An Introduction to the Mesozoic Biotas of Scandinavia and Its Arctic Territories

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Mesozoic Biotas of Scandinavia and Its Arctic Territories Downloaded from http://sp.lyellcollection.org/ by guest on May 17, 2016 An introduction to the Mesozoic biotas of Scandinavia and its Arctic territories BENJAMIN P. KEAR1*, JOHAN LINDGREN2, JØRN H. HURUM3,4, JESPER MILA` N5,6 & VIVI VAJDA2,7 1Museum of Evolution, Uppsala University, Norbyva¨gen 16, 752 36 Uppsala, Sweden 2Department of Geology, Lund University, So¨lvegatan 12, 223 62 Lund, Sweden 3Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway 4The University Centre in Svalbard, UNIS, Postboks 156, 9171 Longyearbyen, Norway 5Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-3640 Faxe, Denmark 6Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark 7Department of Palaeobiology, Swedish Museum of Natural History, Postboks 50007, SE-104 05 Stockholm, Sweden *Corresponding author (e-mail: [email protected]) Abstract: The Mesozoic biotas of Scandinavia have been studied for nearly two centuries. How- ever, the last 15 years have witnessed an explosive advance in research, most notably on the richly fossiliferous Triassic (Olenekian–Carnian) and Jurassic (Tithonian) Lagersta¨tten of the Norwe- gian Arctic Svalbard archipelago, Late Cretaceous (Campanian) Kristianstad Basin and Vomb Trough of Ska˚ne in southern Sweden, and the UNESCO heritage site at Stevns Klint in Denmark – the latter constituting one of the most complete Cretaceous–Palaeogene (Maastrichtian–Danian) boundary sections known globally. Other internationally significant deposits include earliest (Induan) and latest Triassic (Norian–Rhaetian) strata from the Danish autonomous territory of Greenland, and the Early Jurassic (Sinemurian–Pliensbachian) to Early Cretaceous (Berriasian) rocks of southern Sweden and the Danish Baltic island of Bornholm, respectively. Marine palaeo- communities are especially well documented, and comprise prolific benthic macroinvertebrates, together with pelagic cephalopods, chondrichthyans, actinopterygians and aquatic amniotes (ich- thyopterygians, sauropterygians and mosasauroids). Terrestrial plant remains (lycophytes, spheno- phytes, ferns, pteridosperms, cycadophytes, bennettitaleans and ginkgoes), including exceptionally well-preserved carbonized flowers, are also world famous, and are occasionally associated with faunal traces such as temnospondyl amphibian bones and dinosaurian footprints. While this collec- tive documented record is substantial, much still awaits discovery. Thus, Scandinavia and its Arctic territories represent some of the most exciting prospects for future insights into the spectacular his- tory of Mesozoic life and environments. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. The Mesozoic fossil record of Scandinavia and its of palaeontological research in Europe (Rudwick Arctic territories of Greenland and Svalbard span 2008; Evans 2010), and yet many key biotas and the dawn of the Triassic some 252 myr ago (Wordie bioevents from this continent remain comparatively Creek Formation, East Greenland: Nielsen 1935; underexplored. Scandinavia and its Arctic territories Bendix-Almgreen 1976; Looy et al. 2001; Stem- are therefore extremely important because they merik et al. 2001; Bjerager et al. 2006) through to encompass not only a Boreal mid–high palaeolati- the terminal Cretaceous–Palaeogene boundary tude setting (Surlyk 1990; Ditchfield 1997), but 66 myr ago (Møns Klint Formation, Denmark: have also witnessed a burgeoning of novel discover- Damholt & Surlyk 2012; Surlyk et al. 2013; Adolfs- ies that reveal significant insights into the global sen & Ward 2014; Hansen & Surlyk 2014). This spectrum of Mesozoic organisms, ecosystems and interval is marked by the nascence of modern environments. faunal and floral biodiversity, and culminated in This Special Publication aims to encapsulate one of the most cataclysmic extinction events in these latest palaeontological advances, and aug- Earth history. Much of our knowledge about the ments them with topical synopses from leading spe- Mesozoic world has derived from the long tradition cialists in the field. Our introduction is intended to From:Kear, B. P., Lindgren, J., Hurum, J. H., Mila`n,J.&Vajda, V. (eds) 2016. Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434, 1–14. First published online April 20, 2016, http://doi.org/10.1144/SP434.18 # 2016 The Author(s). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ by guest on May 17, 2016 2 B. P. KEAR ET AL. provide additional contextual background, and, in 2015 and references therein), and coincide with particular, emphasizes the broad trends in floral lush vegetation comprising ginkgoes, cycads and successions and the distribution of faunal finds. bennettites, lycophytes, sphenophytes, and ferns Together, these highlight Scandinavia and its Arctic (Vajda et al. 2013). Fossilized fungi and bacterial territories as a regional centre for Mesozoic biotic traces have also been reported from Hopen Island radiations, and a spectacular area for future field in the Svalbard archipelago (McLoughlin & exploration with landmark research potential. Strullu-Derrien 2015). A bone fragment of a Late Triassic sauropodomorph was also recovered from Institutional abbreviations a drill core in the North Sea 2256 m below the seabed (Hurum et al. 2006a). LO, Department of Geology, Lund University, Earliest Triassic (Induan–Olenekian) marine Lund, Sweden; MGUH, Natural History Museum ecosystems are recognized from the Vardebukta of Denmark, Copenhagen, Denmark; OESM, Østs- Formation on Svalbard (Vigran et al. 2014), and jællands Museum, Store Heddinge, Denmark; most prolifically from the world-famous Wordie PMO, University of Oslo Natural History Museum Creek Formation in East Greenland (Fig. 1a–e). (Palaeontological Collection), Oslo, Norway; PMU, These deposits incorporate bivalves, gastropods Palaeontology Collection, Museum of Evolution, and ammonoids, as well as actinopterygian and coe- Uppsala University, Uppsala, Sweden. lacanth fishes (Spath 1932; Nielsen 1942, 1949; Donovan 1964) that span the Permian–Triassic boundary (Twitchett et al. 2001; Bjerager et al. A synthesis of Scandinavian Mesozoic biotas 2006). Potentially anadromous Early Triassic tem- The Triassic nospondyls (primarily tematosaurids, rhytidostians and capitosaurians) have also been described, with The long history of Scandinavia’s terrestrial biotas approximately equivalent occurrences found on is charted through the palynological record, which Spitsbergen and other islands in Svalbard (Sa¨ve- manifests liverworts as the seminal colonizers of So¨derbergh 1936; Cox & Smith 1973; reviewed by continental ecosystems in the early Palaeozoic Kear et al. 2015): these are associated with actino- (Late Ordovician) of southern Sweden (Badawy pterygian fishes (Fig. 1f) and hybodontiform sharks et al. 2014). Increasing abundance and diversity of (Stensio¨ 1921, 1925; Blazejowski et al. 2013). bryophytes and vascular plants occurred throughout Globally renowned Triassic marine amniote the Silurian and Devonian in Ska˚ne (Mehlqvist et al. fossils were recovered from Spitsbergen during 2015) and Gotland (Hagstro¨m 1997), with the gene- the Nordenskio¨ld expeditions of 1864 and 1868 sis of characteristic Mesozoic floras around the (Hulke 1873). More complete material was subse- Permian–Triassic boundary in Greenland, Svalbard quently collected by Swedish scientists in 1908 and the Oslo Rift: these collectively indicate turn- and 1909 (Wiman 1910, 1916a, b, 1928, 1933), over of regional biomes coincident with increasing and constitutes a diverse assemblage of ichthyop- aridity (Bercovici et al. 2015). The Permian–Trias- terygians (Fig. 1g), including the phylogenetically sic extinction event is otherwise expressed by the important basal taxon Grippia longirostris (Max- disappearance of dominant hygrophilous Cordaites well & Kear 2013). Isolated pistosaurid saurop- (which equate to gigantopterids in Cathaysia and terygian remains have also been discovered (Kear glossopterids in Gondwana) and their replacement & Maxwell 2013), and Hurum et al. (2014) docu- by emergent seed plants (Anderson et al. 1999; mented Triassic ichthyosaurian material from McLoughlin 2011). Edgeøya (Vigran et al. 2014). The classic vertebrate The coeval chronicle of Triassic terrestrial successions of Wiman (1910) are, however, still faunas is not well represented until the Norian– used to subdivide the horizons on Spitsbergen Rhaetian of the Fleming Fjord Formation in Jame- (see Maxwell & Kear 2013): the lithostratigraphi- son Land, East Greenland (Klein et al. 2015; cal work of Mørk et al. (1999), equating the Mila`n et al. 2015). Here, body fossils and foot- actinopterygian-andtemnospondyl-dominated‘Fish prints evidence various dinosaurian taxa, especially Niveau’ to the lower Olenekian Lusitaniadalen sauropodomorphs, together with plagiosaurid and Member of the Vikinghøgda Formation; the ‘Grip- capitosaurian temnospondyl amphibians, rare rham- pia Niveau’ and ‘Lower Saurian Niveau’ – both phorhynchoid pterosaurians, and early mammali- representing sequential components of the Late forms (e.g. Bendix-Almgreen 1976; Jenkins et al. Olenekian–Anisian Vendomdalen Member of the 1994; Mila`n et al. 2012a; Sulej et al. 2014; Clem- Vikinghøgda Formation; and derived mixosaurid mensen et al. 2015; Hansen et al. 2015; Klein and shastasaurid ichthyosaurians from
Recommended publications
  • Papers in Press
    Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe).
    [Show full text]
  • Forgotten Crocodile from the Kirtland Formation, San Juan Basin, New
    posed that the narial cavities of Para- Wima1l- saurolophuswere vocal resonating chambers' Goniopholiskirtlandicus Apparently included with this material shippedto Wiman was a partial skull that lromthe Wiman describedas a new speciesof croc- forgottencrocodile odile, Goniopholis kirtlandicus. Wiman publisheda descriptionof G. kirtlandicusin Basin, 1932in the Bulletin of the GeologicalInstitute KirtlandFormation, San Juan of IJppsala. Notice of this specieshas not appearedin any Americanpublication. Klilin NewMexico (1955)presented a descriptionand illustration of the speciesin French, but essentially repeatedWiman (1932). byDonald L. Wolberg, Vertebrate Paleontologist, NewMexico Bureau of lVlinesand Mineral Resources, Socorro, NIM Localityinformation for Crocodilian bone, armor, and teeth are Goni o p holi s kir t landicus common in Late Cretaceous and Early Ter- The skeletalmaterial referred to Gonio- tiary deposits of the San Juan Basin and pholis kirtlandicus includesmost of the right elsewhere.In the Fruitland and Kirtland For- side of a skull, a squamosalfragment, and a mations of the San Juan Basin, Late Creta- portion of dorsal plate. The referral of the ceous crocodiles were important carnivores of dorsalplate probably represents an interpreta- the reconstructed stream and stream-bank tion of the proximity of the material when community (Wolberg, 1980). In the Kirtland found. Figs. I and 2, taken from Wiman Formation, a mesosuchian crocodile, Gonio- (1932),illustrate this material. pholis kirtlandicus, discovered by Charles H. Wiman(1932, p. 181)recorded the follow- Sternbergin the early 1920'sand not described ing locality data, provided by Sternberg: until 1932 by Carl Wiman, has been all but of Crocodile.Kirtland shalesa 100feet ignored since its description and referral. "Skull below the Ojo Alamo Sandstonein the blue Specimensreferred to other crocodilian genera cley.
    [Show full text]
  • New Theropod, Thyreophoran, and Small Sauropod Tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark
    New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark JESPER MILÀN Milàn, J. 2011. New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark © 2011 by Bulletin of the Geological Society of Denmark, Vol. 59, pp. 51–59. ISSN 0011–6297. (www.2dgf.dk/publikationer/bulletin) https://doi.org/10.37570/bgsd-2011-59-06 Three new dinosaur tracks are described from the Middle Jurassic Bagå Formation of Bornholm, Denmark. The tracks are all preserved as natural casts on the underside of fluvial sandstone blocks originating from the old Hasle Klinkefabrik’s clay pit, now called Pyritsøen. The new tracks are from a medium-sized theropod, a thyreophoran, and a small sauropod. Together with a thyreophoran track and large sauropod tracks described in 2005, the Middle Jurassic dinosaur fauna of Bornholm now comprises theropods, two sizes of sauropods and at least one type of thyreophoran dinosaur. This is important additional data for the very scarce Middle Jurassic dinosaurian skeletal record of Europe. Received 22 November 2010 Accepted in revised form Key words: Dinosaur fauna, trace fossils, Middle Jurassic, theropod, thyreophoran, sauropod. 21 September 2011 Published online Jesper Milàn [[email protected]], GeomuseumFaxe, Østsjællands Museum, Østervej 2, DK-4640 Faxe, 30 September 2011 Denmark. Also Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. Remains of Mesozoic terrestrial vertebrates are scarce Dinosaur remains are more commonly encountered in Denmark and have so far only been found in the in the southern part of Sweden, where numerous di- few Mesozoic outcrops along the west and southwest nosaur tracks and trackways of theropod dinosaurs, a coast of the Baltic island of Bornholm (Fig.
    [Show full text]
  • Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
    Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs.
    [Show full text]
  • Brains and Intelligence
    BRAINS AND INTELLIGENCE The EQ or Encephalization Quotient is a simple way of measuring an animal's intelligence. EQ is the ratio of the brain weight of the animal to the brain weight of a "typical" animal of the same body weight. Assuming that smarter animals have larger brains to body ratios than less intelligent ones, this helps determine the relative intelligence of extinct animals. In general, warm-blooded animals (like mammals) have a higher EQ than cold-blooded ones (like reptiles and fish). Birds and mammals have brains that are about 10 times bigger than those of bony fish, amphibians, and reptiles of the same body size. The Least Intelligent Dinosaurs: The primitive dinosaurs belonging to the group sauropodomorpha (which included Massospondylus, Riojasaurus, and others) were among the least intelligent of the dinosaurs, with an EQ of about 0.05 (Hopson, 1980). Smartest Dinosaurs: The Troodontids (like Troödon) were probably the smartest dinosaurs, followed by the dromaeosaurid dinosaurs (the "raptors," which included Dromeosaurus, Velociraptor, Deinonychus, and others) had the highest EQ among the dinosaurs, about 5.8 (Hopson, 1980). The Encephalization Quotient was developed by the psychologist Harry J. Jerison in the 1970's. J. A. Hopson (a paleontologist from the University of Chicago) did further development of the EQ concept using brain casts of many dinosaurs. Hopson found that theropods (especially Troodontids) had higher EQ's than plant-eating dinosaurs. The lowest EQ's belonged to sauropods, ankylosaurs, and stegosaurids. A SECOND BRAIN? It used to be thought that the large sauropods (like Brachiosaurus and Apatosaurus) and the ornithischian Stegosaurus had a second brain.
    [Show full text]
  • The Dates of the Discovery of the First Peking Man Fossil Teeth
    The Dates of the Discovery of the First Peking Man Fossil Teeth Qian WANG,LiSUN, and Jan Ove R. EBBESTAD ABSTRACT Four teeth of Peking Man from Zhoukoudian, excavated by Otto Zdansky in 1921 and 1923 and currently housed in the Museum of Evolution at Uppsala University, are among the most treasured finds in palaeoanthropology, not only because of their scientific value but also for their important historical and cultural significance. It is generally acknowledged that the first fossil evidence of Peking Man was two teeth unearthed by Zdansky during his excavations at Zhoukoudian in 1921 and 1923. However, the exact dates and details of their collection and identification have been documented inconsistently in the literature. We reexamine this matter and find that, due to incompleteness and ambiguity of early documentation of the discovery of the first Peking Man teeth, the facts surrounding their collection and identification remain uncertain. Had Zdansky documented and revealed his findings on the earliest occasion, the early history of Zhoukoudian and discoveries of first Peking Man fossils would have been more precisely known and the development of the field of palaeoanthropology in early twentieth century China would have been different. KEYWORDS: Peking Man, Zhoukoudian, tooth, Uppsala University. INTRODUCTION FOUR FOSSIL TEETH IDENTIFIED AS COMING FROM PEKING MAN were excavated by palaeontologist Otto Zdansky in 1921 and 1923 from Zhoukoudian deposits. They have been housed in the Museum of Evolution at Uppsala University in Sweden ever since. These four teeth are among the most treasured finds in palaeoanthropology, not only because of their scientific value but also for their historical and cultural significance.
    [Show full text]
  • Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
    Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M.
    [Show full text]
  • Caudal Fin Skeleton of the Late Cretaceous Lamniform Shark, Cretoxyrhina Mantelli, from the Niobrara Chalk of Kansas
    Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 185 CAUDAL FIN SKELETON OF THE LATE CRETACEOUS LAMNIFORM SHARK, CRETOXYRHINA MANTELLI, FROM THE NIOBRARA CHALK OF KANSAS KENSHU SHIMADA1, STEPHEN L. CUMBAA2, AND DEANNE VAN ROOYEN3 1Environmental Science Program and Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601; 2Paleobiology, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada; 3Department of Earth Sciences, Carleton University, 2240 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada. Abstract—The caudal fin morphology of the Late Cretaceous lamniform shark, Cretoxyrhina mantelli (Agassiz), was previously inferred from scale morphology, which suggested that it was capable of fast swimming. A specimen from the Niobrara Chalk of western Kansas is described here and offers new insights into the morphology of the caudal fin of the taxon. The specimen preserves the posterior half of the vertebral column and a series of hypochordal rays. These skeletal elements exhibit features suggesting that C. mantelli had a lunate tail and a caudal peduncle with a lateral fluke. The specimen also supports the idea that the body form of C. mantelli resembled that of the extant white shark, Carcharodon carcharias (Linneaus). Given a total vertebral count in Cretoxyrhina mantelli of about 230, this specimen suggests that the transition between precaudal and caudal vertebrae was somewhere between the 140th and 160th vertebrae.
    [Show full text]
  • A First Estimation of Storage Potential for Selected Aquifer Cases
    A first estimation of storage potential for selected aquifer cases Ane Lothe, Benjamin Emmel, Per Bergmo, Gry Möl Mortensen, Peter Frykman NORDICCS Technical Report D 6.3.1302 (D25) April 2014 Summary This report D 6.3.1302 "A first estimation of storage potential for selected aquifer cases (D25)" was in the beginning named “Estimation of improved capacity and quantification of capacity and sealing properties (D25)”. The aim with this report is to present updated estimates on storage potential for some selected aquifers in the Nordic countries. The storage aquifers are selected on specified criteria as defined in the memo by Bergmo (Bergmo 2014). From Norway modelling and simulation of the Gassum Formation in the Skagerrak area and the Garn Formation at the Trøndelag Platform, offshore Mid‐Norway has been carried out. From Denmark the geological model building of the Vedsted structure in northeast Denmark and the Hanstholm structure, offshore Denmark is reported. From Sweden the Faludden sandstone located in the south‐east Baltic Sea is described, together with the Arnager Greensand located offshore Skåne in Sweden and finally the Höganäs‐Rya sequence, also deposited in the same area, close to Danish border. Preliminary capacity estimates are carried out for all the selected sites, but modelling has only been performed for the two Norwegian sites. Authors Ane Lothe, Sintef, Norway, [email protected] Benjamin U. Emmel, SINTEF, Norway, [email protected] Per Bergmo, SINTEF Petroleum Research, Norway, [email protected] Gry Møl Mortensen, Geological Survey of Sweden, Sweden, [email protected] Peter Frykman, GEUS, Denmark, [email protected] Date April 2014 About NORDICCS Nordic CCS Competence Centre, NORDICCS, is a networking platform for increased CCS deployment in the Nordic countries.
    [Show full text]
  • Dinosaur Tracks in Lower Jurassic Coastal Plain Sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark
    Dinosaur tracks in Lower Jurassic coastal plain sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark LARS B. CLEMMENSEN, JESPER MILAN, GUNVER K. PEDERSEN, ANNE B. JOHANNESEN AND CONNIE LARSEN Clemmensen, L.B., Milan, J., Pedersen, G.K., Johannesen, A.B. & Larsen, C. 2014: Dinosaur tracks in Lower Jurassic coastal plain sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark. Lethaia,Vol. 47, pp. 485–493. Fluvial palaeochannels of coastal plain sediments of the Lower Jurassic Sose Bugt Member of the Rønne Formation exposed in the coastal cliffs at Sose Bugt, Bornholm, contain abundant dinosaur or other large vertebrate tracks in the form of deformation structures exposed in vertical section. The tracks are represented by steep-walled, flat- to-concave-bottomed depressions, with a raised ridge at each side. The tracks are filled with laminated sediments, draping the contours of the bottom of the depression. Un- derprints, stacked concave deformations beneath the prints, are present beneath each track. Contemporary Upper Triassic – Lower Jurassic strata from southern Sweden and Poland contain a diverse track fauna, supporting our interpretation. This is the earliest evidence of dinosaur activity in Denmark. □ Bornholm, coastal plain, dinosaur tracks, lake sediments, Lower Jurassic. Lars B. Clemmensen [[email protected]], Jesper Milan [[email protected]], Anne B. Joh- annesen [[email protected]], and Connie Larsen [[email protected]], Depart- ment for Geosciences and Natural Resource Managements, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; Jesper Milan [[email protected]], Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-4640 Faxe, Denmark; Gunver K. Pedersen [[email protected]], GEUS Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; manuscript received on 12/04/2013; manuscript accepted on 04/12/2013.
    [Show full text]
  • King's Research Portal
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by King's Research Portal King’s Research Portal DOI: 10.1086/692677 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Manias, C. P. (2017). Jesuit Scientists and Mongolian Fossils: The French Palaeontological Missions in China, 1923-1928. Isis, 108(2), 307-332. https://doi.org/10.1086/692677 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic denote figures. Page numbers in bold denote tables. Aachenia sp. [gymnosperm] 211, 215, 217 selachians 251–271 Abathomphalus mayaroensis [foraminifera] 311, 314, stratigraphy 243 321, 323, 324 ash fall and false rings 141 actinopterygian fish 2, 3 asteroid impact 245 actinopterygian fish, Sweden 277–288 Atlantic opening 33, 128 palaeoecology 286 Australosomus [fish] 3 preservation 280 autotrophy 89 previous study 277–278 avian fossils 17 stratigraphy 278 study method 281 bacteria 2, 97, 98, 106 systematic palaeontology 281–286 Balsvik locality, fish 278, 279–280 taphonomy and biostratigraphy 286–287 Baltic region taxa and localities 278–280 Jurassic palaeogeography 159 Adventdalen Group 190 Baltic Sea, ice flow 156, 157–158 Aepyornis [bird] 22 barite, mineralization in bones 184, 185 Agardhfjellet Formation 190 bathymetry 315–319, 323 see also depth Ahrensburg Glacial Erratics Assemblage 149–151 beach, dinosaur tracks 194, 202 erratic source 155–158 belemnite, informal zones 232, 243, 253–255 algae 133, 219 Bennettitales 87, 95–97 Amerasian Basin, opening 191 leaf 89 ammonite 150 root 100 diversity 158 sporangia 90 amniote 113 benthic fauna 313 dispersal 160 benthic foraminifera 316, 322 in glacial erratics 149–160 taxa, abundance and depth 306–310 amphibian see under temnospondyl 113–122 bentonite 191 Andersson, Johan G. 20, 25–26, 27 biostratigraphy angel shark 251, 271 A˚ sen site 254–255 angiosperm 4, 6, 209, 217–225 foraminifera 305–312 pollen 218–219, 223 palynology 131 Anomoeodus sp. [fish] 284 biota in silicified
    [Show full text]