Dennis, Tristan Philip Wesley (2018) Mining Genome Data for Endogenous Viral Elements and Interferon Stimulated Genes: Insights Into Host Virus Co- Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Dennis, Tristan Philip Wesley (2018) Mining Genome Data for Endogenous Viral Elements and Interferon Stimulated Genes: Insights Into Host Virus Co- Evolution Dennis, Tristan Philip Wesley (2018) Mining genome data for endogenous viral elements and interferon stimulated genes: insights into host virus co- evolution. PhD thesis. https://theses.gla.ac.uk/30887/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Mining genome data for endogenous viral elements and interferon stimulated genes: insights into host virus co-evolution by Tristan Philip Wesley Dennis BSc (Hons) Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy (PhD). MRC-University of Glasgow Centre for Virus Research College of Medical, Veterinary and Life Sciences July 2018 Abstract Paleovirology is the study of viruses over evolutionary timescales. Contemporary paleovirological analyses often rely on sequence data, derived from organism genome assemblies. These sequences are the germline inherited remnants of past viral infection, in the form of endogenous viral elements and the host immune genes that are evolving to combat viruses. Their study has found that viruses have exerted profound influences on host evolution, and highlighted the conflicts between viruses and host immunity. As genome sequencing technology cheapens, the accumulation of genome data increases, furthering the potential for paleovirological insights. However, data on ERVs, EVEs and antiviral gene evolution, are often not captured by automated annotation pipelines. As such, there is scope for investigations and tools that investigate the burgeoning bulk of genome data for virus and antiviral gene sequence data in the search of paleovirological insight. I used DIGS, a similarity-searched based framework, in heuristic investigations of host:virus co-evolution in three contexts: ERVs, EVEs and interferon stimulated genes (ISGs). These three projects were unified by the approach and theme: the heuristic, similarity search based mining of genome sequences for insight into host:virus co-evolution. In the first project, I identified and characterised five novel murine ERV lineages, and used murine ERV sequences to provide insight into the recent acquisition and functionalisation of murine ERVs. In the second project, I performed a comparative analysis of animal endogenous circoviruses (CVe), increasing the known past host range of family Circoviridae and finding that genus Cyclovirus is more likely to be a clade of arthropod viruses than vertebrate viruses, in conflict with recent metagenomics analyses. In the third project, I screened mammalian genomes in an attempt to identify lineage specific patterns of ISG expansion and loss, finding three novel instances of ISG loss in cetaceans and felid carnivores. Together, these datasets will be of great utility in future studies of host:virus co-evolution, and underscore the utility of searching WGS data for paleovirological insight. 1 Table of contents Abstract 1 Table of contents 2 List of figures 6 List of tables 8 Acknowledgements 9 Author’s Declaration 10 Publications included in this thesis 11 Abbreviations 12 1 – Introduction 15 1.1 – Direct paleovirology – Endogenous retroviruses 16 1.1.1 - Retroviral genome structure 17 1.1.2 - Retroviral life cycle 18 1.1.3 - Retroviral gene products 19 1.1.4 – Accessory genes 22 1.2 – ERV structure, replication and classification 24 1.2.1 - ERV structure 24 1.2.2 - ERV amplification 24 1.2.3 - Retroviral taxonomy 26 1.2.4 - Class I retroviruses 28 1.2.5 - Class II retroviruses 29 1.2.6 - Class III retroviruses 30 1.3 – ERVs and the host 31 1.3.1 – Retroviruses and disease 31 1.3.2 – Restriction factors 32 1.3.3 - Exapted sequences 32 1.3.4 – Epigenetics 33 1.3.5 - LTR based gene regulation 34 1.4 – Murine ERVs 36 1.4.1 - Class I murine ERVs 37 1.4.2 - Class II murine ERVs 38 1.4.3 - Class III murine ERVs 39 1.4.4 - ERV-like transposons 39 1.5 – Direct paleovirology: EVEs 40 2 1.5.1 – Circoviruses 41 1.5.2 - Circovirus classification 42 1.5.3 - Circovirus diversity, host range, and role in disease 43 1.6 - Indirect paleovirology – antiviral genes 45 1.6.1 - Interferon stimulated genes (ISGs). 45 1.6.2 – Virus:ISG coevolution 45 1.6.3 – Antiviral gene dynamism 46 1.7 - Using paleovirology to study host:virus co-evolution 47 1.7.1 - Phylogenetic analysis 48 1.7.2 - Sequence analysis 50 1.7.3 – The timeline of host:virus co-evolution 51 1.7.4 – Functional genomics analyses 52 1.7.5 – Study of gene evolution 53 1.8 – Mining genome data for paleovirological insight 53 1.8.1 – Similarity searches 53 1.8.2 - Introduction to DIGS 56 1.8.3 - Why use DIGS? 57 1.9 - Research scope and aims 58 2 – Materials and Methods 59 2.1 - Materials 60 2.1.1 – Sequence data 59 2.1.2 – Software and tools 62 2.2 – Methods 65 2.2.1 – DIGS 65 2.2.2 - GLUE 65 2.2.3 - Host evolutionary timelines 70 2.2.4 – Recovery of proviruses 70 2.2.5 – Provirus screening and consolidation 70 2.2.6 – Sequence analysis 71 2.2.7 – Pairwise LTR dating 71 2.2.8 – Enrichment of genomic features at ERV loci 72 2.2.9 – Chromosomal distribution of ERVs 73 2.2.10 – Orthologous ERV and EVE integrations 73 2.2.11 – CVe sequence analyses 73 2.2.12 – PCR of CVe-Pseudomyrmex –Peter Flynn 73 2.2.13 – ISG screen design 74 3 2.2.14 – ISG data processing and display 74 2.2.15 – Shared genomic organisation 75 3 – Discovery and characterisation of murine endogenous retroviruses 76 3.1 – Introduction 76 3.2 – Results 79 3.2.1 - Assessment of murine ERV diversity using phylogenetic screening 79 3.2.2 - Identification of additional murine ER`V lineages 82 3.2.3 - Evolutionary history of Gag and Env 85 3.2.4 - A survey of murine ERV counts 87 3.2.5 - Analysis of novel ERVs 89 3.2.6 - Evolutionary analysis of murine ERVs 93 3.2.7 - Functional analysis of murine ERVs 102 3.2.9 – Dating ERV integrations 106 3.3 – Discussion 109 3.3.1 – Generation of a murine ERV dataset 109 3.3.2 – A transition in murine:ERV co-evolutionary history 109 3.3.3 – Identification of ERVs potentially involved in physiological processes 111 3.3.4 – Conclusions 113 4 - Paleovirological analyses of endogenous circoviruses 114 4.1 – Introduction 115 4.2 - Results 118 4.2.1 - Identification and characterisation of animal CVe 118 4.3.2 – Identification of orthologs and construction of a timeline of CVe evolution 124 4.3.3 - Phylogenetic analysis of Circoviridae Rep 127 4.3.4 - Phylogenetic analysis of Circoviridae Cap 131 4.3.5 - Species breakdown 133 4.3.5.1 - CVe in jawless fish 133 4.3.5.2 - CVe in Actinoperygii 134 4.3.5.3 - CVe in amphibians 135 4.3.5.4 - CVe in reptiles 136 4.3.5.5 - CVe in birds 136 4.3.5.6 - CVe in mammals 137 4.3.5.6 - CVe in mites 140 4 4.3.5.7 - CVe in ants 140 4.3.5.8 - CVe in other invertebrates 141 4.4 – Discussion 143 4.4.1 – Assessment of the methods 143 4.4.2 - CVe provide information about circovirus evolution 143 4.4.3 - Mapping the host range of circoviruses 144 4.4.4 - Impact of CVe on host genome evolution 147 4.4.5 – Conclusions 148 5 – Searching for ISG expansion and loss in mammals 150 5.1 – Introduction 150 5.2 – Results 152 5.2.1 - Initial screening and results 152 5.2.2 – IFIT 157 5.2.3 - XAF1 161 5.2.4 - SERTAD1 163 5.2.5 - Other potentially deleted genes 163 5.3 – Discussion 165 5.3.1 – Assessment of the methods 165 5.3.2 – Deletions in mammalian xaf1 and ifit 166 5.3.3 – Conclusions 168 6 - General discussion 169 6.1 – Assessment of the methods 169 6.2 - Future directions 171 6.3 – Conclusions 172 Bibliography 174 Appendices 200 5 List of figures Figure 1.1 - Canonical retroviral genome structure 17 Figure 1.2 – Reverse transcription 21 Figure 1.3 - ERV structures 25 Figure 1.4 - ERV amplification strategies 26 Figure 1.5 - Unrooted pol NJ phylogeny of Retroviridae 27 Figure 1.6 - Distinguishing structural features of retrovirus groups 28 Figure 1.7 - KAP1 (TRIM28) repression of ERV expression 35 Figure 1.8 - Phylogeny of known murine ERV lineages 36 Figure 1.9 - Canonical circovirus genome structure. 43 Figure 1.10 - ERV amplification dynamics reflected in their phylogenies. 50 Figure 1.11 - ERV invasion leads to orthologous integrations 52 Figure 1.12 - Strategies for similarity searches of genomes 55 Figure 1.12 - Basic DIGS searching strategy 56 Figure 2.1 – Genome screening in DIGS. 68 Figure 2.2 - Phylogenetic screening with DIGS 68 Figure 2.3 - Entity-Relationship diagram of database generated by DIGS 69 Figure 3.1 – The mouse genome contains 13 distinct ERV lineages. 81 Figure 3.2 - Phylogenetic relationships between murine and nonmurine gammaretrovirus Pol sequences 84 Figure 3.3 - Phylogenetic relationships between murine and nonmurine Betaretroviruses 85 Figure 3.4 - Phylogenetic relationships between murine and nonmurine gammaretrovirus Gag sequences 86 Figure 3.5: Phylogenetic relationships between murine and nonmurine gammaretrovirus TM sequences 87 Figure 3.6 - Genome structures of novel murine ERV lineages 92 Figure 3.7 – ML phylogenies of murine ERVs 98 Figure 3.8 - Enrichment of ERVs relative to transcription start sites 103 Figure 3.9 - Enrichment of TF binding and H methylation at ERV loci 103 Figure 3.10 – Paired LTR estimation of murine ERV integration dates 107 Figure 3.12 – Orthologs of four murine ERV lineages 108 6 Figure 4.1 - Genome structures of 24 endogenous circovirus (CVe) elements identified in animal genomes.
Recommended publications
  • The Role of Type I Interferon in the Immunobiology of Chikungunya Virus
    The role of type I interferon in the immunobiology of chikungunya virus Jane Amelia Clare Wilson B. App. Sc. (Human Biology), B. App. Sc. (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Medicine & QIMR Berghofer Medical Research Institute I Abstract Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause explosive outbreaks of a febrile, arthritic/arthralgic disease usually lasting weeks to months, and in rare cases, more than a year. In 2004, the largest ever CHIKV outbreak began in Kenya, spreading to islands of the Indian Ocean, India, South East Asia and major outbreaks have recently occurred in the South Pacific Islands and the Caribbean. The host type I interferon (IFN) response is crucial for effective control of CHIKV infection. Herein, the dynamics, source and responses generated by the type I IFNs following CHIKV infection were investigated. Interferon regulatory factors 3 (IRF3) and IRF7 are key transcription factors for the type I IFN response. While CHIKV infection of wild-type mice is non-lethal, infection of mice deficient in both IRF3 and IRF7 (IRF3/7-/-) resulted in mortality, illustrating that these factors are essential for protection. Using knockout mice for the adaptor molecules upstream of IRF3 and 7, IPS1 was found to be the most important for type I IFN production, with TRIF and MyD88 also contributing to the response. Mortality in IRF3/7-/- mice was also associated with type I IFN suppression of pathological levels of IFNγ and haemorrhagic shock. Heterozygous reporter mice, in which eGFP was expressed under the control of either the IFNβ or the IFNα6 promoter on one chromosome, were employed to try and identify the cellular source of type I IFN production following CHIVK infection.
    [Show full text]
  • Ggbio: Visualization Toolkits for Genomic Data
    ggbio: visualization toolkits for genomic data 1 Tengfei Yin [email protected] May 19, 2021 Contents 1 Getting started............................4 1.1 Citation.................................4 1.2 Introduction ..............................4 2 Case study: building your first tracks..............6 2.1 Add an ideogram track ........................6 2.2 Add a gene model track .......................7 2.2.1 Introduction ...........................7 2.2.2 Make gene model from OrganismDb object ............7 2.2.3 Make gene model from TxDb object ................ 11 2.2.4 Make gene model from EnsDb object ............... 12 2.2.5 Make gene model from GRangesList object ............ 16 2.3 Add a reference track ........................ 19 2.3.1 Semantic zoom.......................... 19 2.4 Add an alignment track ....................... 20 2.5 Add a variants track ......................... 25 2.6 Building your tracks ......................... 28 3 Simple navigation .......................... 30 4 Overview plots............................ 32 4.1 how to make circular plots ...................... 32 4.1.1 Introduction ........................... 32 4.1.2 Buidling circular plot layer by layer................. 32 2 ggbio:visualization toolkits for genomic data 4.1.3 Complex arragnment of plots ................... 39 4.2 How to make grandlinear plots ................... 41 4.2.1 Introduction ........................... 41 4.2.2 Corrdinate genome ........................ 43 4.2.3 Convenient plotGrandLinear function ............... 43 4.2.4 How to highlight some points? .................. 45 4.3 How to make stacked karyogram overview plots ......... 46 4.3.1 Introduction ........................... 46 4.3.2 Create karyogram temlate .................... 46 4.3.3 Add data on karyogram layout................... 48 4.3.4 Add more data using layout_karyogram function .......... 51 4.3.5 More flexible layout of karyogram ................
    [Show full text]
  • THE POSSIBLE ROLE of ENDOGENOUS RETROVIRUSES in TUMOUR DEVELOPMENT & INNATE SIGNALLING by EMMANUEL ATANGANA MAZE a Thesis Su
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2018 THE POSSIBLE ROLE OF ENDOGENOUS RETROVIRUSES IN TUMOUR DEVELOPMENT AND INNATE SIGNALLING Atangana Maze, Emmanuel http://hdl.handle.net/10026.1/13081 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. THE POSSIBLE ROLE OF ENDOGENOUS RETROVIRUSES IN TUMOUR DEVELOPMENT & INNATE SIGNALLING by EMMANUEL ATANGANA MAZE A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Biomedical Sciences 2018 COPYRIGHT STATEMENT This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author’s prior consent. 2 THE POSSIBLE ROLE OF ENDOGENOUS RETROVIRUSES IN TUMOUR DEVELOPMENT & INNATE SIGNALLING by EMMANUEL ATANGANA MAZE UNIVERSITY OF PLYMOUTH School of Biomedical Sciences 2018 3 “You are the light of the world. A town built on a hill cannot be hidden. Neither do people light a lamp and put it under a bowl. Instead they put it on its stand, and it gives light to everyone in the house.
    [Show full text]
  • Precise and Sustained Gene Silencing in CD4+ Cells Using Designer Epigenome Modifiers As a Therapeutic Approach to Treat HIV Infection
    Precise and sustained gene silencing in CD4+ cells using designer epigenome modifiers as a therapeutic approach to treat HIV infection Inaugural-Dissertation to obtain the Doctoral Degree Faculty of Biology, Albert-Ludwigs-Universität Freiburg im Breisgau presented by Tafadzwa Mlambo born in Harare, Zimbabwe Freiburg im Breisgau February 2018 Dekanin: Prof. Dr. Bettina Warscheid Promotionsvorsitzender: Prof. Dr. Andreas Hiltbrunner Betreuer der Arbeit: Dr. Claudio Mussolino Referent: Prof. Dr. Toni Cathomen Ko-Referent: Prof. Dr. Peter Stäheli Drittprüfer: Dr. Giorgos Pyrowolakis Datum der mündlichen Prüfung: 27.04.2018 iii Table of Contents TABLE OF CONTENTS TABLE OF CONTENTS III ABSTRACT VIII 1. INTRODUCTION 11 1.1 HIV BURDEN AND EPIDEMIOLOGY 11 1.2 HIV LIFE CYCLE AND TROPISM 12 1.3 HIV TREATMENT 14 1.4 CCR5 AND CXCR4 AS TARGETS OF ANTI-HIV THERAPY 15 1.5 DESIGNER NUCLEASE TECHNOLOGY 17 1.5.1 Zinc finger nucleases 19 1.5.2 Transcription activator-like effector nucleases 20 1.5.3 RNA-guided endonucleases 21 1.6 HIV GENE THERAPY 22 1.7 OFF-TARGET EFFECTS 25 1.8 DELIVERY 27 1.9 EPIGENETIC REGULATION 30 1.9.1 Gene expression 30 1.9.2 Transcriptional regulation of gene expression 31 1.9.3 Targeted transcription activation 32 1.9.4 Targeted transcription repression 33 1.9.5 Epigenome editing 36 1.9.6 DNA methylation 38 iv Table of Contents 1.9.7 Designer epigenome modifiers 40 1.10 AIM AND OBJECTIVES OF PHD THESIS 42 2. MATERIALS AND METHODS 44 2.1 STANDARD MOLECULAR BIOLOGY METHODS 44 2.1.1 Restriction digest 44 2.1.2 Ligation 44 2.1.3 Polymerase
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Origins and Evolution of the Global RNA Virome
    bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Origins and Evolution of the Global RNA Virome 2 Yuri I. Wolfa, Darius Kazlauskasb,c, Jaime Iranzoa, Adriana Lucía-Sanza,d, Jens H. 3 Kuhne, Mart Krupovicc, Valerian V. Doljaf,#, Eugene V. Koonina 4 aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA 5 b Vilniaus universitetas biotechnologijos institutas, Vilnius, Lithuania 6 c Département de Microbiologie, Institut Pasteur, Paris, France 7 dCentro Nacional de Biotecnología, Madrid, Spain 8 eIntegrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious 9 Diseases, National Institutes of Health, Frederick, Maryland, USA 10 fDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 11 12 #Address correspondence to Valerian V. Dolja, [email protected] 13 14 Running title: Global RNA Virome 15 16 KEYWORDS 17 virus evolution, RNA virome, RNA-dependent RNA polymerase, phylogenomics, horizontal 18 virus transfer, virus classification, virus taxonomy 1 bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in 21 animals and plants. The recent advances of metaviromics prompted us to perform a detailed 22 phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome.
    [Show full text]
  • Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage Fd Targeted to DEC-205
    Hindawi Publishing Corporation Journal of Immunology Research Volume 2015, Article ID 585078, 11 pages http://dx.doi.org/10.1155/2015/585078 Research Article Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage fd Targeted to DEC-205 Luciana D’Apice,1 Valerio Costa,2 Rossella Sartorius,1 Maria Trovato,1 Marianna Aprile,2 and Piergiuseppe De Berardinis1 1 Institute of Protein Biochemistry (IBP), National Council of Research, 80131 Naples, Italy 2Institute of Genetics and Biophysics “A. Buzzati-Traverso” (IGB), National Council of Research, 80131 Naples, Italy Correspondence should be addressed to Luciana D’Apice; [email protected] Received 26 March 2015; Accepted 27 May 2015 Academic Editor: L. Leite Copyright © 2015 Luciana D’Apice et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The filamentous bacteriophage fd, codisplaying antigenic determinants and a single chain antibody fragment directed against the dendritic cell receptor DEC-205, is a promising vaccine candidate for its safety and its ability to elicit innate and adaptive immune response in absence of adjuvants. By using a system vaccinology approach based on RNA-Sequencing (RNA-Seq) analysis, we describe a relevant gene modulation in dendritic cells pulsed with anti-DEC-205 bacteriophages fd. RNA-Seq data analysis indicates that the bacteriophage fd virions are sensed as a pathogen by dendritic cells; they activate the danger receptors that trigger an innate immune response and thus confer a strong adjuvanticity that is needed to obtain a long-lasting adaptive immune response.
    [Show full text]
  • Anglemetry of Neural Axis Cell Differentiation Genes by Structural Pressurotopy of DNA Loop Strand Segment Tropy in Reference to Tissue Macro-Compliance Hemant Sarin
    Sarin Translational Medicine Communications (2019) 4:13 Translational Medicine https://doi.org/10.1186/s41231-019-0045-4 Communications RESEARCH Open Access Anglemetry of neural axis cell differentiation genes by structural pressurotopy of DNA loop strand segment tropy in reference to tissue macro-compliance Hemant Sarin Abstract Background: Even as the eukaryotic stranded DNA is known to heterochromatinize at the nuclear envelope in response to mechanical strain, the precise mechanistic basis for alterations in chromatin gene transcription in differentiating cell lineages has been difficult to determine due to limited spatial resolution for detection of shifts in reference to a specific gene in vitro. In this study, heterochromatin shift during euchromatin gene transcription has been studied by parallel determinations of DNA strand loop segmentation tropy nano-compliance (esebssiwaagoTQ units, linear nl), gene positioning angulation in linear normal two- 0 dimensional (2-D) z, y-vertical plane (anglemetry, ), horizontal alignment to the z, x-plane (vectormetry; mA, mM,a.u.),andby pressuromodulation mapping of differentiated neuron cell sub-class operating range for neuroaxis gene expression in reference to tissue macro-compliance (Peff). Methods: The esebssiwaagoTQ effectivepressureunit(Peff) maxima and minima for horizontal gene intergene base segment tropy loop alignment were determined (n = 224); the Peff esebssiwaagoTQ quotient were determined (n =28)foranalysisof gene intergene base loop segment tropy structure nano-compliance (n = 28; n = 188); and gene positioning anglemetry and vectormetry was performed (n = 42). The sebs intercept-to-sebssiwa intercept quotient for linear normalization was determined (bsebs/bsebssiwa) by exponential plotting of sub-episode block sum (sebs) (x1, y1; x2, y2) and sub-episode block sum split integrated weighted average (sebssiwa) functions was performed, and the sebs – sebssiwa function residuals were determined.
    [Show full text]
  • Type I Interferon Remodels Lysosome Function and Modifies Intestinal Epithelial Defense
    Type I interferon remodels lysosome function and modifies intestinal epithelial defense Hailong Zhanga,b,c, Abdelrahim Zoueda,b,c, Xu Liua,b,c, Brandon Sitb,c, and Matthew K. Waldora,b,c,1 aHoward Hughes Medical Insitute, Boston, MA 02115; bDivision of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115; and cDepartment of Microbiology, Harvard Medical School, Boston, MA 02115 Edited by Jorge E. Galán, Yale University, New Haven, CT, and approved October 14, 2020 (received for review May 29, 2020) Organelle remodeling is critical for cellular homeostasis, but host the full spectrum of IFN-I-mediated changes in cellular function factors that control organelle function during microbial infection is incomplete. Although IFN-Is are known to play critical roles in remain largely uncharacterized. Here, a genome-scale CRISPR/Cas9 antiviral responses, their functions in bacterial infection are less screen in intestinal epithelial cells with the prototypical intracellu- clear, and IFN-I signaling has been reported to be either pro- lar bacterial pathogen Salmonella led us to discover that type I IFN tective or detrimental to the host depending on the specific (IFN-I) remodels lysosomes. Even in the absence of infection, IFN-I bacterial pathogen (19). signaling modified the localization, acidification, protease activity, Here, we carried out a genome-scale CRISPR/Cas9 screen to and proteomic profile of lysosomes. Proteomic and genetic analyses identify the host factors that contribute to Stm’s cytotoxicity to revealed that multiple IFN-I–stimulated genes including IFITM3, SLC15A3, IECs. This screen revealed IFN-I signaling as a key susceptibility and CNP contribute to lysosome acidification.
    [Show full text]
  • Plasma Fatty Acid Ratios Affect Blood Gene Expression Profiles - a Cross-Sectional Study of the Norwegian Women and Cancer Post-Genome Cohort
    Plasma Fatty Acid Ratios Affect Blood Gene Expression Profiles - A Cross-Sectional Study of the Norwegian Women and Cancer Post-Genome Cohort Karina Standahl Olsen1*, Christopher Fenton2, Livar Frøyland3, Marit Waaseth4, Ruth H. Paulssen2, Eiliv Lund1 1 Department of Community Medicine, University of Tromsø, Tromsø, Norway, 2 Department of Clinical Medicine, University of Tromsø, Tromsø, Norway, 3 National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway, 4 Department of Pharmacy, University of Tromsø, Tromsø, Norway Abstract High blood concentrations of n-6 fatty acids (FAs) relative to n-3 FAs may lead to a ‘‘physiological switch’’ towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3) in a cross-section of middle-aged Norwegian women (n = 227). After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3), the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/ n-3 ratio (125 genes) and the AA/EPA ratio (72 genes). All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Microglial Responses to Peripheral Type 1 Interferon Ernest Aw1,2, Yingying Zhang1 and Michael Carroll1*
    Aw et al. Journal of Neuroinflammation (2020) 17:340 https://doi.org/10.1186/s12974-020-02003-z RESEARCH Open Access Microglial responses to peripheral type 1 interferon Ernest Aw1,2, Yingying Zhang1 and Michael Carroll1* Abstract Background: Interferon α (IFNα) is a cytokine whose production is increased endogenously in response to viral infection and in autoimmune diseases such as systemic lupus erythematosus (SLE). An elevated IFNα signature has been associated with clinically observed neuro-behavioural deficits such as mild cognitive impairment, fatigue, depression and psychosis in these diseases. However, the mechanisms underlying these neuropsychiatric symptoms remain largely unknown, and it is as yet unclear how IFNα signalling might influence central nervous system (CNS) function. Aberrant microglia-mediated synaptic pruning and function has recently been implicated in several neurodegenerative and neuropsychiatric diseases, but whether and how IFNα modulates these functions are not well defined. Methods: Using a model of peripheral IFNα administration, we investigated gene expression changes due to IFNAR signalling in microglia. Bulk RNA sequencing on sorted microglia from wild type and microglia-specific Ifnar1 conditional knockout mice was performed to evaluate IFNα and IFNAR signalling-dependent changes in gene expression. Furthermore, the effects of IFNα on microglia morphology and synapse engulfment were assessed, via immunohistochemistry and flow cytometry. Results: We found that IFNα exposure through the periphery induces a unique gene signature in microglia that includes the expected upregulation of multiple interferon-stimulated genes (ISGs), as well as the complement component C4b. We additionally characterized several IFNα-dependent changes in microglial phenotype, including expression of CD45 and CD68, cellular morphology and presynaptic engulfment, that reveal subtle brain region- specific differences.
    [Show full text]