SMA301 LATEST NOTES.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

SMA301 LATEST NOTES.Pdf September 15, 2011 UNIVERSITY OF NAIROBI FACULTY OF SCIENCE THIRD YEAR LECTURE NOTES SMA 301: REAL ANALYSIS I First Edition WRITTEN BY : Dr. Bernard Mutuku Nzimbi REVIEWED BY: School of Mathematics, University of Nairobi P.o Box 30197, Nairobi, KENYA. EDITED BY: Copyright ⃝c 2011 Benz, Inc. All rights reserved. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopy- ing, recording or otherwise, without the prior permission of the publisher. This page is intentionally left blank. i Contents About the Author v Preface vi Goals of a Real Analysis I Course viii 1 METRIC SPACES 1 1.1 Introduction . 1 1.2 Rudiments on Metric Spaces . 1 1.3 Examples of Metric and Metric spaces . 3 1.3.1 Useful Inequalities . 6 1.3.2 H¨older's Inequality . 7 1.3.3 Minkowski's Inequality . 8 1.3.4 Subspaces of a metric space . 12 1.4 Equivalent Metrics . 12 1.5 Exercises . 18 2 STRUCTURE OF METRIC SPACES 22 2.1 Topology of a Metric Space . 22 2.1.1 Open Balls and Closed Balls in a Metric Space . 22 2.2 Interior points, Isolated Points and Open sets in a Metric Space . 28 2.2.1 Examples of Open Sets . 30 2.3 Limit Points, Closure Points and Closed Sets in a Metric Space . 33 2.3.1 Examples of Closed Sets . 37 2.4 Subsets and Relative Topology . 40 ii 2.4.1 Relatively Open and Relatively Closed Subsets of Metric Spaces . 41 2.5 Diameter of Subsets and Distance Between Subsets in Metric Spaces . 42 2.6 Boundary of a Subset of a Metric Space . 45 2.7 Exercises . 48 3 DENSE SUBSETS IN A METRIC SPACE 54 3.1 Dense and Nowhere Dense Sets . 54 3.2 Exercises . 56 4 COMPACTNESS IN METRIC SPACES 58 4.1 Sequential Compactness, Notion of a Cover and a Compact Set . 58 4.2 Bolzano-Weierstrass Theorem and Compactness . 59 4.3 Heine- Borel Theorem and Compactness . 62 4.4 Exercises . 64 5 CONTINUITY IN METRIC SPACES 66 5.1 Continuity of a Function in a metric Space . 66 5.1.1 Epsilon-Delta Definition of Continuity in a Metric Space . 66 5.1.2 Continuity in terms of Open Balls . 67 5.2 Compactness and Continuity in Metric Spaces . 70 5.2.1 Uniform Continuity in Metric Spaces . 73 5.2.2 Continuity vs Metrics . 74 5.2.3 Compactness and Real-valued Continuous Functions: Applica- tions in Maxima and Minima Problems . 77 5.2.4 Continuity and Approximation . 78 5.3 Exercises . 79 6 COMPLETENESS IN METRIC SPACES 81 6.1 Convergence in Metric Spaces . 81 6.1.1 Criterion of Convergence . 81 6.1.2 Cauchy Criterion and Cauchy Sequences . 82 6.2 Compactness vs Completeness in Metric Spaces . 86 6.3 Baire Category Theorem . 90 iii 6.4 Completeness vs Equivalent metrics in Metric Spaces . 94 6.5 Exercises . 95 Bibliography 96 iv About the Author B.M. Nzimbi is a Lecturer in Pure Mathematics at the University of Nairobi. Dr. Nzimbi received his B.sc in Mathematics and Computer Science from the University of Nairobi (1995), Msc(Pure Mathematics) from University of Nairobi (1999), Msc(Mathematics) from Syracuse University (New York, USA) (2004), and his Ph.D in Pure Mathematics from University of Nairobi (2009), where he wrote his thesis in the area of Operator Theory under the direction of Prof. J.M. Khalagai. Before joining the University of Nairobi, he held a position at Catholic University of Eastern Africa (CUEA), where he was a part-time lecturer. Dr. Nzimbi has authored, co-authored and published numerous articles in professional journals in the areas of Operator Theory and differential geometry. He is the author of the textbooks "Basic Mathematics","Linear Algebra I " and "Linear Algebra II ", which are extensively used in the ODL programme at the University of Nairobi. v Preface This book grew out of a course entitled Real Analysis I that I have taught at the Uni- versity of Nairobi during the past six years. It is intended as a textbook to be studied independently by students on their own or to be used in a course on Real Analysis I. In writing this book, I was guided by my long-standing experience and interest in teach- ing Real Analysis. The choice of material is not entirely mine, but laid down by the University of Nairobi SMA301: Real Analysis syllabus. For the student, my purpose was to introduce students studying sciences and social sci- ences the beautiful field of real analysis. I wanted to write a succinct book that gets to interesting results in a minimal amount of time. This book can be read by under- graduate students who have had only one-semester course in introduction to analysis. Introduction to Analysis is the only explicit prerequisite for the course, but a cer- tain degree of mathematical sophistication is required. For the instructor, my purpose was to design a flexible, comprehensive teaching tool using proven pedagogical techniques in mathematics. I wanted to provide instructors with a package of materials that they could use to teach Real Analysis I effectively and efficiently in the most appropriate manner for their particular set of students. I hope I have accomplished these goals without watering down the material. This text is designed as a one-semester real analysis course to be taken by third year undergraduate students in a wide variety of majors, including mathematics, chemistry, physics, meteorology, geology, economics and other social sciences. The core material of this book consists of six chapters. Each chapter includes definitions, theorems and principles together with illustrative and other descriptive material, followed by several exercises of varying difficulty. I finally wish to record my appreciation to my former students for their invaluable suggestions and critical review of the manuscript that made the writing of this book easy. I remain indebted to my former students for their patience and eagerness to read my sometimes not-so-polished notes and for much help in sorting out good exercise sets vi which have been included in this book. I welcome your comments, suggestions for improvements and indication of errors. All the errors in this manuscript, if any, are entirely mine. Bernard Mutuku Nzimbi Nairobi, 2011 vii Goals of a Real Analysis I Course Analysis is the branch of mathematics that deals with inequalities and limiting processes. The goal of this course is to acquaint the reader with the basic concepts of rigorous proof in analysis. Special Features of this Book Accessibility: There are no mathematical prerequisites beyond an introduction to analysis for this text. Each chapter begins at an easily understood and accessible level. Once basic mathematical concepts have been developed, more difficult material and ap- plications are presented. Accessibility: This text has been carefully designed for flexible use. The depen- dence of chapters has been minimized. Each chapter is divided into sections and each section is divided into subsections that form natural blocks of material for teaching. Instructors can easily pace their lectures using these blocks. Writing Style: The writing style of this book is direct and pragmatic. Precise mathematical language is used without excessive formalism and abstraction. Notations are introduced and used when appropriate. Care has been taken to balance the mix of notation and words in mathematical statements. Mathematical Rigor and Precision: All definitions and theorems in this book are stated extremely carefully so that students will appreciate the precision of language and rigor need in mathematics. Proofs are motivated and developed and their steps are carefully justified. Figures and Tables: Figures and tables in this book are carefully presented and illustrated. Exercises: There is an ample supply of exercises in this book that develop basic skills and which are carefully graded for level of difficulty. viii Chapter 1 METRIC SPACES 1.1 Introduction One of the most important operations in mathematical analysis is the taking of limits. Here what matters is not so much the algebraic nature of the field of real numbers, but rather the fact that distance from one point to another on the real line (or in two or three dimensional space) is well-defined and has certain properties. All fundamental tools of metric spaces needed in mathematics and elsewhere in the sci- ences and social sciences are included in detailed exposition in this chapter. Objectives At the end of this lecture, you should be able to: • Define a metric and a metric space. • Give examples of metric spaces. • Apply metric space theory in solving some practical problems. 1.2 Rudiments on Metric Spaces Basic questions of analysis on the real line are tied to the notions of closeness and distances between points. The same issue of closeness comes up in more complicated settings, for instance, like when we are trying to approximate a function by a simpler 1 function. The notion of a metric space generalizes the properties of R that are associated with the distance given by the function (x; y) 7−! jx − yj which is the standard metric or Euclidean metric in R. We introduce main properties of matric spaces (applicable in advanced real analysis). We abstract many of the properties of R to the context of a metric space, a set in which we can measure the distance between any two points. We introduce the general notion of distance for the general space emphasizing main properties of the distance with which we have an experience. Once a metric distance has been defined between any two points of a set, the set becomes well defined or metrized and it becomes a space.
Recommended publications
  • A Discussion on Analytical Study of Semi-Closed Set in Topological Space
    The International journal of analytical and experimental modal analysis ISSN NO:0886-9367 A discussion on analytical study of Semi-closed set in topological space 1 Dr. Priti Kumari, 2 Sukesh Kumar Das, 3 Dr. Ranjana & 4 Rupesh Kumar 1 & 2 Guest Assistant Professor, Department of Mathematics Saharsa College of Engineering , Saharsa ( 852201 ), Bihar, INDIA 3 University Professor, University department of Mathematics Tilka Manjhi Bhagalpur University, Bhagalpur ( 812007 ), Bihar , INDIA 4 M. Sc., Department of Physics A. N. College Patna, Univ. of Patna ( 800013 ), Bihar, INDIA [email protected] , [email protected] , [email protected] & [email protected] Abstract : In this paper, we introduce a new class of sets in the topological space, namely Semi- closed sets in the topological space. We find characterizations of these sets. Further, we study some fundamental properties of Semi-closed sets in the topological space. Keywords : Open set, Closed set, Interior of a set & Closure of a set. I. Introduction The term Semi-closed set which is a weak form of closed set in a topological space and it is introduced and defined by the mathematician N. Biswas [10] in the year 1969. The term Semi- closure of a set in a topological space defined and introduced by two mathematician Crossley S. G. & Hildebrand S. K. [3,4] in the year 1971. The mathematician N. Levine [1] also defined and studied the term generalized closed sets in the topological space in Jan 1970. The term Semi- Interior point & Semi-Limit point of a subset of a topological space was defined and studied by the mathematician P.
    [Show full text]
  • POINT SET TOPOLOGY Definition 1 a Topological Structure On
    POINT SET TOPOLOGY De¯nition 1 A topological structure on a set X is a family (X) called open sets and satisfying O ½ P (O ) is closed for arbitrary unions 1 O (O ) is closed for ¯nite intersections. 2 O De¯nition 2 A set with a topological structure is a topological space (X; ) O ; = 2;Ei = x : x Eifor some i = [ [i f 2 2 ;g ; so is always open by (O ) ; 1 ; = 2;Ei = x : x Eifor all i = X \ \i f 2 2 ;g so X is always open by (O2). Examples (i) = (X) the discrete topology. O P (ii) ; X the indiscrete of trivial topology. Of; g These coincide when X has one point. (iii) =the rational line. Q =set of unions of open rational intervals O De¯nition 3 Topological spaces X and X 0 are homomorphic if there is an isomorphism of their topological structures i.e. if there is a bijection (1-1 onto map) of X and X 0 which generates a bijection of and . O O e.g. If X and X are discrete spaces a bijection is a homomorphism. (see also Kelley p102 H). De¯nition 4 A base for a topological structure is a family such that B ½ O every o can be expressed as a union of sets of 2 O B Examples (i) for the discrete topological structure x x2X is a base. f g (ii) for the indiscrete topological structure ; X is a base. f; g (iii) For , topologised as before, the set of bounded open intervals is a base.Q 1 (iv) Let X = 0; 1; 2 f g Let = (0; 1); (1; 2); (0; 12) .
    [Show full text]
  • Some Properties of Θ-Open Sets
    Divulgaciones Matem¶aticasVol. 12 No. 2(2004), pp. 161{169 Some Properties of θ-open Sets Algunas Propiedades de los Conjuntos θ-abiertos M. Caldas ([email protected]) Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil. S. Jafari ([email protected]) Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark. M. M. Kov¶ar([email protected]) Department of Mathematics, Faculty of Electrical Engineering and Computer Sciences Technical University of Brno, Technick ¶a8 616 69 Brno, Czech Republic. Abstract In the present paper, we introduce and study topological properties of θ-derived, θ-border, θ-frontier and θ-exterior of a set using the con- cept of θ-open sets and study also other properties of the well known notions of θ-closure and θ-interior. Key words and phrases: θ-open, θ-closure, θ-interior, θ-border, θ- frontier, θ-exterior. Resumen En el presente ert¶³culose introducen y estudian las propiedades to- pol¶ogicasdel θ-derivedo, θ-borde, θ-frontera y θ-exterior de un conjunto usando el concepto de conjunto θ-abierto y estudiando tambi¶enotras propiedades de las nociones bien conocidas de θ-clausura y θ-interior. Palabras y frases clave: θ-abierto, θ-clausura, θ-interior, θ-borde, θ-frontera, θ-exterior. Received 2003/09/30. Revised 2004/10/15. Accepted 2004/10/19. MSC (2000): Primary 54A20, 54A05. 162 M. Caldas, S. Jafari, M. M. Kov¶ar 1 Introduction The notions of θ-open subsets, θ-closed subsets and θ-closure where introduced by Veli·cko [14] for the purpose of studying the important class of H-closed spaces in terms of arbitrary ¯berbases.
    [Show full text]
  • Mathematical Analysis, Second Edition
    PREFACE A glance at the table of contents will reveal that this textbooktreats topics in analysis at the "Advanced Calculus" level. The aim has beento provide a develop- ment of the subject which is honest, rigorous, up to date, and, at thesame time, not too pedantic.The book provides a transition from elementary calculusto advanced courses in real and complex function theory, and it introducesthe reader to some of the abstract thinking that pervades modern analysis. The second edition differs from the first inmany respects. Point set topology is developed in the setting of general metricspaces as well as in Euclidean n-space, and two new chapters have been addedon Lebesgue integration. The material on line integrals, vector analysis, and surface integrals has beendeleted. The order of some chapters has been rearranged, many sections have been completely rewritten, and several new exercises have been added. The development of Lebesgue integration follows the Riesz-Nagyapproach which focuses directly on functions and their integrals and doesnot depend on measure theory.The treatment here is simplified, spread out, and somewhat rearranged for presentation at the undergraduate level. The first edition has been used in mathematicscourses at a variety of levels, from first-year undergraduate to first-year graduate, bothas a text and as supple- mentary reference.The second edition preserves this flexibility.For example, Chapters 1 through 5, 12, and 13 providea course in differential calculus of func- tions of one or more variables. Chapters 6 through 11, 14, and15 provide a course in integration theory. Many other combinationsare possible; individual instructors can choose topics to suit their needs by consulting the diagram on the nextpage, which displays the logical interdependence of the chapters.
    [Show full text]
  • Metric Spaces
    Metric Spaces A. Banerji February 2, 2015 1 1 Introduction Definition 1 A metric space is a set S and a metric ρ : S×S ! < satisfying 1. ρ(x; y) = 0 iff x = y 2. ρ(x; y) = ρ(y; x) 3. For all x; y; z 2 S, ρ(x; y) ≤ ρ(x; z) + ρ(z; y) Note. ρ(x; y) ≥ 0. Indeed, consider the 3 points x; x; y. Applying the triangle inequality, 0 = ρ(x; x) ≤ ρ(x; y) + ρ(y; x) = 2ρ(x; y) k Example: d2 in < , defined by q Pk 2 d2(x; y) = i=1(xi − yi) Definition 2 A mapping k k : <k ! < is called a norm on the vector space <k if 1. kxk = 0 iff x = 0 2. For all γ 2 <, kγxk = kγkkxk 3. For all x; y 2 <k, kx + yk ≤ kxk + kyk Note. A norm induces the metric kx − yk. Verify that this satisfies properties 1 and 2 of a metric. For the triangle inequality, note that kx − yk = kx − z + z − yk ≤ kx − zk + kz − yk (by Property 3 of the norm) Note. kzk ≥ 0 for every z. Indeed, 3 implies that for z; −z 2 <k, 0 = kz + (−z)k ≤ kzk + k(−1)zk. By 2, this equals 2kzk. Pk p 1=p Examples. kxkp = ( i=1 jxij ) where p 2 [1; 1). p = 2 is the Eu- clidean norm which induces the Euclidean metric d2. Minkowski for triangle inequality. p ! 1 ) Max norm. Functions and Sup Norm Consider the vector space bU of all bounded functions from a set U to < (over the field of real numbers).
    [Show full text]
  • Introductory Notes in Topology
    Introductory notes in topology Stephen Semmes Rice University Contents 1 Topological spaces 5 1.1 Neighborhoods . 5 2 Other topologies on R 6 3 Closed sets 6 3.1 Interiors of sets . 7 4 Metric spaces 8 4.1 Other metrics . 8 5 The real numbers 9 5.1 Additional properties . 10 5.2 Diameters of bounded subsets of metric spaces . 10 6 The extended real numbers 11 7 Relatively open sets 11 7.1 Additional remarks . 12 8 Convergent sequences 12 8.1 Monotone sequences . 13 8.2 Cauchy sequences . 14 9 The local countability condition 14 9.1 Subsequences . 15 9.2 Sequentially closed sets . 15 10 Local bases 16 11 Nets 16 11.1 Sub-limits . 17 12 Uniqueness of limits 17 1 13 Regularity 18 13.1 Subspaces . 18 14 An example 19 14.1 Topologies and subspaces . 20 15 Countable sets 21 15.1 The axiom of choice . 22 15.2 Strong limit points . 22 16 Bases 22 16.1 Sub-bases . 23 16.2 Totally bounded sets . 23 17 More examples 24 18 Stronger topologies 24 18.1 Completely Hausdorff spaces . 25 19 Normality 25 19.1 Some remarks about subspaces . 26 19.2 Another separation condition . 27 20 Continuous mappings 27 20.1 Simple examples . 28 20.2 Sequentially continuous mappings . 28 21 The product topology 29 21.1 Countable products . 30 21.2 Arbitrary products . 31 22 Subsets of metric spaces 31 22.1 The Baire category theorem . 32 22.2 Sequences of open sets . 32 23 Open sets in R 33 23.1 Collections of open sets .
    [Show full text]
  • Investigation of Some Topological Points
    Int. Journal of Math. Analysis, Vol. 3, 2009, no. 12, 571 - 574 Investigation of Some Topological Points Encyeh Dehghan Nayeri and Daryoush Behmardi Alzahra University, Mathematics Department [email protected], [email protected] Abstract There are some points in Analysis and Topology that every one has disjoint definition. These most important points are limit point, accumulation point, cluster point, adherent point, isolated point and condensation point. Some sources say that the terms limit point, cluster point and accumu- lation point are all synonymous. Now we give a precise mathematical definition and show they are equivalent in specific topological space and investigate their difference and relation by giving some examples. Mathematics Subject Classification: 54A20 Keywords: Topological space, limit point, cluster point, accumulation point, separating axiom 1 Recall Definition 1.1 Let X be a set. A topology in X is a family τ of subsets of X that satisfies: (1) Each union of members of τ is also a member of τ. (2)Each finite intersection of members of τ is also a member of τ. (3) ∅ and X are members of τ. Definition 1.2 T0 axiom: if a, b ∈ X there exist an open set O ∈ τ such that either a ∈ O and b/∈ O,orb ∈ O and a/∈ O. T1 axiom: if a, b ∈ X, there exist open sets Oa,Ob ∈ τ containing a and b respectively, such that b/∈ Oa and a/∈ Ob. T2 axiom: if a, b ∈ X, there exist disjoint open sets Oa and Ob containing a and b respectively. Definition 1.3 Let R be the set of real numbers.
    [Show full text]
  • Topology DMTH503
    Topology DMTH503 Edited by: Dr.Sachin Kaushal TOPOLOGY Edited by Dr. Sachin Kaushal Printed by EXCEL BOOKS PRIVATE LIMITED A-45, Naraina, Phase-I, New Delhi-110028 for Lovely Professional University Phagwara SYLLABUS Topology Objectives: For some time now, topology has been firmly established as one of basic disciplines of pure mathematics. It's ideas and methods have transformed large parts of geometry and analysis almost beyond recognition. In this course we will study not only introduce to new concept and the theorem but also put into old ones like continuous functions. Its influence is evident in almost every other branch of mathematics.In this course we study an axiomatic development of point set topology, connectivity, compactness, separability, metrizability and function spaces. Sr. No. Content 1 Topological Spaces, Basis for Topology, The order Topology, The Product Topology on X * Y, The Subspace Topology. 2 Closed Sets and Limit Points, Continuous Functions, The Product Topology, The Metric Topology, The Quotient Topology. 3 Connected Spaces, Connected Subspaces of Real Line, Components and Local Connectedness, 4 Compact Spaces, Compact Subspaces of Real Line, Limit Point Compactness, Local Compactness 5 The Count ability Axioms, The Separation Axioms, Normal Spaces, Regular Spaces, Completely Regular Spaces 6 The Urysohn Lemma, The Urysohn Metrization Theorem, The Tietze Extension Theorem, The Tychonoff Theorem 7 The Stone-Cech Compactification, Local Finiteness, Paracompactness 8 The Nagata-Smirnov Metrization Theorem, The
    [Show full text]
  • Minimal First Countable Topologies
    MINIMAL FIRST COUNTABLE TOPOLOGIES BY R. M. STEPHENSON, JR. 1. Introduction. If & is a property of topologies, a space (X, 3~) is ^-minimal or minimal & if 3~ has property 0, but no topology on X which is strictly weaker ( = smaller) than 3~ has 0. (X, f) is ^»-closed if P has property 0 and (X, T) is a closed subspace of every ^-space in which it can be embedded. ^-minimal and ^-closed spaces have been investigated for the cases áa = Haus- dorff, regular, Urysohn, completely Hausdorff, completely regular, locally com- pact, zero-dimensional, normal, completely normal, paracompact, and metric. A well-known result is that for any of these properties, a compact á^-space is minimal &. If ^ = Hausdorff [6], Urysohn [13], regular [13], or completely Hausdorff [14], ^-minimality is a sufficient, but not a necessary condition for ^-closedness. If 2P= completely regular [4], [6], normal [4], [6], [16], zero-dimensional [3], locally compact [4], [6], completely normal [14], paracompact [14], or metric [14], then on any ^-space ^-minimality, ^-closedness, and compactness are equivalent con- ditions. In this paper, we consider first countable- and ^-minimal spaces and first countable- and ^-closed spaces. A space (X, $~) is called first countable- and 0- minimal if 3~ is first countable and has property 0",and if no first countable topology on X which is strictly weaker than y has property 0. (X, y) is first countable- and ^-closed if y is first countable and has property 0, and (X, y) is a closed subspace of every first countable ^-space in which it can be embedded.
    [Show full text]
  • Test 1 Review Sheet
    Math 431 - Real Analysis I Test 1 Review Sheet Logistics: Our test will occur on Monday, October 15. It will be a 110 minute, no notes, no calculator test. Please bring blank paper on which you will write your solutions. The successful test-taker will have mastered the following concepts. The Axiomatic Foundation of the Real Line · Know the 10 real number axioms: 5 field axioms, 4 order axioms, and 1 completeness axiom · Use the 10 real number axioms to prove well-known facts about the real numbers and their ordering. Properties of the Integers · Definition of an inductive set of real numbers · Definition of Z+ as an inductive set. · Bezout's Identity for the gcd of two integers · Euclid's Lemma · The role of primes in divisibility statements (e.g., if pjab, then pja or pjb). · The unique factorization theorem for integers Properties of Rational Numbers · Use proof by contradiction to prove that a number is irrational. · Use the fact that Q is a field (and is thus closed under the four operations) Bounds, Suprema, and Infima · Know the definition of bounded above, bounded below, bounded, maximum, minimum · Know the definition of a supremum/infimum; use the Completeness Axiom to prove that they exist. · Prove that a number is a supremum or infimum for a given set. · Use the approximation theorem for suprema in proofs · Use the additive and comparison properties for suprema Applications of the Completeness Axiom · Know the proof that Z+ is an unbounded set and how to use it in proofs. · Know the Archimedean Property and how to use it in proofs.
    [Show full text]
  • Elements of Point Set Topology
    Charpter 3 Elements of Point set Topology Open and closed sets in R1 and R2 3.1 Prove that an open interval in R1 is an open set and that a closed interval is a closed set. proof: 1. Let a,b be an open interval in R1, and let x a,b. Consider minx a,b x : L. Then we have Bx,L x L,x L a,b.Thatis,x is an interior point of a,b.Sincex is arbitrary, we have every point of a,b is interior. So, a,b is open in R1. 2. Let a,b be a closed interval in R1, and let x be an adherent point of a,b.Wewant to show x a,b.Ifx a,b, then we have x a or x b. Consider x a, then Bx, a x a,b 3x a , x a a,b 2 2 2 which contradicts the definition of an adherent point. Similarly for x b. Therefore, we have x a,b if x is an adherent point of a,b.Thatis,a,b contains its all adherent points. It implies that a,b is closed in R1. 3.2 Determine all the accumulation points of the following sets in R1 and decide whether the sets are open or closed (or neither). (a) All integers. Solution: Denote the set of all integers by Z.Letx Z, and consider x1 Bx, 2 x S .So,Z has no accumulation points. x1 However, Bx, 2 S x .SoZ contains its all adherent points.
    [Show full text]
  • Measure-Valued Differentiation for Finite Products of Measures : Theory and Applications
    Measure-valued differentiation for finite products of measures : theory and applications Citation for published version (APA): Leahu, H. (2008). Measure-valued differentiation for finite products of measures : theory and applications. Vrije Universiteit Amsterdam. Document status and date: Published: 01/01/2008 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]