Torix Group Rickettsia Are Widespread in New Zealand Freshwater

Total Page:16

File Type:pdf, Size:1020Kb

Torix Group Rickettsia Are Widespread in New Zealand Freshwater bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120196; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Eunji Park, 0000-0002-5087-2398 2 Robert Poulin, 0000-0003-1390-1206 3 4 5 Article type: Original article 6 7 8 Torix group Rickettsia are widespread in New Zealand freshwater 9 amphipods: using blocking primers to rescue host COI sequences 10 11 12 Eunji Park1* and Robert Poulin1 13 14 1 Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand 15 * Corresponding author: [email protected] 16 17 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120196; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 25 Abstract 26 Endosymbionts and intracellular parasites are common in arthropods and other invertebrate 27 hosts. As a consequence, (co)amplification of untargeted bacterial sequences has been 28 occasionally reported as a common problem in DNA barcoding. The bacterial genus 29 Rickettsia belongs to the order Rickettsiales and consists of two lineages: one including 30 diverse pathogens infecting arthropod hosts, the other consisting of non-pathogenic species 31 with a broaDer host taxonomic range. While discriminating among amphipod species with 32 universal primers for the COI region, we unexpectedly detected rickettsial endosymbionts 33 belonging to the Torix group. To map the distribution and diversity of Rickettsia among 34 amphipods hosts, we conducted a nationwide molecular screening of seven families of 35 freshwater amphipods collected throughout New Zealand. In addition to uncovering a 36 diversity of Torix group Rickettsia across multiple amphipod populations from three different 37 families, our research indicates that 1) detecting Torix Rickettsia with universal primers is not 38 uncommon, 2) obtaining ‘Rickettsia COI sequences’ from many host individuals is highly 39 likely when a population is infected, and 3) obtaining ‘host COI’ may not be possible with a 40 conventional PCR if an individual is infected. Because Rickettsia COI is highly conserved 41 across diverse host taxa, we were able to design blocking primers that can be used in a wide 42 range of host species infected with Torix Rickettsia. We propose the use of blocking primers 43 to circumvent problems caused by unwanted amplification of Rickettsia and to obtain targeted 44 host COI sequences for DNA barcoding, population genetics, and phylogeographic studies. 45 46 Keywords 47 Rickettsiales, bacterial COI, Amphipoda, DNA contamination, blocking oligos, universal 48 primers 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120196; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 49 Introduction 50 The cytochrome c oxidase subunit 1 gene (COI), a partial fragment of mitochondrial DNA, is 51 the marker of choice for DNA barcoding, and is also widely used for population genetics and 52 phylogeographic studies (Bucklin et al., 2011; Hajibabaei et al., 2007; Hebert et al., 2004). A 53 variable region is flankeD by highly conserved regions; this allowed for the design of a pair of 54 universal primers and their application to various organisms (Folmer et al., 1994; Hebert et 55 al., 2003). With the advancement of fast and cost-effective next-generation sequencing 56 technologies, which enables metabarcoding (Elbrecht and Leese, 2015; Taberlet et al., 2012), 57 the number of COI sequences is increasing rapidly in public databases such as GenBank and 58 The Barcode of Life DataSystems (BOLD) (Porter and Hajibabaei, 2018). However, quality 59 control is often an issue due to the presence of questionable “COI-like” sequences (Buhay, 60 2009) or nuclear mitochondrial pseudogenes (numts) that are often coamplified with 61 orthologous mtDNA (Song et al., 2008). Bacterial sequences are also often coamplified with 62 universal primers. Indeed, there have been reports of the amplification of untargeted 63 sequences of endosymbiotic bacteria such as Wolbachia and Aeromonas during DNA 64 barcoding with universal primers and their misidentification as those of invertebrate hosts 65 during deposition in databases (Mioduchowska et al., 2018; Smith et al., 2012). 66 67 The bacterial genus Rickettsia is another of these endosymbiotic taxa. This genus belongs to 68 the order Rickettsiales along with Wolbachia, and comprises diverse pathogenic species that 69 cause vector-borne diseases in birds and mammals including humans. Some rickettsioses 70 (diseases that are caused by Rickettsia) with severe symptoms are well known, and include 71 Rocky Mountain spotted fever, Queensland tick typhus, Rickettsial pox, and murine or 72 epidemic typhus (Parola et al., 2005; Perlman et al., 2006; Weinert, 2015). To date, at least 13 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120196; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 73 groups are known within the genus Rickettsia: Adalia, Bellii, Canadensis, Guiana, Helvetica, 74 Meloidae, Mendelii, Rhyzobious, Spotted fever, Scapularis, Torix, Transitional, and Typhus 75 (Binetruy et al., 2020; Hajduskova et al., 2016; Weinert et al., 2009). All these groups except 76 the Torix group are exclusively associateD with arthropod hosts, such as mites, fleas, ticks, 77 and spiders. The Torix group, which is sister to all other groups, is the only group that 78 includes non-arthropod hosts such as amoeba and leeches (Galindo et al., 2019; Kikuchi et al., 79 2002; Kikuchi and Fukatsu, 2005). In addition to these freshwater hosts, the Torix group 80 occurs in diverse arthropod groups that spend part of their life cycle in the aquatic 81 environment (e.g. Coleoptera and Diptera) (Küchler et al., 2009; Pilgrim et al., 2017; Weinert 82 et al., 2009). 83 84 Although Rickettsia are known as common pathogens or endosymbionts in arthropod hosts, 85 this group has never been reported in crustaceans. Rickettsia-like organisms (RLO) have been 86 reported in some groups of crustaceans including crabs, crayfish, lobsters, shrimps, and 87 amphipods (Gollas-Galván et al., 2014). However, most reports of these RLOs were based on 88 morphological similarity with Rickettsia and were rarely confirmeD by molecular data. In 89 amphipods, RLOs were reported in several species of gammarids, as well as other taxa (e.g., 90 Crangonyx floridanus and Diporeia sp.) (Graf, 1984; Larsson, 1982; Messick et al., 2004; 91 Winters et al., 2015). 16S rRNA sequences of RLOs are available for Diporeia sp. and some 92 gammarids, but none of them belong to the genus Rickettsia (Bojko et al., 2017; Winters et 93 al., 2015). 94 95 In the course of an investigation of the diversity of New Zealand freshwater amphipods, we 96 obtained a COI sequence that was highly divergent from that obtained from other populations 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120196; this version posted May 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 97 (~57%) of the same host group (Paracalliope species complex). DNA from the individual 98 amphipod was extracteD from its legs (i.e., low chance of contamination due to gut contents). 99 We obtained a clear chromatogram with no ambiguous peaks. Furthermore, this sequence was 100 similar to other COI sequences obtained from diverse insects (Coleoptera, Diptera, 101 Hemiptera, Hymenoptera, Odonata) in GenBank with sequence similarity ranging from 80 to 102 99 %. However, these sequences were also similar (~92%) to sequences of rickettsial 103 endosymbionts of insects and spiders that have been recently registered in GenBank. Because 104 such highly conserved COI sequences among distantly related arthropod groups are unlikely, 105 we assumed that these sequences were actually obtained from their rickettsial endosymbionts. 106 We independently confirmed the presence of Rickettsia in our amphipod hosts using three 107 genetic markers that were designed to be specific to Rickettsia. 108 109 Because Rickettsia is an endosymbiont within host cells, DNA extracts from infected host 110 tissue will inevitably include DNA of endosymbionts as well. If binding sites for ‘universal 111 primers’ are conserved in both hosts and their endosymbionts, PCR products obtained from 112 these mixed templates may result in mixed signals in chromatograms, or in the amplification 113 of endosymbiont instead of host sequences. Using primers that are designed to bind uniquely 114 and specifically to host templates woulD reduce this problem. However, designing group- 115 specific primers is not always possible, especially when reference sequences are scarce or not 116 available. Also, finding conserved regions across a given taxonomic group may not be 117 achievable. Alternatively, blocking primers can be useD to prevent the amplification of 118 unwanted or dominant sequences among DNA templates (Vestheim and Jarman, 2008). For 119 example, this method has been successfully applied to identify prey items (by suppressing the 120 amplification of predator DNA in gut contents), or to obtain rare mammal sequences from 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120196; this version posted May 30, 2020.
Recommended publications
  • Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
    GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.
    [Show full text]
  • Differential Impacts of Shared Parasites on Fitness Components Among Competing Hosts
    Received: 23 November 2016 | Revised: 13 April 2017 | Accepted: 19 April 2017 DOI: 10.1002/ece3.3062 ORIGINAL RESEARCH Differential impacts of shared parasites on fitness components among competing hosts Olwyn C. Friesen | Robert Poulin | Clément Lagrue Department of Zoology, University of Otago, Dunedin, New Zealand Abstract Effects of parasites on individual hosts can eventually translate to impacts on host Correspondence Olwyn C. Friesen, Department of Zoology, communities. In particular, parasitism can differentially affect host fitness among sym- University of Otago, Dunedin, New Zealand. patric and interacting host species. We examined whether the impact of shared para- Email: [email protected] sites varied among host species within the same community. Specifically, we looked at Funding information the impacts of the acanthocephalan Acanthocephalus galaxii, the trematodes Department of Zoology, University of Otago Coitocaecum parvum and Maritrema poulini, and the nematode Hedruris spinigera, on three host species: the amphipods, Paracalliope fluviatilis and Paracorophium excava- tum, and the isopod, Austridotea annectens. We assessed parasite infection levels in the three host species and tested for effects on host survival, behavior, probability of pairing, and fecundity. Maritrema poulini and C. parvum were most abundant in P. exca- vatum but had no effect on its survival, whereas they negatively affected the survival of P. fluviatilis, the other amphipod. Female amphipods carrying young had higher M. poulini and C. parvum abundance than those without, yet the number of young car- ried was not linked to parasite abundance. Behavior of the isopod A. annectens was affected by M. poulini infection; more heavily infected individuals were more active. Paracorophium excavatum moved longer distances when abundance of C.
    [Show full text]
  • Ecotoxicology of Estuarine Amphipod Paracorophium Excavatum
    E icolo fEstua ·ne Amphipod Paracorophium excavatum A thesis Submitted in partial fulfilment the requirements for Degree of Master of Science in Environmental Science at The University of Canterbury by Carol Wong Hee Ting University of Canterbury 1999 ABSTRACT The estuarine tube dwelling amphipod Paracorophium excavatum was investigated for its suitability as a bio-indicator and bio-monitor. Distribution patterns of P. excavatum were determined at 13 sites in the Canterbury region that differed in particle size distribution ranging from sandy to muddy sediment, with overall10w organic content. Low tide salinity ranged from 5 to 33 0/00 between sites and sediment moisture content ranged between 23 to 41 % moisture. Amphipods were absent from most sites within the Avon-Heathcote Estuary. The availability, life history and fecundity of P. excavatum were compared from intertidal mudflat sites in Brooklands Lagoon and Kairaki over a period of thirteen months. Four sediment core samples were collected at monthly intervals and P. excavatum IS population structure and life history pattern studied. The life history til· <: of P. excavatum can be characterised bY fast-growing, annual, iteroporous, bivoltine, females ovigerous throughout the year and thelygenous (female biased) population. P. excavatum showed relative consistency in abundance throughout the year with monthly densities ranging from 875.79 per 0.1 m-2 (July) to 1754.77 per 0.1 m-2 (December) at Brooklands Lagoon and 1031.83 per 0.1 m2 (November) to 1780.24 per 0.1 m2 (December) at Kairaki. There was a linear relationship between numbers of eggs per female and female length.
    [Show full text]
  • Figueroa Et Al Chile Mediterranean Re-Submitted
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diposit Digital de la Universitat de Barcelona 1 Freshwater biodiversity and conservation in mediterranean climate streams of 2 Chile 3 4 1 Ricardo Figueroa* 5 2 Núria Bonada 6 1 Meyer Guevara 7 1 Pablo Pedreros 8 1 Francisco Correa-Araneda 9 1 María E. Díaz 10 3 Victor H. Ruiz 11 12 *1Corresponding author: [email protected] Center of Environmental Sciences EULA- 13 Chile, University of Concepcion, Casilla 160-C, Concepcion, Chile 14 2Grup de Recerca Freshwater Ecology and Management (FEM), Departament 15 d’Ecologia, Facultat de Biologia, Universitat de Barcelona (UB), Diagonal 643, 08028 16 Barcelona, Catalonia/Spain 17 3Department of Zoology, University of Concepcion, P.O. Box 160-C, Concepción, 18 Chile 19 20 21 Keywords: Central Chile, diversity, endemism, fauna, flora, streams and rivers 22 23 1 24 Abstract 25 26 In Chile, mediterranean climate conditions only occur in the Central Zone (ChMZ). 27 Despite its small area, this mediterranean climate region (med-region) has been 28 recognised as a hotspot for biodiversity. However, in contrast to the rivers of other med- 29 regions, the rivers in the ChMZ have been studied infrequently, and knowledge of their 30 freshwater biodiversity is scarce and fragmented. We gathered information on the 31 freshwater biodiversity of ChMZ, and present a review of the current knowledge of the 32 principal floral and faunal groups. Existing knowledge indicates that the ChMZ has high 33 levels of endemism, with many primitive species being of Gondwanan origin.
    [Show full text]
  • Population Genetic Structure of New Zealand's Endemic Corophiid
    Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2003? 2003 811 119133 Original Article POPULATION GENETIC STRUCTURE OF NEW ZEALAND AQUATIC AMPHIPODS M. I. STEVENS and I. D. HOGG Biological Journal of the Linnean Society, 2004, 81, 119–133. With 3 figures Population genetic structure of New Zealand’s endemic corophiid amphipods: evidence for allopatric speciation MARK I. STEVENS* and IAN D. HOGG Centre for Biodiversity and Ecology Research, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand Received 2 January 2003; accepted for publication 28 July 2003 Allozyme electrophoresis was used to examine population genetic structure at inter- and intraspecific levels for the New Zealand endemic corophiid amphipods, Paracorophium lucasi and P. excavatum. Individuals were collected from estuarine and freshwater habitats from North, South and Chatham Islands. Analyses of genetic structure among interspecific populations indicated clear allelic differentiation between the two Paracorophium species (Nei’s genetic distance, D = 1.62), as well as considerable intraspecific substructuring (D = 0.15–0.65). These levels of diver- gence are similar to interspecific levels for other amphipods and it is proposed that at least two groups from the P. lucasi complex and three from the P. excavatum complex correspond to sibling species. In most cases allopatry can account for the differentiation among the putative sibling species. For populations that share a common coastline we found low levels of differentiation and little or no correlation with geographical distance, suggesting that gene flow is adequate to maintain homogeneous population genetic structure. By contrast, populations on separate coastlines (i.e.
    [Show full text]
  • New Zealand Freshwater Sciences Society Newsletter Number 41
    New Zealand Freshwater Sciences Society Newsletter Number 41 November 2005 New Zealand Freshwater Sciences Society Newsletter No. 41 November 2005 Contents Introduction to the Society ....................................................................... 3 Editorial ............................................................................................. 4 President’s comment ................................................................................ 5 Research news ...................................................................................... 6 Freshwater Sciences Society Conference, Rotorua, 26 – 30 November 2006 ...............34 S.I.L. 1987 Trust Fund Awards .................................................................35 New Zealand Freshwater Sciences Society Medal and Honorary Membership ...............38 Minutes of the 37th Annual General Meeting ....................................................39 of the New Zealand Limnological Society Inc. (2004) .........................................39 Conference prizes 2004...........................................................................47 Conference Prizes, 2005..........................................................................48 Special Publications................................................................................50 Publications and theses ...........................................................................50 Membership list....................................................................................61 How do I join?.....................................................................................78
    [Show full text]
  • Observations on the Food of Freshwater Fish from the Coal and Jordan Rivers, Tasmania
    https://doi.org/10.26749/rstpp.111.59 Papers and Proceedings of the RoyaJ Society of Tasmania, Volume 111, 1977 (ms. received 22.]2.1976) OBSERVATIONS ON THE FOOD OF FRESHWATER FISH FROM THE COAL AND JORDAN RIVERS, TASMANIA hy P. S. Lakea and G. Department of Zoology, University of Tasmania (a) now Department of Zoology, Monash University, Clayton, Victoria (b) now 4 Fellows Road, Hughesdale, Victoria (with five tables) ABSTRACT The Coal and the Jordan Rivers are two slow-flowing rivers in south-eastern Tasmania. Details are given of the stomach contents of brown trout Salmo trutta Linnaeus, English perch Perea fZuviati lis Linnaeus, short-finned eels australis oeeidentaZ-is Schmidt and Tasmanian smelt Retrop-i-nna tasmaniea McCulloch collected from the Coal River and of the stomach contents of brown trout, English perch, tench, short-finned eels, freshwater flathead Pseudaphritis urvi ZZi (Cuvier and Valenciennes) and galaxiids GaZax1:as maeuZatus (Jenyns) collected from the Jordan River. INTRODUCTION The food of trout in Australia has been studied by McKeown (1934a, 1934b, 1936, 1937, 1955), Evans (1942), Butcher (1945, 1946), Wilson (1966) and Knott (1973). However, there are few published data on the food of native freshwater fish or even of non-salmonid introduced fish, Butcher (1945, 1946) examined the food of perch, austraZasica (Cuvier & Valenciennes), English marmoratus (Richardson) and (.Jcnyns). food of six Macquarie perch and brief non-quantitative the food of some native and introduced freshwater fish of New South Wales are given by Lake (1959). Recently Pollard (1973) has provided a detailed account of the diet of land-locked Gal-axias macuZatus in Lake ModevJarre, Victoria.
    [Show full text]
  • University of Copenhagen
    Assortative pairing in the amphipod Paracalliope fluviatilis: a role for parasites? Lefebvre, Francois; Fredensborg, Brian Lund; Armstrong, Amy; Hansen, Ellen; Poulin, Robert Published in: Hydrobiologia Publication date: 2005 Document version Early version, also known as pre-print Citation for published version (APA): Lefebvre, F., Fredensborg, B. L., Armstrong, A., Hansen, E., & Poulin, R. (2005). Assortative pairing in the amphipod Paracalliope fluviatilis: a role for parasites? Hydrobiologia, 545. Download date: 28. Sep. 2021 Hydrobiologia (2005) 545:65–73 Ó Springer 2005 DOI 10.1007/s10750-005-2211-0 Primary Research Paper Assortative pairing in the amphipod Paracalliope fluviatilis: a role for parasites? Franc¸ ois Lefebvre*, Brian Fredensborg, Amy Armstrong, Ellen Hansen & Robert Poulin Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand (*Author for correspondence: E-mail: [email protected]) Received 10 November 2004; in revised form 26 January 2005; accepted 13 February 2005 Key words: Amphipoda, Trematoda, Coitocaecum parvum, Microphallus sp., reproduction, mate choice Abstract The potential impact of parasitism on pairing patterns of the amphipod Paracalliope fluviatilis was investigated with regard to the infection status of both males and females. Two helminth parasites com- monly use this crustacean species as second intermediate host. One of them, Coitocaecum parvum,isa progenetic trematode with an egg-producing metacercaria occasionally reaching 2.0 mm in length, i.e. more than 50% the typical length of its amphipod host. The amphipod was shown to exhibit the common reproductive features of most precopula pair-forming crustaceans, i.e. larger males and females among pairs than among singles, more fecund females in pairs, and a trend for size-assortative pairing.
    [Show full text]
  • Environmental Limits Report Version 2
    Environmental limits for invertebrates and fish living in aquatic ecosystem types within the Manawatu Wanganui Region Prepared for Horizons Regional Council by – Russell Death Institute of Natural Resources - Ecology Massey University Private Bag 11-222 Palmerston North Selection of representative taxa A list of key invertebrate and fish taxa were compiled for streams and rivers falling into nine aquatic ecosystem types provided by Horizons Regional Council. Streams and rivers were sampled from a cross section of sites throughout the region thought to represent the “best management practice” for streams in those regions. Fish and invertebrates were sampled using standard sampling techniques outlined in Joy (2003). Invertebrate taxa found in each of the ecosystem types are listed below in Table 1 and fish in Table 4. Table 1. Invertebrate taxa and overall abundance found in “best management practice” streams in each of nine ecosystem types throughout the Manawatu Wanganui Region. Taxa for which information is available on temperature and/or ammonia tolerances are highlighted in grey. UHS taxa Abund. UHS Lime taxa Abund. UVA taxa Abund. UVM taxa Abund. Number of streams 32 Number of streams 2 Number of streams 26 Number of streams 22 Deleatidium spp. 1179 Aoteapsyche 10 Deleatidium spp. 632 Deleatidium spp. 667 Coloburiscus humeralis 234 Hydrobiosis 7 Coloburiscus humeralis 222 Coloburiscus humeralis 244 Nesameletus 30 Pycnocentrodes spp. 6 Nesameletus 129 Nesameletus 36 Zephlebia dentata 13 Aphrophila 16 Zephlebia dentata 8 Zephlebia 23 Austrolima 10 Elmidae 15 Austroclima 15 Austroclima 46 Neozephlebia scita 10 Oligochaete 7 Neozephlebia scita 6 Neozephlebia scita 26 Austroperla cyrene 22 Potamopyrgus 76 Austroperla cyrene 25 Austroperla cyrene 6 Megaleptoperla grandis 8 Megaleptoperla grandis 11 Stenoperla prasina 7 Stenoperla prasina 23 Stenoperla prasina 26 Zelandoperla spp.
    [Show full text]
  • Corophiine Amphipods of the Genera Chelicorophium
    A peer-reviewed open-access journal ZooKeys 505: 35–50Corophiine (2015) amphipods of the genera Chelicorophium and Paracorophium... 35 doi: 10.3897/zookeys.505.9751 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Corophiine amphipods of the genera Chelicorophium and Paracorophium from the lower Gulf of Thailand (Crustacea, Amphipoda, Corophiidae, Corophiinae) Koraon Wongkamhaeng1, Jaruwat Nabhitabhata2, Prawit Towatana1 1 Marine and Coastal Resources Institute (MACORIN), Prince of Songkla University, 90112 Thailand 2 Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, 90112 Thailand Corresponding author: Koraon Wongkamhaeng ([email protected]) Academic editor: C. O. Coleman | Received 5 April 2015 | Accepted 13 May 2015 | Published 21 May 2015 http://zoobank.org/999DF1C9-4C76-4153-84F7-FC629EF2B8F6 Citation: Wongkamhaeng K, Nabhitabhata J, Towatana P (2015) Corophiine amphipods of the genera Chelicorophium and Paracorophium from the lower Gulf of Thailand (Crustacea, Amphipoda, Corophiidae, Corophiinae). ZooKeys 505: 35–50. doi: 10.3897/zookeys.505.9751 Abstract Two species of corophiine amphipods from Songkhla Lake, in the lower Gulf of Thailand, are described and illustrated. Chelicorophium madrasensis (Nayar, 1950), found in the mangrove forest, has not previ- ously been observed in Thai waters.Paracorophium angsupanichae sp. n. is characterized by its chelate male gnathopod 2, obtuse palm with subrectangular distomedial elevation, and urosomites 1-3 free. This is the first record of the genus Chelicorophium and Paracorophium in Thai waters. All specimens are deposited in the Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Thailand and the Museum für Naturkunde, Berlin. Keywords Crustacea, Amphipoda, new species, taxonomy, Thai waters Copyright Koraon Wongkamhaeng et al.
    [Show full text]
  • The Parasite Release Hypothesis and the Success of Invasive Fish in New Zealand
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The parasite release hypothesis and the success of invasive fish in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biological Science at The University of Waikato by Keshi Zhang The University of Waikato 2012 Abstract Non-indigenous species are commonly released from their native enemies, including parasites, when they are introduced into new geographical areas. This has been referred to as the enemy release hypothesis and more strictly as the parasite release hypothesis. The loss of parasites is commonly inferred to explain the invasiveness of non-indigenous species. I examined parasite release in New Zealand non-indigenous freshwater fishes. A literature review was undertaken in order to collate lists of the known parasite fauna of 20 New Zealand non-indigenous freshwater fish species.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]