Studying Resting State and Stimulus Induced BOLD Activity Using the Generalized Ising Model and Independent Component Graph Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Studying Resting State and Stimulus Induced BOLD Activity Using the Generalized Ising Model and Independent Component Graph Analysis Western University Scholarship@Western Electronic Thesis and Dissertation Repository 1-29-2020 11:00 AM Studying Resting State and Stimulus Induced BOLD Activity using the Generalized Ising Model and Independent Component Graph Analysis Sivayini Kandeepan The University of Western Ontario Supervisor Soddu, Andrea The University of Western Ontario Co-Supervisor Valluri, Sreeram The University of Western Ontario Graduate Program in Physics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Sivayini Kandeepan 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Statistical, Nonlinear, and Soft Matter Physics Commons Recommended Citation Kandeepan, Sivayini, "Studying Resting State and Stimulus Induced BOLD Activity using the Generalized Ising Model and Independent Component Graph Analysis" (2020). Electronic Thesis and Dissertation Repository. 6801. https://ir.lib.uwo.ca/etd/6801 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Although many technical advancements have been made, neuroscientists still struggle to explain the underlying behaviour of how brain regions communicate with each other to form large-scale functional networks. functional Magnetic Resonance Imaging (fMRI) has been commonly used to investigate changes between brain regions over time using the Blood Oxygen Level Dependent (BOLD) signal. The goal of this thesis is to show the applicability of novel techniques and tools, such as the generalized Ising model (GIM) and the independent component graph analysis (GraphICA), to obtain information on the functional connectivity of populations with altered perception of consciousness. The GIM was used to model brain activity in healthy brains during various stages of consciousness, as induced by an anesthetic agent, propofol, in the auditory paradigm. GraphICA, a tool that combines ICA and graph theory was used to investigate the functional connectivity of resting state networks (RSNs) in patients with altered perception caused by tinnitus and in patients with altered states of consciousness caused by severe brain injury. For the tinnitus patients, we examined whether a correlation exists between tinnitus behavioural scores and functional brain connectivity of RSNs. Moreover, for the severely brain injured patients, a multimodal neuroimaging approach with hybrid FDG-PET/MRI was implemented to study the functional connectivity changes of the RSNs. The GIM simulated with an external field was able to model the brain activity at different levels of consciousness under naturalistic stimulation, at a temperature in the super critical regime. Further, a strong correlation was observed between tinnitus distress and the connectivity pattern within and between the right executive control network and the other RSNs. This suggests that tinnitus distress is the consequence of a hyperactive attention condition. A variability was observed ii in the appearance and temporal/spatial patterns of RSNs among the two resting state fMRI acquisitions acquired within the same scanning session of the severely brain injured patients. This suggests the need for new strategies to be developed in order to pick the best RSN from each acquisition. Overall, this work demonstrated that the GIM and GraphICA were promising tools to investigate brain activity of populations with altered perception of consciousness and in future can be extended to investigate different neurological populations. Key words: Resting state fMRI, Generalized Ising model, Graph theory, Independent component analysis, Tinnitus, Disorders of consciousness, Anesthesia, Naturalistic external stimuli iii Summary for Lay Audience The human brain is one of the largest and most complex organs. It acts as the commanding center of the nervous system. It is made up of more than a hundred billion neurons that work together to successfully generate and transfer information. Despite recent advancements in neuroscience, researchers still struggle to explain how the brain functions in order to effectively complete specific tasks. Our research is to map out the differences in functional connectivity in altered states of consciousness, arising either by the intake of an anesthetic agent or due to pathological conditions. In the first project, we successfully modelled the brain activity of healthy subjects while they were listening to an audio clip from a movie, in awake, mildly sedated, deeply sedated and recovered back, due to anesthesia. Further, synchronization among subjects’ brain regions responsible for perception was found only when the individuals were listening to the movie. In future, this simple model will permit us to see whether a non-responsive patient has the same neural experience of a healthy individual. In the second project, a study focussed on tinnitus (ringing in ears without any sound) patients, we found that distress resulted due to hyper-activity of brain regions in charge of executive functioning. This concludes that tinnitus distress is mainly caused by hyper attention towards internally generated auditory sensations, “auditory hallucinations”. In our final project on patients with disorders of consciousness, we observed a variability between MRI scans acquired within a temporal gap of 30 min. This suggests a necessity to perform multiple scans in the same session to reduce misdiagnosis. iv Co-Authorship Statement This thesis is comprised of three manuscripts which were co-authored with various collaborators. The second (Chapter 3) and third (Chapter 4) papers have been published in “Journal of Neurology” and “Frontiers in Neuroscience”, respectively, and the first (Chapter 2) manuscript will be submitted soon. I am the principal author of projects in Chapters 2 and 3 and co-first author of the project in Chapter 4. For the project in Chapter 2 (generalized Ising model), I modified the generalized Ising model code developed by Dr. Thushar Das, previous member of the group, to incorporate external stimuli. I performed all the simulations using the modified generalized Ising model code, calculated the inter-subject correlations, plotted the brain maps, and wrote the chapter completely. The fMRI data for the project in Chapter 2 were acquired by Dr. Lorina Naci from Robarts Research Institute at the University of Western Ontario. Preprocessing of the fMRI data and extraction of the features of the audio clip were performed by Jorge Rudas, who will be a co- author. Projects in Chapters 3 (Kandeepan et al., 2019) and 4 (Cavaliere and Kandeepan et al., 2018), involved the “GraphICA” tool, which was developed by Demetrius Rebeiro de Paula, from our lab. This tool preprocesses the fMRI data and extracts the resting state networks. For the project in Chapter 3 (tinnitus), I calculated the graph strengths of all the resting state networks and performed correlation analysis. Moreover, I developed codes to perform group statistical analysis such as the stepwise fit analysis, visualized all the results and composed 85% of the manuscript. The fMRI data of 135 tinnitus patients from the University Hospital of Antwerp used in this project were provided by Prof. Dirk de Ridder. Dr. Audrey Maudoux–co-first author of the paper– contributed in writing the introduction and discussion sections. v The project in Chapter 4 (disorders of consciousness) used fMRI and PET data of the patients with severe brain injury from the Neurorehabilitation Unit at Maugeri Clinical and Scientific Institutes, Telese Terme, Italy, and acquired at the SDN of Naples, Italy. I performed correlation analysis between fMRI and PET data obtained from GraphICA, at the network level, while behavioural assessments were performed by members of Dr. Anna Estraneo’s group. I introduced a technique called the ratio of fitness to choose the component which best resembles the network from two different fMRI acquisitions. I developed a code to visualize regions belonging/not belonging to a network and composed about 50% of this chapter, while the remainder was composed by the other co-authors. vi Acknowledgments I would like to express my greatest gratitude to my supervisor Prof. Andrea Soddu for his continuous guidance and tireless explanation throughout the project. I am indebted to him for helping me in defining the problem, providing insights to the solution and ultimately guiding me to make my research a success. I also wish to thank my co-supervisor Prof. Sree Ram Valluri for his patience and support provided throughout the project. I would also like to extend my gratitude to my advisory committee members, Prof. Alex Buchel and Prof. Blaine Chronik, for spending their time to evaluate my work and provide thoughtful discussions. I wish to thank the staff members of the Department of Physics and Astronomy, as well as the Brain and Mind Institute for being so kind to me and always available whenever assistance was needed. My special thanks go to my group members Dr. Emily Nichols, Pubuditha Abeyasinghe, Nasim Mortazavi, Sina Khajehabdollahi, Demetrius Ribeiro de Paula, and Marwa Dawaga for their valuable suggestions. In particular, Pubu was there beside me to provide endless moral support and positive energy whenever I was feeling down. My heartfelt thanks are also extended to Jorge Rudas and all
Recommended publications
  • Other Departments and Institutes Courses 1
    Other Departments and Institutes Courses 1 Other Departments and Institutes Courses About Course Numbers: 02-250 Introduction to Computational Biology Each Carnegie Mellon course number begins with a two-digit prefix that Spring: 12 units designates the department offering the course (i.e., 76-xxx courses are This class provides a general introduction to computational tools for biology. offered by the Department of English). Although each department maintains The course is divided into two halves. The first half covers computational its own course numbering practices, typically, the first digit after the prefix molecular biology and genomics. It examines important sources of biological indicates the class level: xx-1xx courses are freshmen-level, xx-2xx courses data, how they are archived and made available to researchers, and what are sophomore level, etc. Depending on the department, xx-6xx courses computational tools are available to use them effectively in research. may be either undergraduate senior-level or graduate-level, and xx-7xx In the process, it covers basic concepts in statistics, mathematics, and courses and higher are graduate-level. Consult the Schedule of Classes computer science needed to effectively use these resources and understand (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet/) each semester for their results. Specific topics covered include sequence data, searching course offerings and for any necessary pre-requisites or co-requisites. and alignment, structural data, genome sequencing, genome analysis, genetic variation, gene and protein expression, and biological networks and pathways. The second half covers computational cell biology, including biological modeling and image analysis. It includes homework requiring Computational Biology Courses modification of scripts to perform computational analyses.
    [Show full text]
  • Simpleitk Tutorial Image Processing for Mere Mortals
    SimpleITK Tutorial Image processing for mere mortals Insight Software Consortium Sept 23, 2011 (Insight Software Consortium) SimpleITK - MICCAI 2011 Sept 2011 1 / 142 This presentation is copyrighted by The Insight Software Consortium distributed under the Creative Commons by Attribution License 3.0 http://creativecommons.org/licenses/by/3.0 What this Tutorial is about Provide working knowledge of the SimpleITK platform (Insight Software Consortium) SimpleITK - MICCAI 2011 Sept 2011 3 / 142 Program Virtual Machines Preparation (10min) Introduction (15min) Basic Tutorials I (45min) Short Break (10min) Basic Tutorials II (45min) Co↵ee Break (30min) Intermediate Tutorials (45min) Short Break (10min) Advanced Topics (40min) Wrap-up (10min) (Insight Software Consortium) SimpleITK - MICCAI 2011 Sept 2011 4 / 142 Tutorial Goals Gentle introduction to ITK Introduce SimpleITK Provide hands-on experience Problem solving, not direction following ...but please follow directions! (Insight Software Consortium) SimpleITK - MICCAI 2011 Sept 2011 13 / 142 ITK Overview How many are familiar with ITK? (Insight Software Consortium) SimpleITK - MICCAI 2011 Sept 2011 14 / 142 Ever seen code like this? 1 // Setup image types. 2 typedef float InputPixelType ; 3 typedef float OutputPixelType ; 4 typedef itk ::Image<InputPixelType ,2> InputImageType ; 5 typedef itk ::Image<OutputPixelType,2> OutputImageType ; 6 // Filter type 7 typedef itk ::DiscreteGaussianImageFilter< 8 InputImageType , OutputImageType > 9 FilterType ; 10 // Create a filter 11 FilterType ::Pointer filter = FilterType ::New (); 12 // Create the pipeline 13 filter >SetInput( reader >GetOutput () ); 14 filter−>SetVariance(1.0);− 15 filter−>SetMaximumKernelWidth(5); 16 filter−>Update (); 17 OutputImageType− ::Pointer blurred = filter >GetOutput (); − (Insight Software Consortium) SimpleITK - MICCAI 2011 Sept 2011 15 / 142 We are here to tell you that you can..
    [Show full text]
  • MRI-Based Radiomics Analysis for the Pretreatment Prediction Of
    cancers Article MRI-Based Radiomics Analysis for the Pretreatment Prediction of Pathologic Complete Tumor Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients: A Multicenter Study Renée W. Y. Granzier 1,2,* , Abdalla Ibrahim 2,3,4,5,6,† , Sergey P. Primakov 2,4,†, Sanaz Samiei 1,2,3, Thiemo J. A. van Nijnatten 3 , Maaike de Boer 2,7, Esther M. Heuts 1 , Frans-Jan Hulsmans 8, Avishek Chatterjee 2,4 , Philippe Lambin 2,3,4 , Marc B. I. Lobbes 2,3,8 , Henry C. Woodruff 2,3,4,‡ and Marjolein L. Smidt 1,3,‡ 1 Department of Surgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; [email protected] (S.S.); [email protected] (E.M.H.); [email protected] (M.L.S.) 2 GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; [email protected] (A.I.); Citation: Granzier, R.W.Y.; Ibrahim, [email protected] (S.P.P.); [email protected] (M.d.B.); A.; Primakov, S.P.; Samiei, S.; van [email protected] (A.C.); [email protected] (P.L.); Nijnatten, T.J.A.; de Boer, M.; Heuts, [email protected] (M.B.I.L.); [email protected] (H.C.W.) 3 E.M.; Hulsmans, F.-J.; Chatterjee, A.; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, Lambin, P.; et al. MRI-Based 6202 AZ Maastricht, The Netherlands; [email protected] 4 The D-Lab, Department of Precision Medicine, Maastricht University, Universiteitssingel
    [Show full text]
  • Raluca-Maria Sandu RESEARCHER · DATA Scientist  [email protected] |  Rmsandu.Github.Io |  Rmsandu |  Rmsandu
    Raluca-Maria Sandu RESEARCHER · DATA SCiENTiST [email protected] | rmsandu.github.io | rmsandu | rmsandu About Me I am a perseverant and resourceful scientific professional who just finished their PhD Degree in Biomedical Engineering at the University of Bern, previously having graduated with an MSc in the same field, and a BSc in Control Engineering and Applied Computer Science. I am specialized in working on data science and research & development projects across various topics as evidenced by my work experience and studies. Work Experience University of Bern, ARTORG Center for Biomedical Engineering Research Bern, Switzerland DOCTORAL CANDiDATE (PHD) May 2017 ‑ Feb. 2021 • Worked with data mining, image processing & registration, radiomics & feature extraction, statistics, and machine learning algorithms in the area of CT‑guided ablation treatments for liver cancer by using Python and R programming languages. • Developed a quantitative and numerical evaluation method based on DICOM image segmentations for assessing the success of liver ablation treatments which was published in a peer‑reviewed journal. More info here. Philips Research, Personal Care and Wellness Eindhoven, The Netherlands RESEARCH AND DEVELOPMENT GRADUATE STUDENT Jul. 2016 ‑ Mar. 2017 • Designed and developed a web‑based application for image annotation using JavaScript, HTML and CSS that can be found here. • Applied image processing and machine learning algorithms in Python (SVM, PCA, Random Forests) for classification of skin surface structures. Philips Research, Personal Care and Wellness Eindhoven, The Netherlands RESEARCH AND DEVELOPMENT INTERNSHiP Apr. 2016 ‑ Jun. 2016 • Contributed with exploratory 2D image analysis in Python to quantify the effect of various diets on physical appearance at skin surface.
    [Show full text]
  • GNC Khan-Academy Una Estrategia.Pdf
    Revista de Pedagogía ESCUELA DE EDUCACIÓN FACULTAD DE HUMANIDADES Y EDUCACIÓN UNIVERSIDAD CENTRAL DE VENEZUELA Depósito Legal pp. 197102DF193 ISSN N° 0798-9792 Caracas, julio-diciembre 2018, vol. 39, nº 105 Publicación semestral Director-Editor Ramón Alexander Uzcátegui Pacheco (Universidad Central de Venezuela) Consejo Editor Ángel Alvarado (Universidad Central de Venezuela) Doris Villaroel (Universidad Central de Venezuela) María Janet Ríos (Universidad Central de Venezuela) Mariángeles Payer (Universidad Central de Venezuela) Rosa Leonor Junguittu (Universidad Central de Venezuela) Eduardo Cavieres Fernández (Universidad de Playa Ancha, Chile) Maria Helena Michels (Universidade Federal de Santa Catarina, Brasil) Versión electrónica de la Revista Saber UCV, Redalyc, Revencyt y Scopus Consejo Asesor Carlos Eduardo Blanco (Universidad Central de Venezuela) Luis Bravo Jáuregui (Universidad Central de Venezuela) Aurora Lacueva (Universidad Central de Venezuela) Nacarid Rodríguez (Universidad Central de Venezuela) Juan Haro (Universidad Central de Venezuela) Alexandra Mulino (Universidad Central de Venezuela) Traducciones y Correcciones Gabriela Delgado Montoya Mariel Escuela de Educación - UCV Apoyo Secretarial y Logístico Luzmelys Martínez Judith Solórzano Consejo Asesor Honorario Internacional Martha Aguirre, Universidad Católica Boliviana “Santa Cruz” Ana Lupita Chaves Salas, Universidad de Costa Rica Carlos Miñana Blasco, Universidad Nacional de Colombia Ángel Pérez Gómez, Universidad de Málaga César Coll, Universidad de Barcelona Fernando
    [Show full text]
  • Implementing the DICOM Standard for Digital Pathology
    [Downloaded free from http://www.jpathinformatics.org on Tuesday, May 7, 2019, IP: 4.16.85.218] Original Article Implementing the DICOM Standard for Digital Pathology Markus D. Herrmann1, David A. Clunie2, Andriy Fedorov3,4, Sean W. Doyle1, Steven Pieper5, Veronica Klepeis4,6, Long P. Le4,6, George L. Mutter4,7, David S. Milstone4,7, Thomas J. Schultz8, Ron Kikinis3,4, Gopal K. Kotecha1, David H. Hwang4,7, Katherine P. Andriole1,4,9, A. John Iafrate4,6, James A. Brink4,10, Giles W. Boland4,9, Keith J. Dreyer1,4,10, Mark Michalski1,4,10, Jeffrey A. Golden4,7, David N. Louis4,6, Jochen K. Lennerz4,6 1MGH and BWH Center for Clinical Data Science, 3Department of Radiology, Surgical Planning Laboratory, Brigham and Women’s Hospital, 4Harvard Medical School, Departments of 6Pathology and 10Radiology, Massachusetts General Hospital, Departments of 7Pathology and 9Radiology, Brigham and Women’s Hospital, 8Enterprise Medical Imaging, Massachusetts General Hospital, Boston, MA, 5Isomics, Inc., Cambridge, MA, USA, 2PixelMed Publishing, LLC, Bangor, PA, USA Received: 30 July 2018 Accepted: 06 August 2018 Published: 02 November 2018 Abstract Background: Digital Imaging and Communications in Medicine (DICOM®) is the standard for the representation, storage, and communication of medical images and related information. A DICOM file format and communication protocol for pathology have been defined; however, adoption by vendors and in the field is pending. Here, we implemented the essential aspects of the standard and assessed its capabilities and limitations in a multisite, multivendor healthcare network. Methods: We selected relevant DICOM attributes, developed a program that extracts pixel data and pixel-related metadata, integrated patient and specimen-related metadata, populated and encoded DICOM attributes, and stored DICOM files.
    [Show full text]
  • 3D Slicer Documentation
    3D Slicer Documentation Slicer Community Sep 25, 2021 CONTENTS 1 About 3D Slicer 3 1.1 What is 3D Slicer?............................................3 1.2 License..................................................4 1.3 How to cite................................................5 1.4 Acknowledgments............................................7 1.5 Commercial Use.............................................8 1.6 Contact us................................................9 2 Getting Started 11 2.1 System requirements........................................... 11 2.2 Installing 3D Slicer............................................ 12 2.3 Using Slicer............................................... 14 2.4 Glossary................................................. 19 3 Get Help 23 3.1 I need help in using Slicer........................................ 23 3.2 I want to report a problem........................................ 23 3.3 I would like to request enhancement or new feature........................... 24 3.4 I would like to let the Slicer community know, how Slicer helped me in my research......... 24 3.5 Troubleshooting............................................. 24 4 User Interface 27 4.1 Application overview........................................... 27 4.2 Review loaded data............................................ 29 4.3 Interacting with views.......................................... 31 4.4 Mouse & Keyboard Shortcuts...................................... 35 5 Data Loading and Saving 37 5.1 DICOM data..............................................
    [Show full text]
  • Quantitative Analysis of Medical Imaging Data in R
    Medical Image Analysis in R Quantitative Analysis of Motivation Medical Imaging Data in R Task View Case Studies fMRI DTI PET Brandon Whitcher Opportunities Mango Solutions End London, United Kingdom www.mango-solutions.com [email protected] @MangoImaging 24 November 2011 – Neuroimaging and Statistics Medical Image Analysis in R Outline Motivation Task View Case Studies 1 Motivation fMRI DTI PET 2 Medical Imaging Task View Opportunities End 3 Case Studies Functional MRI Diffusion Tensor Imaging Positron Emission Tomography 4 Opportunities 5 Conclusions Medical Image Analysis in R The Drug Development Process Motivation Task View Case Studies fMRI DTI PET Opportunities End • New drug development can take from 10-20 years with an estimated average of about 9-12 years. • The best estimate of the costs of drug R&D today is likely to be that from the most recently available well-designed study; that is, USD 802 million. Dickson & Gagnon (2009; Discovery Medicine) Medical Image Analysis in R Medical Image Analysis for Drug Development Motivation • Quantitative image analysis and statistical inference. Task View • Application development, validation and deployment. Case Studies fMRI • Translational imaging: pre-clinical and clinical studies. DTI PET • Work with clinical scientists to determine suitable Opportunities imaging biomarkers. End • Work with medical physicists to determine appropriate image acquisition guidelines. Three stages of a clinical imaging study. • Setup • Operations • Analysis Medical Image Analysis in R The R Project for Statistical Computing Motivation • R is a free software environment for statistical Task View computing and graphics. Case Studies • R compiles and runs on a wide variety of UNIX fMRI DTI platforms, Windows and MacOS.
    [Show full text]
  • Reliable Machine Learning for Medical Imaging Data Through Automated Quality Control and Data Harmonization
    Reliable Machine Learning for Medical Imaging Data through Automated Quality Control and Data Harmonization. 1 Author Robert Robinson Supervisors Dr. Ben Glocker 2 Submitted May 22nd 2020 Dr. Chris Page 2 Dr. Marius de Groot 1 Prof. Daniel Rueckert 1 BioMedIA, Department of Computing, Imperial College London, UK. 2 GlaxoSmithKline Research and Development, Uxbridge, UK. A thesis submitted in fulfilment of the requirements for the degree of Philosophiae Doctor Biomedical Image Analysis Group, Department of Computing, Imperial College London. BioMedIA, Department of Computing, Huxley Building, Imperial College London, 180 Queens Gate, South Kensington, SW7 2AZ Robert D. Robinson © 2020 A learning experience is one of those things that says, ‘You know that thing you just did? Don’t do that.’ Douglas Adams - The Salmon of Doubt Many learning experiences occurred conducting this research. For all of their valuable support, this thesis, the fruit of these last 5 years, is dedicated to my partner, Nick, my parents, Margie and Eric, and my friends. It is also dedicated to Danny, my constant companion. I would never have lived to begin, much less finish, the work herein if it weren’t for my Dad; he is a true life-saver and superhero. Declaration The works presented in this thesis are original ideas fostered jointly between the author and their supervisors. To the best of the author’s knowledge, the work is original and attribution has been given where appropriate. Where others have contributed to the work, it has been acknowledged in co-authorship of the relevant papers outlined here. The work in chapter3 was published in the conference proceedings of the 20 th international con- ference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2017.
    [Show full text]
  • Supplementary Material
    Supplementary Material Automated Edge-Aware Refinement of Anatomical Atlases in 3D and Its Application to the Developing Mouse Brain Materials and Methods Original atlases The ADMBA series provides atlases for multiple developmental time points from embryonic through adult stages1. Each atlas consists of two main images given in a volumetric format (.mhd and its associate .raw file), a microscopy image (“atlasVolume”) and a labels image (“annotation”), which are each composed of multiple 2D sagittal planes. As outlined in the ADMBA technical white paper2 and online application programming interface (API) documentation3, each microscopy plane is from imaging of a C57BL/6J mouse brain specimen cryosectioned into 20 µm (E11.5-P4) or 25 µm (P14-P56) thick sagittal sections stained with Feulgen-HP yellow nuclear stain (E11.5-E18.5) or Nissl staining (P4-P56). The annotation planes correspond to each microscopy plane, with integer values at each pixel denoting the label at the finest structural level annotated for the corresponding microscopy voxel. To create the atlas labeling, an expert anatomist annotated 2D planes with Adobe Illustrator CS4. Lateral labels extension While the ADMBA covers a large proportion of unique areas within each brain, the atlas labels leave the lateral edges of one hemisphere and the entire other hemisphere unlabeled. To fill in missing areas without requiring further manual annotation, we made use of the existing labels to sequentially extend them into the lateral unlabeled histology sections. This process involves 1) resizing the last labeled plane to the next, unlabeled plane, 2) refitting the labels to the underlying histology, and 3) recursively labeling the next plane until all unlabeled planes are complete (Suppl.
    [Show full text]
  • A Complete Bibliography of the Journal of Statistical Software
    A Complete Bibliography of the Journal of Statistical Software Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 23 July 2021 Version 2.13 Title word cross-reference (X;s¯ c) [ECK04]. (X;v¯ c) [ECK04]. (p; q) [IMR17]. 1; 2; 3 [SMDS11]. 2 [EN11, GKSU15, Gr¨o14]. 2k [Law08]. 2k−p [Law08]. 2 × 2 [ILS11]. 3 [AMMRP14, GGK10, LPLPD14]. 4 [HWY18]. $69.99 [Pos15]. α [LPLPD14, dVSWAL17]. F [Ram00]. G [NE20]. K [KSBZ16, PG15, HFKB12, Lei10, MAK06]. N [MMR20, HMR+13]. p [MF15, ZD17]. Q [JWHS16]. T [Pat00, AHvD09, LM13, MP99, Som98, Som01]. -Components [MP99]. -function [PG15]. -Gram [HMR+13]. -Level [Gr¨o14]. -Means [HFKB12, KSBZ16]. -Mixture [MMR20]. -Modeling [NE20]. -Modes [Lei10]. -Parameter [HWY18]. -Shape [LPLPD14]. -Stable [dVSWAL17]. -State [AMMRP14]. -Statistics [JWHS16]. //dsarkar.fhcrc.org/lattice/ [Gro08]. 1 2 //global.oup.com/academic/product/9780199660346 [How15a]. //ukcatalogue.oup.com/product/9780198729068.do [Hil15b]. //ukcatalogue.oup.com/product/9780199671137.do [Han15]. //ukcatalogue.oup.com/product/9780199827633.do [Hil15a]. //www.amherst.edu/ [Gr¨o15a]. //www.ceremade.dauphine.fr/ [Pos15]. //www.crcpress.com/9781498709576 [Gr¨o16]. //www.crcpress.com/9781498711548 [Gle16]. //www.crcpress.com/9781498712361 [Kha16b]. //www.crcpress.com/9781498715232 [Zei15]. //www.imperial.ac.uk/bio/research/crawley/statistics/ [Hel15]. //www.r [Iac15]. //www.r-datacollection.com/ [Iac15]. //www.sciencedirect.com/science/book/9781785480058 [How15b].
    [Show full text]
  • Title Simpleitk: Image Analysis for All Levels of Programming Expertise
    Title SimpleITK: image analysis for all levels of programming expertise Relevance for ISBI and academic objectives This tutorial introduces SimpleITK, a simplified interface to the Insight Toolkit (ITK) which is widely used in biomedical image analysis. It addresses the undergoing shift in researcher expertise from using compiled programming languages, C and C++, to interpreted languages such as Python. By the end of this course participants will be able to: 1. Use the SimpleITK registration framework to register their own data by selecting the appropriate components and settings. 2. Use SimpleITK to easily implement traditional segmentation workflows for comparison with deep learning approaches. 3. Use SimpleITK to prepare images as input for deep learning networks, including generation of synthetic images for data augmentation. 4. Use SimpleITK for quantitative evaluation of segmentation results. 5. Use SimpleITK for visualizing segmentation and registration results. Description and Timeline SimpleITK is a simplified programming interface to the algorithms and data structures of the Insight Toolkit (ITK) for segmentation, registration and advanced image analysis. It supports bindings for multiple programming languages including C++, Python, R, Java, C#, Lua, Ruby and TCL. Combining SimpleITK’s Python bindings with the Jupyter notebook web application creates an environment which facilitates collaborative development of biomedical image analysis workflows. In this tutorial, we will use a hands-on approach utilizing Jupyter notebooks to explore and experiment with various SimpleITK features in the Python programming language. Participants will follow along using their personal laptops, enabling them to explore the effects of code changes and parameter settings not covered by the instructor. We will start with a short introduction to the toolkit’s two basic data elements, Images and Transformations.
    [Show full text]