Fidelity of Human Immunodeficiency Viruses Type 1 and Type 2 Reverse Transcriptases in DNA Synthesis Reactions Using DNA and RNA Templates
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSIDAD AUTÓNOMA DE MADRID Programa de Doctorado en Biociencias Moleculares Fidelity of Human Immunodeficiency Viruses Type 1 and Type 2 Reverse Transcriptases in DNA Synthesis Reactions using DNA and RNA Templates Alba Sebastián Martín Madrid, noviembre, 2018 Universidad Autónoma de Madrid Facultad de Ciencias Departamento de Biología Molecular Programa de doctorado en Biociencias Moleculares Fidelity of Human Immunodeficiency Viruses Type 1 and Type 2 Reverse Transcriptases in DNA Synthesis Reactions using DNA and RNA Templates Memoria presentada por Alba Sebastián Martín, graduada en Biología, para optar al título de doctora en Biociencias Moleculares por la Universidad Autónoma de Madrid Director de la Tesis: Dr. Luis Menéndez Arias Este trabajo ha sido realizado en el Centro de Biología Molecular ‘Severo Ochoa’ (UAM-CSIC), con el apoyo de una beca de Formación de Profesorado Universitario, financiada por el Ministerio de Educación, Cultura y Deporte (FPU13/00693). Abbreviations 3TC 2’ 3’-dideoxy-3’-thiacytidine AIDS Acquired immunodeficiency syndrome AMV Avian myeloblastosis virus APOBEC Apolipoprotein B mRNA editing enzyme ATP Adenosine 5’ triphosphate AZT 3’-azido-2’, 3’-dideoxythymidine (zidovudine) AZT-MP 3´-azido-2´, 3´-dideoxythymidine monophosphate AZTppppA 3´azido-3´-deoxythymidine-(5´)-tetraphospho-(5´)-adenosine bp Base pair BSA Bovine serum albumin CA Capsid protein cDNA Complementary DNA Cir-Seq Circular sequencing CypA Cyclophilin A dATP 2’-deoxyadenoside 5’-triphosphate dCTP 2’-deoxycytidine 5’-triphosphate ddC 2’, 3’-dideoxycytidine ddI 2’, 3’-dideoxyinosine dGTP 2’-deoxyguanoside 5’-triphosphate DNA Deoxyribonucleic acid dNTP 2’-deoxynucleoside 5’-triphosphate dsDNA Double-stranded DNA DTT Dithiothreitol dTTP 2’-deoxythymidine 5’-triphosphate EDTA Ethylenediaminetetraacetic acid Env Envelope proteins ESCRT Endosomal sorting complex required for transport FeLV Feline leukemia virus fext Mispair extension ratio fins Misinsertion efficiency constant FIV Feline immunodeficiency virus FPCM Fundación Parque Científico de Madrid gRNA Genomic RNA HiRes-Seq High resolution sequencing HIV-1 Human immunodeficiency virus type 1 HIV-2 Human immunodeficiency virus type 2 HTLV-III Human T-lymphotropic virus type III ICTV International Committee on Taxonomy of Viruses IN Integrase IPTG Isopropyl β-D-1-thiogalactopyranoside kcat Steady-state turnover number Kd Dissociation equilibrium constant Km Michaelis constant kobs Apparent kinetic constant koff Dissociation rate constant kpol Nucleotide incorporation rate kpol/Kd Catalytic efficiency lacZ Gene encoding the β-galactosidase enzyme LAV Lymphoadenopathy-associated virus LEDGF Lens epithelium-derived growth factor LTR Long-terminal repeat MA Matrix protein MCS Multicloning site MLV Murine leukemia virus mRNA Messenger RNA NC Nucleocapsid protein Nef Negative regulating factor NGS Next-generation sequencing NNRTI Non-nucleoside reverse transcriptase inhibitor NRTI Nucleoside reverse transcriptase inhibitor PCR Polymerase chain reaction PEG Polyethylene glycol PFV Prototype primate foamy virus PIC Pre-integration complex PMSF Phenylmethylsulfonyl fluoride PNK Polynucleotide kinase PPT Polypurine tract PR Protease RBS Ribosome binding site Rep-Seq Replicated sequencing RF Replicative form RNA Ribonucleic acid RNase H Ribonuclease H RNAP RNA polymerase RT Reverse transcriptase SAMHD1 Sterile α motif domain and histidine-aspartic domain-containing protein 1 SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis SIV Simian immunodeficiency virus SSC Saline-sodium citrate ssDNA Single-stranded DNA ssRNA Single-stranded RNA SU Surface subunit TAM Thymidine analogue mutation TAM1 Thymidine analogue mutation pathway 1 TAM2 Thymidine analogue mutation pathway 2 TM Transmembrane subunit TRIM5α Tripartite motif-containing protein 5 T/P Template/primer U3 Unique 3’-region U5 Unique 5’-region Vif Viral infectivity factor Vpr Viral protein R Vpu Viral protein unique Vpx Viral protein X WT Wild-type (w/v) (weight/volume) X-Gal 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside XMRV Xenotropic murine leukemia virus-related virus Amino acids, one and three letters codes A Ala Alanine C Cys Cysteine D Asp Aspartic acid E Glu Glutamic acid F Phe Phenylalanine G Gly Glycine H His Histidine I Ile Isoleucine K Lys Lysine L Leu Leucine M Met Methionine N Asn Asparagine P Pro Proline Q Gln Glutamine R Arg Arginine S Ser Serine T Thr Threonine V Val Valine W Trp Tryptophan Y Tyr Tyrosine INDEX SUMMARY 1 RESUMEN 3 1. INTRODUCTION...................................................................................................... 7 1.1. Human immunodeficiency virus 7 1.2. HIV virion 9 1.3. Cycle of HIV infection 11 1.4. HIV RT 14 1.4.1. Structure 14 1.4.2. RT activities 16 1.4.2.1. DNA polymerization 16 1.4.2.2. RNase H 17 1.4.3. Fidelity of RTs 18 1.4.3.1. Experimental methods to estimate the accuracy of RTs in vitro 19 1.4.3.1.1. Biochemical assays 19 1.4.3.1.2. Genetic assays 21 1.4.3.1.3. Deep sequencing assays 22 1.4.3.2. DNA-dependent DNA synthesis fidelity of WT and multidrug-resistant HIV-2 RTs 24 1.4.3.3. RNA-dependent DNA synthesis fidelity of retroviral RTs 26 2. OBJECTIVES………………………………………………………………………. 31 3. MATERIALS AND METHODS…………………………………………………... 35 3.1. Enzymes and bacterial strains 35 3.2. RT purification 36 3.2.1. HIV-1 RTs 36 3.2.1.1. Site-directed mutagenesis 37 3.2.1.2. Expression of HIV-1 RT p66/p51 heterodimers 38 3.2.1.3. Lysis of bacteria 38 3.2.1.4. Cation-exchange chromatography 38 3.2.1.5. Affinity chromatography 39 3.2.1.6. Dialysis and concentration 39 3.2.2. Purification of HIV-2 RTs 40 3.2.2.1. Site-directed mutagenesis 40 3.2.2.2. Expression of HIV-2 RT p68/p54 heterodimers 42 3.2.2.3. Lysis of bacteria 42 3.2.2.4. Affinity chromatography 42 3.2.2.5. Cation-exchange chromatography 43 3.3. Purification of T7 RNA polymerase 43 3.3.1. Expression of T7 RNAP 44 3.3.2. Lysis of bacteria 44 3.3.3. Affinity chromatography 45 3.3.4. Dialysis and concentration 45 3.4. M13mp2 forward mutation assays 45 3.4.1. Determination of DNA-dependent DNA synthesis fidelity of RTs 45 3.4.1.1. Preparation of “gapped DNA” 45 3.4.1.1.1. Purification of phage M13mp2 ssDNA 46 3.4.1.1.2. Purification of phage M13mp2 dsDNA and digestion 47 3.4.1.1.3. Hybridization of ssDNA and 6789-bp dsDNA fragment 47 3.4.1.2. Gap-filling synthesis reaction 48 3.4.1.3. Preparation of competent cells 48 3.4.1.4. Electroporation and plating 49 3.4.1.5. Selection and analysis of mutant plaques 49 3.4.2. Determination of RNA-dependent DNA synthesis fidelity of RTs 51 3.4.2.1. Purification of RNA template 51 3.4.2.2. Synthesis of complementary DNA 53 3.4.2.3. Phosphorylation and hybridization of cDNA with “gapped DNA” 54 3.4.2.4. Plating, selection and analysis of mutant plaques 54 3.5. Promoter-dependent transcription assays 54 3.6. Promoter-independent single-nucleotide transcription assays 55 3.7. Binding affinity of T7 RNAP for template-primer VSR10 57 3.8. Deep sequencing assays 58 3.8.1. Reverse transcription 58 3.8.2. Amplification and sequencing 59 3.8.3. Analysis of sequences 60 3.8.4. Calculation of error rates 61 4. RESULTS………………………………………………………………………….. 65 4.1. Determination of DNA-dependent DNA synthesis fidelity of WT HIV-2ROD RT in comparison with drug-resistant mutants K65RROD and K65R/V75IROD RTs, and WT HIV-1BH10 RT 65 4.2. Determination of RNA-dependent DNA synthesis fidelity of six retroviral RTs 74 4.2.1. Analysis of mutant frequencies and error rates of wild-type MLV, AMV, HIV-1BH10 and HIV-1ESP49 RTs, as well as mutant RTs K65RESP49 and K65R/V75IESP49 using RNA templates 74 4.2.2. Analysis of bacteriophage T7 RNA polymerase transcription fidelity 84 4.2.2.1. Fidelity of promoter-dependent transcription under different conditions 84 4.2.2.2. Nucleotide incorporation kinetics under different conditions 86 4.2.2.3. Template-primer binding affinity of T7 RNAP under different conditions 88 4.2.3. Estimates of RNA-dependent DNA synthesis fidelity of HIV-1 RTs using more faithful RNA templates 89 4.3. Determination of RNA-dependent DNA synthesis fidelity of RTs by deep sequencing experiments based on the use of Primer IDs 97 5. DISCUSSION………………………………………………………………………. 101 5.1. Fidelity of WT and drug-resistant HIV-2ROD RTs 103 5.2. RNA-dependent DNA synthesis fidelity of retroviral RTs 108 5.2.1. Fidelity of retroviral RTs in reactions carried out with RNA templates 108 5.2.2. Mechanistic insights of RT-catalyzed DNA polymerization reaction with RNA or DNA templates 109 5.2.3. Influence of transcription inaccuracy in forward mutation assays 112 6. CONCLUSIONS (Y CONCLUSIONES) 119 7. REFERENCES 125 Summary Summary Human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2, respectively) are the causative agent of acquired immunodeficiency syndrome (AIDS). Most of the available clinically approved antiretroviral drugs directed against HIV inhibit the viral reverse transcriptase (RT), a multifunctional enzyme with RNA- and DNA-dependent DNA polymerase activity, as well as ribonuclease H, strand-transfer, and strand displacement activities. Nucleoside RT inhibitors (NRTIs) constitute the backbone of current therapies against both types of HIV, although the acquisition of NRTI resistance is mediated by the development of different mutational pathways. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Interestingly, in highly divergent HIV-1 RTs, K65R alone confers >8-fold increased accuracy of DNA synthesis. In this Thesis, we have determined the intrinsic fidelity of DNA synthesis of wild-type (WT) HIV-2 group A (strain ROD) RT and mutants K65R and K65R/Q151M/M184V. Our results show that in HIV-2ROD RT those changes have a relatively small impact on nucleotide selectivity.