map such as projec­ tion, extra obstructions, and other miscellaneous data. After the compila­ tion plots are reviewed, they are sent to the NOS Reproduction Branch where they are transferred to scribing material which is engraved with lines of between .012 to .018 inches in width. A contact-type paper proof of the final engraved artwork is sent to the RVM Unit for review where it is checked for accuracy.
Recommended publications
  • Volume 9 Number 6 December 1988
    !SEN 0272-8532 base line a newsletter of the Map and Geography Round Table TABLE OF CONTENTS: From the Cha ir . 140 and From the Editor . 140 Official News . _. 141 MAGERT Midwinter Conference Schedule (Final). 141 MAGERT Annual Conference Schedule (Draft) 142 Conferences and Exhibitions. 144 On the Cataloging/Cataloguing Front. 145 NACIS Report. 147 New Books. 149 New Atlases. 152 Forthcoming Publications 152 Journal. 152 Government Publications. 153 New Maps . 154 New Periodical Articles. 156 News from GPO. 156 Duplicates. 157 Question Box _ 157 Miscellaneous. 157 On the l19hter Side. 158 Meridian. 159 Volume 9, Number 6 December 1988 base line is an official publication of the American Library Association's Map and Geography Round Table (MAGERT). The purpose of base line 1s to provide current information on cartographic materials, other publications of interest to map and geography librarians, meetings, related governmental activities, and map librarianship. It is a medium of communication for members of MAGERT and information of interest is welcome. The opinions expressed by contribu~ors are their own and do not necessarily represent those of the American Library Association and MAGERT. EDITOR: PRODUCTION MANAGER: Carol Collier Tamsen Emerson Documents, Maps, and Reference Department Microforms Dept. Cae Library Cae Library University of Wyoming university of Wyoming Box 3334 Box 3334 Laramie, WY 82071-3334 Laramie, WY 82071-3334 (307) 766-6245 (307) 766-5532 Bitnet: carolc@uwyo ADVERTISING MANAGER: CATALOGING EDITOR: Linda Newman Nancy Vick Mines Library Map & Geography Library University of Nevada-Reno University of Illinois Reno, NV 89557 Urbana, IL 61801 (702) 784-6596 (217) 333-0827 NEW BOOKS EDITOR: NEW MAPS EDITOR: Julia Gelfand Stephen Littrell Reference Department Beeghly Library Main Library Ohio Wesleyan University University of California Delaware, Ohio 43015 Irvine, CA 92712 (614) 369-4431 ext.
    [Show full text]
  • CV-35 - Geovisualization | GIS&T Body of Knowledge 04.12.18, 12:47
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Geovisualization Cöltekin, Arzu ; Janetzko, Halldór ; Fabrikant, Sara I Abstract: Geovisualization is primarily understood as the process of interactively visualizing geographic information in any of the steps in spatial analyses, even though it can also refer to the visual output (e.g., plots, maps, combinations of these), or the associated techniques. Rooted in cartography, geovisualization emerged as a research thrust with the leadership of Alan MacEachren (Pennsylvania State University) and colleagues when interactive maps and digitally-enabled exploratory data analysis led to a paradigm shift in 1980s and 1990s. A core argument for geovisualization is that visual thinking using maps is integral to the scientific process and hypothesis generation, and the role of maps grew beyond communicating the end results of an analysis or documentation process. As such, geovisualization interacts with a number of disciplines including cartography, visual analytics, information visualization, scientific visualization, statistics, computer science, art-and-design, and cognitive science; borrowing from and contributing to each. In this entry, we provide a definition and a brief history of geovisualization including its fundamental concepts, elaborate on its relationship to other disciplines, and briefly review the skills/tools that are relevant in working with geovisualization environments. We finish the entry with a list of learning objectives, instructional questions, and additional resources. DOI: https://doi.org/10.22224/gistbok/2018.2.6 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-158851 Journal Article Published Version Originally published at: Cöltekin, Arzu; Janetzko, Halldór; Fabrikant, Sara I (2018).
    [Show full text]
  • Section Three
    1 2 3 4 5 6 7 8 SECTION THREE 9 10 11 12 Cartographic Aesthetics and Map Design 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 3.1 7 8 9 Introductory Essay: Cartographic 10 11 12 Aesthetics and Map Design 13 14 15 16 Chris Perkins, Martin Dodge and Rob Kitchin 17 18 19 20 Introduction offers only a partial means for explaining the deployment 21 of changing visual techniques. We finish with a consider- 22 If there is one thing that upsets professional cartographers ation of some of the practices and social contexts in which 23 more than anything else it is a poorly designed map; a aesthetics and designs are most apparent, suggesting the 24 map that lacks conventions such as a scale bar, or legend, or subjective is still important in mapping and that more 25 fails to follow convention with respect to symbology, name work needs to be undertaken into how mapping functions 26 placing and colour schemes, or is aesthetically unpleasing as a suite of social practices within wider visual culture.
    [Show full text]
  • The Convergence of Spatial Technologies
    Number 30, Spring 1998 cartographic perspectives 3 essay The Convergence of Spatial Technologies ere is a map test: Who is the biggest mapmaker in history? The Dutch Jeremy Crampton H map houses of Hondius or Mercator certainly published quite a few maps. But probably some government agency has published more-for Department of Geography and example, the CSGS has over 55,000 maps for the United States alone at the Earth Science 1:2.f,000 scale. Or maybe someone more recently? The Defense Mapping George Mason University Agency (now the l\:ational Imagery and Mapping Agency) put out thou­ Fairfax, VA 22030 sands of maps during the Gulf War, working in special 24-hour shifts (Clarke, 1992). Actually it is none of these. The biggest mapmaker in history, putting out more maps than anyone else, is undoubtedly MapQuest, an as yet little known unit of GeoSystems Global. According to the trade press, MapQuest produces over 1.5 million individual maps per day (lnterncf World, April 6, 1998). It is one of the reasons \.vhy CP Editor Mike Peterson claims that the Internet sees the publication of as many as 10 million maps per day and leads him to say that the impact of Internet mapping "will like!~· be greater than that of the printing press" (Peterson, 1997a, p. 2). Despite this productivity, MapQuest does not carry the ''wciglit" of more traditional cartography. Undoubtedly, one of the reasons for this is that its maps are mostly basic street maps automatically generated from databases, are fairly poorly designed, and are at low resolutions.
    [Show full text]
  • Big Country, Big Issues: Canada‘S Environment, Culture, and History
    Perspectives Big Country, Big Issues: Canada‘s Environment, Culture, and History Edited by NADINE KLOPFER CHRISTOF MAUCH 2011 / 4 RCC Perspectives Big Country, Big Issues: Canada‘s Environment, Culture, and History Edited by Nadine Klopfer and Christof Mauch 2011 / 4 2 RCC Perspectives Contents 04 Foreword Nadine Klopfer and Christof Mauch 06 A Little Essay on Big: Towards a History of Canada’s Size Alan MacEachern 16 Learning to Drive the Yukon River: Western Cartography and Athapaskan Story Maps David Neufeld 44 Montreal and Its Waters: An Entangled History Michèle Dagenais 60 Nutritional Science, Health, and Changing Northern Environments Liza Piper 86 A Lake of Opportunity: Rethinking Phosphorus Pollution and Resource Scarcity Andrea E. Ulrich 101 Pragmatism and Poetry: National Parks and the Story of Canada Claire Elizabeth Campbell Big Country, Big Issues 3 About the Authors Claire Elizabeth Campbell is an associate professor and the coordinator of the Cana- dian Studies program at Dalhousie University. Michèle Dagenais is a history professor at the Université de Montréal and an expert in urban history. Nadine Klopfer is a lecturer in North American history at the Amerika-Institut of LMU Munich. Alan MacEachern teaches history at the University of Western Ontario and is the director of NiCHE: Network in Canadian History and Environment / Nouvelle initiative canadienne en histoire de l’environnement. Christof Mauch is director of the Rachel Carson Center for Environment and Society at LMU Munich. David Neufeld is the Yukon and Western Arctic historian for Parks Canada. Liza Piper is an associate professor of history at the University of Alberta, Canada.
    [Show full text]
  • Paulo Raposo, Ph.D
    Paulo Raposo, Ph.D. Department of Geo-Information Processing (GIP) Faculty of Geo-Information Science and Earth Observation (ITC), The University of Twente ITC, Hengelosestraat 99, 7514 AE, Enschede, The Netherlands [email protected], [email protected], Phone +31 5 3489 9348 paulojraposo.github.io orcid.org/0000-0002-0699-8145 researchgate.net/prole/Paulo_Raposo2 scholar.google.com/citations?user=WCF5qMAAAAAJ github.com/paulojraposo gis.stackexchange.com/users/40481/paulo-raposo quora.com/prole/Paulo-Raposo-3 Curriculum Vitæ 2021-06-01 Employment Assistant Professor (Universitair Docent) of Geovisualization, Department of Geo-information Processing (GIP), Faculty of Geo-Information Science and Earth Observation (ITC), The University of Twente. September 1st, 2019 to present. Assistant Professor of Geographic Information Science, Department of Geography, The University of Tennessee, Knoxville. August 15th, 2016 to July 31st, 2019. Tenure-Track. Education Ph.D., August 13th 2016, Geography, Department of Geography, The Pennsylvania State University. Specialization in Cartog- raphy. Multiscale Raster Treatments for Map Generalization. Advised by Prof. Cynthia A. Brewer. MS, August 13th 2011, Geography, Department of Geography, The Pennsylvania State University. Specialization in Cartogra- phy. Scale-Specific Automated Map Line Simplification by Vertex Clustering on a Hexagonal Tessellation. Advised by Prof. Cynthia A. Brewer. Honours B.Sc. With High Distinction, June 19th 2008, Archaeological Science, Department of Anthropology, with GIS Minor, Department of Geography and Program in Planning, University of Toronto. Programming & Computing Procient in Python, JavaScript, PHP, and Java programming languages: data visualization, cartography, spatial computing, web and app development, image analysis. Procient with GIS, Linux, graphical, and analysis software packages, libraries, and APIs: ArcGIS, QGIS, D3, R, GDAL & OGR, Cesium, NASA WorldWind, Anaconda, matplotlib, numpy, networkx, MySQL, LATEX.
    [Show full text]
  • Cartographic Reason, Mapping and the Geo-Coded World John Pickles
    A History of Spaces Cartographic reason, mapping and the geo-coded world John Pickles I~ ~~O~!!~~i~~UP LONDON AND NEW YORK First published 2004 by Routledge For Lynn, Leon and my parents, and for three teachers: 11 New Fetter Lane, London EC4P 4EE Roger Downs, Peter Gonld and Joseph Kockelmans Simultaneously published in the USA and Canada by Routledge 29 West 35th Street, New York, NY 10001 Routledge is an imprint of the Taylor & Francis Group © 2004 John Pickles Typeset in Times by Wearset Ltd, Boldon, Tyne and Wear Printed and bound in Great Britain by The Cromwell Press, Trowbridge, Wiltshire All rights reserved. No part of this book may be reprinted or reproduced or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging in Publication Data Pickles, John, 1960- A history of spaces: cartographic reason, mapping, and the geo­ coded world! John Pickles. p.cm. Includes bibliographical references and index. 1. Cartography. L Title. GA105.3.P522004 526-dc21 2003008283 ISBN 0-415-14497-3 (hbk) ISBN 0-415-14498-1 (pbk) Contents One pylon marks the spot List of illustrations ix BBC News Monday, 15 October 200111:55GMT, Preface and acknowledgements http://news.bbc.co.uklhi/english/uk/england/newsid_160000011600225.stm xi A field in North Lincolnshire is the most featureless part of the UK, according to a new Ordnance Survey (OS) map.
    [Show full text]
  • Handbook of the American Association of Geographers
    Handbook of the American Association of Geographers About the AAG Logo The AAG logo consists of a world map on the Berghaus Star projection within two concentric circles containing the name of the organization and the year of its founding (1904). The Association adopted the logo in 1911. Star projections were developed in Austria and Germany in the second half of the nineteenth century. The Berghaus Star projection, developed in 1879 by Hermann Berghaus at the Perthes publishing house in Gotha, Germany is a modification of earlier star projections. It retains the polar azimuthal characteristics of its predecessors, but interrupts the southern hemisphere only five times (at longitudes 16, 88, and 160 degrees West, and 56 and 128 degrees East). The earlier star projections interrupted the southern hemisphere at eight longitudes. 1 CONSTITUTION OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS (Updated July 2020) I. Name. The name of the organization shall be the Association of American Geographers. II. Objectives. The objectives of the Association shall be to further professional investigations in geography and to encourage the application of geographic findings in education, government, and business. The Association shall support these objectives by promoting acquaintance and discussion among its members and with scholars in related fields by stimulating research and scientific exploration, by encouraging the publication of scholarly studies, and by performing services to aid the advancement of its members and the field of geography. The Associa- tion shall receive and administer funds in support of research and publication in the field of geography. III. Membership 1. Individual Members. Persons who are interested in the objectives of the Association are eligible for membership and shall become Members upon payment of dues and satisfaction of the Association’s Member eligibility policies.
    [Show full text]
  • Color Use Guidelines for Mapping and Visualization
    122 TERRY A. SLOCUM, ET AL. IBM Visualization Data Explorer (DX) Software Specifications Version 2.0. IBM, 8 Skyline Drive, Hawthorne, NY 10532, USA. Phone: 1-800-388- 9820. For information on DX modules available through Internet, telnet to info.tc.cornell.edu. Information about DX is available via Usenet news group comp.graphics.data-explorer. CHAPTER 7 Hardware/Software Requirements Memory: 32 MB minimum recommended (interactive playback of animated time Color Use Guidelines for Mapping series will require additional memory). Disk: 30MB minimum. 8-bit color XWindow support (12- and 24-bit color displays and three-dimensional graphics hardware is and Visualization supported if installed). Data Explorer runs on IBM Rise Systems and Power Visualization Systems, Sun, SGI, HP and DG. CYNTHIA A. BREWER* Khoros Department of Geography San Diego State University Software Specifications San Diego, CA 92182, USA Version l.O.S (August 1993). The Khoros Group, Khoral Research Inc., 4212 Courtney NE, Albuquerque, NM 87108, USA. E-mail: khoros­ [email protected]. Cost is free if acquired from various FTP sites including ftp .eece.unm.edu (129.24.24.10); code is located in the directory Introduction / pub/khoros (answers to frequently asked questions (FAQs) are in the directory When color is used "appropriately" on a map, the organization of the perceptual / pub/khoros/release]. By mail the cost is $250 US/Canada, $350 International; send dimensions of color corresponds to the logical organization in the mapped data. A e-mail to [email protected] for an order form. Optional color scheme typology is presented here that matches a comprehensive listing of consortium membership fee is $50,000/yr, and optional affiliate membership fee is the ways in which data are organized to corresponding organizations of hue and $5000/yr.
    [Show full text]
  • Download Download
    68 cartographic perspectives Number 51, Spring 2005 This list represents a compilation of students, both cartography and/or geography, that are members of the Robinson Academic Family Tree. Any omissions are entirely unintentional, and reflect more so the difficulties in finding historical documentation of “who was whose” student. ROBINSON FIRST SECOND THIRD FOURTH GENERATION GENERATION GENERATION GENERATION Arthur Robinson (PhDs) Daniele Ehrlich 1992 Kenneth McGuire 1992 Thomas Robert Weir 1951 Thomas Henderson 1996 Walter Frank Wood 1951 Robert Frohn 1997 Robert Nelson Young 1954 Thomas Loveland 1998 James John Flannery 1956 James Verdin 1999 Nasr Al-Sahhaf 2000 James Flannery (PhDs) Jennifer Gebelein 2001 David Block 1983 John Estes (MAs) David Howes 1983 Douglas Stow 1978 Benjamin Adetiba 1985 Peggy O’Neill 1980 James Flannery (MAs) Tara Torburn 1980 Hector Zamora 1967 Michael Wilson 1981 Charles Gloor 1968 Donald Taube 1981 Donald Rambadt 1968 Ci-Xiang Zhan 1981 Abhaya Attanayake 1968 Raul Ortega 1981 Wayne Sylvester 1971 Timothy Minor 1982 Terrence Taylor 1973 Susan Bertke 1982 John Jansen 1976 John Carlson 1982 Chris Baruth 1979 Elaine C. Ezra 1982 Charles Wells 1982 Charlene Sailer 1982 Kerry Antoniewicz 1987 Edward Almanza 1983 David Eckhardt 1983 Norman J. W. Thrower 1958 Fred Mertz 1984 Elizabeth Ritter 1985 Norman Thrower (PhDs) Rowena Carlson 1985 John Estes 1969 Lisa Mann 1985 Michael Cosentino 1986 John Estes (PhDs) Christiane Schmullius 1986 Thomas Logan 1983 Timothy Wade 1986 Stephen Yool 1985 David Stoms 1986 Timothy
    [Show full text]
  • Flow Map Layout
    Flow Map Layout Doantam Phan1, Ling Xiao1, Ron Yeh1, Pat Hanrahan2, and Terry Winograd2 Stanford University Figure 1. Flow Maps. (a) Minard’s 1864 flow map of wine exports from France [20] (b) Tobler’s computer generated flow map of migration from California from 1995 - 2000. [18; 19] (c) A flow map produced by our system that shows the same migration data. shows the spatial distribution of univariate geographic phenomena ABSTRACT [17]. Lines of varying width which represent the number of Cartographers have long used flow maps to show the movement objects being transferred are overlaid on the map. Visual clutter is of objects from one location to another, such as the number of reduced by merging edges that share destinations. The first flow people in a migration, the amount of goods being traded, or the maps illustrated rail ridership in Ireland and since then, number of packets in a network. The advantage of flow maps is cartographers have used flow maps to depict migrations, trade, that they reduce visual clutter by merging edges. Most flow maps and any data set with a from-to relationship [6]. are drawn by hand and there are few computer algorithms Our goal is to produce flow maps to visualize networks and available. We present a method for generating flow maps using other kinds of flow data. A well-drawn flow map allows a user to hierarchical clustering given a set of nodes, positions, and flow see the differences in magnitude among the flows with a data between the nodes. Our techniques are inspired by graph minimum of clutter.
    [Show full text]
  • Optimization Techniques for Geovisualization and Spatial Decision-Making
    NWACC 2005 Proof of Concept Grant Proposal Optimization Techniques For Geovisualization and Spatial Decision-Making Investigators Project Director: Other Participants: Jiunn-Der (Geoffrey) Duh Amy Lobben Assistant Professor Assistant Professor Geography, Portland State University Geography, the University of Oregon. Email: [email protected] Email: [email protected] Telephone: (503) 725-3159 Project Description In consultation with Dr. Amy Lobben in the Geography department at the University of Oregon, we will design, develop, and apply an optimization algorithm, simulated annealing, to facilitate the use of geovisualization techniques in geographic teaching. This project will involve innovative integration of an optimization algorithm, simulated annealing, and geovisualization software, ArcGIS. The work we do will prepare NWACC institutions to take immediate advantage of the integrated approach. The specific goals of this project are to: 1. Formulate the cartographic redistricting and name place problems so that they can be solved using simulated annealing. 2. Integrate simulated annealing with ESRI’s ArcGIS geovisualization software using Visual Basic for Applications (VBA) interface. 3. Design and create graphic user interface (GUI) for accessing VBA codes and spatial data. 4. Design and compile two hands-on learning modules and sample data sets. 5. Use the modules in teaching. Geovisualization, a way to present spatial data as maps, is an effective method for communicating spatial information. It is an especially effective tool for geographic education (Dibiase et al 1992, Duh et al 1998), especially for introducing topics that involve arranging objects in space, a common exercise in cartography and spatial decision-making. However, despite the proven effectiveness, there are few convenient and effective tools that serve this capacity for geographic education.
    [Show full text]