Elements of Point Set Topology

Total Page:16

File Type:pdf, Size:1020Kb

Elements of Point Set Topology Charpter 3 Elements of Point set Topology Open and closed sets in R1 and R2 3.1 Prove that an open interval in R1 is an open set and that a closed interval is a closed set. proof: 1. Let a,b be an open interval in R1, and let x a,b. Consider minx a,b x : L. Then we have Bx,L x L,x L a,b.Thatis,x is an interior point of a,b.Sincex is arbitrary, we have every point of a,b is interior. So, a,b is open in R1. 2. Let a,b be a closed interval in R1, and let x be an adherent point of a,b.Wewant to show x a,b.Ifx a,b, then we have x a or x b. Consider x a, then Bx, a x a,b 3x a , x a a,b 2 2 2 which contradicts the definition of an adherent point. Similarly for x b. Therefore, we have x a,b if x is an adherent point of a,b.Thatis,a,b contains its all adherent points. It implies that a,b is closed in R1. 3.2 Determine all the accumulation points of the following sets in R1 and decide whether the sets are open or closed (or neither). (a) All integers. Solution: Denote the set of all integers by Z.Letx Z, and consider x1 Bx, 2 x S .So,Z has no accumulation points. x1 However, Bx, 2 S x .SoZ contains its all adherent points. It means that Z is closed. Trivially, Z is not open since Bx,r is not contained in Z for all r 0. Remark: 1. Definition of an adherent point: Let S be a subset of Rn,andx a point in Rn, x is not necessarily in S. Then x is said to be adherent to S if every n ball Bx contains at least one point of S. To be roughly, Bx S . 2. Definition of an accumulation point: Let S be a subset of Rn,andx a point in Rn, then x is called an accumulation point of S if every n ball Bx contains at least one point of S distinct from x. To be roughly, Bx x S .Thatis,x is an accumulation point if, and only if, x adheres to S x. Note that in this sense, Bx x S Bx S x. 3. Definition of an isolated point: If x S, but x is not an accumulation point of S, then x is called an isolated point. 4. Another solution for Z is closed: Since R Z nZ n,n 1, we know that R Z is open. So, Z is closed. 5. In logics, if there does not exist any accumulation point of a set S, then S is automatically a closed set. (b) The interval a,b. solution: In order to find all accumulation points of a,b, we consider 2 cases as follows. 1. a,b :Letx a,b, then Bx,r x a,b for any r 0. So, every point of a,b is an accumulation point. 2. R1 a,b ,a b, : For points in b, and ,a, it is easy to know that these points cannot be accumulation points since x b, or x ,a,there exists an n ball Bx,rx such that Bx,rx x a,b . For the point a, it is easy to know that Ba,r a a,b . That is, in this case, there is only one accumulation point a of a,b. So, from 1 and 2, we know that the set of the accumulation points of a,b is a,b. Since a a,b, we know that a,b cannot contain its all accumulation points. So, a,b is not closed. Since an n ball Bb,r is not contained in a,b for any r 0, we know that the point b is not interior to a,b.So,a,b is not open. (c) All numbers of the form 1/n, (n 1,2,3,.... Solution: Write the set 1/n : n 1,2,... 1,1/2,1/3,...,1/n,... : S. Obviously, 0 is the only one accumulation point of S.So,S is not closed since S does not contain the accumulation point 0. Since 1 S,andB1,r is not contained in S for any r 0, S is not open. Remark: Every point of 1/n : n 1,2,3,... is isolated. (d) All rational numbers. Solutions: Denote all rational numbers by Q. It is trivially seen that the set of accumulation points is R1. So, Q is not closed. Consider x Q,anyn ball Bx is not contained in Q.Thatis,x is not an interior point of Q. In fact, every point of Q is not an interior point of Q. So, Q is not open. (e) All numbers of the form 2n 5m, (m,n 1,2,.... Solution: Write the set 2n 5m : m,n 1,2,.. m 1 5m, 1 5m,..., 1 5m,... : S m1 2 4 2n 1 1 , 1 1 ,..., 1 1 ,... 1 2 5 2 52 2 5m 1 1 , 1 1 ,..., 1 1 ,... 2 4 5 4 52 4 5m ........................................................ 1 1 , 1 1 ,..., 1 1 ... 3 2n 5 2n 52 2n 5m ..................................................... 1 1 So,wefindthatS 2n : n 1,2,... 5m : m 1,2,... 0.So,S is not 1 1 closed since it does not contain 0. Since 2 S,andB 2 ,r is not contained in S for any r 0, S is not open. Remark: By (1)-(3), we can regard them as three sequences m m m 1 m 1 m 1 m 5 , 5 and n 5 , respectively. 2 m1 4 m1 2 m1 m m 1 And it means that for (1), the sequence 5 m 1 moves . Similarly for others. So, it is 2m easy to see why 1 is an accumulation point of 1 5m . And thus get the set of all 2 2 m1 accumulation points of 2n 5m : m,n 1,2,.. (f) All numbers of the form 1n 1/m, (m,n 1,2,.... Solution: Write the set of all numbers 1n 1/m,(m,n 1,2,... as m m 1 1 1 1 : S. m m1 m m1 And thus by the remark in (e), it is easy to know that S 1,1.So,S is not closed since S S.Since2 S,andB2,r is not contained in S for any r 0, S is not open. (g) All numbers of the form 1/n 1/m, (m,n 1,2,.... Solution: Write the set of all numbers 1/n 1/m,(m,n 1,2,... as m m m 1 1/mm1 1/2 1/mm1 ...1/n 1/mm1 ...: S. We find that S 1/n : n N 1/m : m N 0 1/n : n N 0.So,S is not closed since S S.Since1 S,andB1,r is not contained in S for any r 0, S is not open. (h) All numbers of the form 1n/1 1/n, (n 1,2,.... Soluton: Write the set of all numbers 1n/1 1/n,(n 1,2,... as k k 1 1 : S. 1 1 1 1 2k k1 2k1 k1 1 1 We find that S 1,1.So,S is not closed since S S.Since 2 S,andB 2 ,r is not contained in S for any r 0, S is not open. 3.3 The same as Exercise 3.2 for the following sets in R2. (a) All complex z such that |z| 1. Solution: Denote z C :|z| 1 by S. It is easy to know that S z C :|z| 1. |z|1 So, S is not closed since S S.Letz S, then |z| 1. Consider Bz, 2 S,soevery point of S is interior. That is, S is open. (b) All complex z such that |z| 1. Solution: Denote z C :|z| 1 by S. It is easy to know that S z C :|z| 1. So, S is closed since S S.Since1 S,andB1,r is not contained in S for any r 0, S is not open. (c) All complex numbers of the form 1/n i/m, (m,n 1,2,.... Solution: Write the set of all complex numbers of the form 1/n i/m, (m,n 1,2,... as m m m 1 i 1 i ... 1 i ...: S. m m1 2 m m1 n m m1 We know that S 1/n : n 1,2,... i/m : m 1,2,... 0.So,S is not closed since S S.Since1 i S,andB1 i,r is not contained in S for any r 0, S is not open. (d) All points x,y such that x2 y2 1. Solution: Denote x,y : x2 y2 1 by S. We know that S x,y : x2 y2 1.So,S is not closed since S S.Letp x,y S, then x2 y2 1.Itiseasytofindthatr 0 such that Bp,r S.So,S is open. (e) All points x,y such that x 0. Solution: Write all points x,y such that x 0asx,y : x 0 : S. It is easy to know that S x,y : x 0.So,S is not closed since S S.Letx S, then it is easy to find rx 0 such that Bx,rx S.So,S is open.
Recommended publications
  • A Discussion on Analytical Study of Semi-Closed Set in Topological Space
    The International journal of analytical and experimental modal analysis ISSN NO:0886-9367 A discussion on analytical study of Semi-closed set in topological space 1 Dr. Priti Kumari, 2 Sukesh Kumar Das, 3 Dr. Ranjana & 4 Rupesh Kumar 1 & 2 Guest Assistant Professor, Department of Mathematics Saharsa College of Engineering , Saharsa ( 852201 ), Bihar, INDIA 3 University Professor, University department of Mathematics Tilka Manjhi Bhagalpur University, Bhagalpur ( 812007 ), Bihar , INDIA 4 M. Sc., Department of Physics A. N. College Patna, Univ. of Patna ( 800013 ), Bihar, INDIA [email protected] , [email protected] , [email protected] & [email protected] Abstract : In this paper, we introduce a new class of sets in the topological space, namely Semi- closed sets in the topological space. We find characterizations of these sets. Further, we study some fundamental properties of Semi-closed sets in the topological space. Keywords : Open set, Closed set, Interior of a set & Closure of a set. I. Introduction The term Semi-closed set which is a weak form of closed set in a topological space and it is introduced and defined by the mathematician N. Biswas [10] in the year 1969. The term Semi- closure of a set in a topological space defined and introduced by two mathematician Crossley S. G. & Hildebrand S. K. [3,4] in the year 1971. The mathematician N. Levine [1] also defined and studied the term generalized closed sets in the topological space in Jan 1970. The term Semi- Interior point & Semi-Limit point of a subset of a topological space was defined and studied by the mathematician P.
    [Show full text]
  • POINT SET TOPOLOGY Definition 1 a Topological Structure On
    POINT SET TOPOLOGY De¯nition 1 A topological structure on a set X is a family (X) called open sets and satisfying O ½ P (O ) is closed for arbitrary unions 1 O (O ) is closed for ¯nite intersections. 2 O De¯nition 2 A set with a topological structure is a topological space (X; ) O ; = 2;Ei = x : x Eifor some i = [ [i f 2 2 ;g ; so is always open by (O ) ; 1 ; = 2;Ei = x : x Eifor all i = X \ \i f 2 2 ;g so X is always open by (O2). Examples (i) = (X) the discrete topology. O P (ii) ; X the indiscrete of trivial topology. Of; g These coincide when X has one point. (iii) =the rational line. Q =set of unions of open rational intervals O De¯nition 3 Topological spaces X and X 0 are homomorphic if there is an isomorphism of their topological structures i.e. if there is a bijection (1-1 onto map) of X and X 0 which generates a bijection of and . O O e.g. If X and X are discrete spaces a bijection is a homomorphism. (see also Kelley p102 H). De¯nition 4 A base for a topological structure is a family such that B ½ O every o can be expressed as a union of sets of 2 O B Examples (i) for the discrete topological structure x x2X is a base. f g (ii) for the indiscrete topological structure ; X is a base. f; g (iii) For , topologised as before, the set of bounded open intervals is a base.Q 1 (iv) Let X = 0; 1; 2 f g Let = (0; 1); (1; 2); (0; 12) .
    [Show full text]
  • Some Properties of Θ-Open Sets
    Divulgaciones Matem¶aticasVol. 12 No. 2(2004), pp. 161{169 Some Properties of θ-open Sets Algunas Propiedades de los Conjuntos θ-abiertos M. Caldas ([email protected]) Departamento de Matematica Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil. S. Jafari ([email protected]) Department of Mathematics and Physics, Roskilde University, Postbox 260, 4000 Roskilde, Denmark. M. M. Kov¶ar([email protected]) Department of Mathematics, Faculty of Electrical Engineering and Computer Sciences Technical University of Brno, Technick ¶a8 616 69 Brno, Czech Republic. Abstract In the present paper, we introduce and study topological properties of θ-derived, θ-border, θ-frontier and θ-exterior of a set using the con- cept of θ-open sets and study also other properties of the well known notions of θ-closure and θ-interior. Key words and phrases: θ-open, θ-closure, θ-interior, θ-border, θ- frontier, θ-exterior. Resumen En el presente ert¶³culose introducen y estudian las propiedades to- pol¶ogicasdel θ-derivedo, θ-borde, θ-frontera y θ-exterior de un conjunto usando el concepto de conjunto θ-abierto y estudiando tambi¶enotras propiedades de las nociones bien conocidas de θ-clausura y θ-interior. Palabras y frases clave: θ-abierto, θ-clausura, θ-interior, θ-borde, θ-frontera, θ-exterior. Received 2003/09/30. Revised 2004/10/15. Accepted 2004/10/19. MSC (2000): Primary 54A20, 54A05. 162 M. Caldas, S. Jafari, M. M. Kov¶ar 1 Introduction The notions of θ-open subsets, θ-closed subsets and θ-closure where introduced by Veli·cko [14] for the purpose of studying the important class of H-closed spaces in terms of arbitrary ¯berbases.
    [Show full text]
  • Mathematical Analysis, Second Edition
    PREFACE A glance at the table of contents will reveal that this textbooktreats topics in analysis at the "Advanced Calculus" level. The aim has beento provide a develop- ment of the subject which is honest, rigorous, up to date, and, at thesame time, not too pedantic.The book provides a transition from elementary calculusto advanced courses in real and complex function theory, and it introducesthe reader to some of the abstract thinking that pervades modern analysis. The second edition differs from the first inmany respects. Point set topology is developed in the setting of general metricspaces as well as in Euclidean n-space, and two new chapters have been addedon Lebesgue integration. The material on line integrals, vector analysis, and surface integrals has beendeleted. The order of some chapters has been rearranged, many sections have been completely rewritten, and several new exercises have been added. The development of Lebesgue integration follows the Riesz-Nagyapproach which focuses directly on functions and their integrals and doesnot depend on measure theory.The treatment here is simplified, spread out, and somewhat rearranged for presentation at the undergraduate level. The first edition has been used in mathematicscourses at a variety of levels, from first-year undergraduate to first-year graduate, bothas a text and as supple- mentary reference.The second edition preserves this flexibility.For example, Chapters 1 through 5, 12, and 13 providea course in differential calculus of func- tions of one or more variables. Chapters 6 through 11, 14, and15 provide a course in integration theory. Many other combinationsare possible; individual instructors can choose topics to suit their needs by consulting the diagram on the nextpage, which displays the logical interdependence of the chapters.
    [Show full text]
  • Metric Spaces
    Metric Spaces A. Banerji February 2, 2015 1 1 Introduction Definition 1 A metric space is a set S and a metric ρ : S×S ! < satisfying 1. ρ(x; y) = 0 iff x = y 2. ρ(x; y) = ρ(y; x) 3. For all x; y; z 2 S, ρ(x; y) ≤ ρ(x; z) + ρ(z; y) Note. ρ(x; y) ≥ 0. Indeed, consider the 3 points x; x; y. Applying the triangle inequality, 0 = ρ(x; x) ≤ ρ(x; y) + ρ(y; x) = 2ρ(x; y) k Example: d2 in < , defined by q Pk 2 d2(x; y) = i=1(xi − yi) Definition 2 A mapping k k : <k ! < is called a norm on the vector space <k if 1. kxk = 0 iff x = 0 2. For all γ 2 <, kγxk = kγkkxk 3. For all x; y 2 <k, kx + yk ≤ kxk + kyk Note. A norm induces the metric kx − yk. Verify that this satisfies properties 1 and 2 of a metric. For the triangle inequality, note that kx − yk = kx − z + z − yk ≤ kx − zk + kz − yk (by Property 3 of the norm) Note. kzk ≥ 0 for every z. Indeed, 3 implies that for z; −z 2 <k, 0 = kz + (−z)k ≤ kzk + k(−1)zk. By 2, this equals 2kzk. Pk p 1=p Examples. kxkp = ( i=1 jxij ) where p 2 [1; 1). p = 2 is the Eu- clidean norm which induces the Euclidean metric d2. Minkowski for triangle inequality. p ! 1 ) Max norm. Functions and Sup Norm Consider the vector space bU of all bounded functions from a set U to < (over the field of real numbers).
    [Show full text]
  • Introductory Notes in Topology
    Introductory notes in topology Stephen Semmes Rice University Contents 1 Topological spaces 5 1.1 Neighborhoods . 5 2 Other topologies on R 6 3 Closed sets 6 3.1 Interiors of sets . 7 4 Metric spaces 8 4.1 Other metrics . 8 5 The real numbers 9 5.1 Additional properties . 10 5.2 Diameters of bounded subsets of metric spaces . 10 6 The extended real numbers 11 7 Relatively open sets 11 7.1 Additional remarks . 12 8 Convergent sequences 12 8.1 Monotone sequences . 13 8.2 Cauchy sequences . 14 9 The local countability condition 14 9.1 Subsequences . 15 9.2 Sequentially closed sets . 15 10 Local bases 16 11 Nets 16 11.1 Sub-limits . 17 12 Uniqueness of limits 17 1 13 Regularity 18 13.1 Subspaces . 18 14 An example 19 14.1 Topologies and subspaces . 20 15 Countable sets 21 15.1 The axiom of choice . 22 15.2 Strong limit points . 22 16 Bases 22 16.1 Sub-bases . 23 16.2 Totally bounded sets . 23 17 More examples 24 18 Stronger topologies 24 18.1 Completely Hausdorff spaces . 25 19 Normality 25 19.1 Some remarks about subspaces . 26 19.2 Another separation condition . 27 20 Continuous mappings 27 20.1 Simple examples . 28 20.2 Sequentially continuous mappings . 28 21 The product topology 29 21.1 Countable products . 30 21.2 Arbitrary products . 31 22 Subsets of metric spaces 31 22.1 The Baire category theorem . 32 22.2 Sequences of open sets . 32 23 Open sets in R 33 23.1 Collections of open sets .
    [Show full text]
  • Investigation of Some Topological Points
    Int. Journal of Math. Analysis, Vol. 3, 2009, no. 12, 571 - 574 Investigation of Some Topological Points Encyeh Dehghan Nayeri and Daryoush Behmardi Alzahra University, Mathematics Department [email protected], [email protected] Abstract There are some points in Analysis and Topology that every one has disjoint definition. These most important points are limit point, accumulation point, cluster point, adherent point, isolated point and condensation point. Some sources say that the terms limit point, cluster point and accumu- lation point are all synonymous. Now we give a precise mathematical definition and show they are equivalent in specific topological space and investigate their difference and relation by giving some examples. Mathematics Subject Classification: 54A20 Keywords: Topological space, limit point, cluster point, accumulation point, separating axiom 1 Recall Definition 1.1 Let X be a set. A topology in X is a family τ of subsets of X that satisfies: (1) Each union of members of τ is also a member of τ. (2)Each finite intersection of members of τ is also a member of τ. (3) ∅ and X are members of τ. Definition 1.2 T0 axiom: if a, b ∈ X there exist an open set O ∈ τ such that either a ∈ O and b/∈ O,orb ∈ O and a/∈ O. T1 axiom: if a, b ∈ X, there exist open sets Oa,Ob ∈ τ containing a and b respectively, such that b/∈ Oa and a/∈ Ob. T2 axiom: if a, b ∈ X, there exist disjoint open sets Oa and Ob containing a and b respectively. Definition 1.3 Let R be the set of real numbers.
    [Show full text]
  • Topology DMTH503
    Topology DMTH503 Edited by: Dr.Sachin Kaushal TOPOLOGY Edited by Dr. Sachin Kaushal Printed by EXCEL BOOKS PRIVATE LIMITED A-45, Naraina, Phase-I, New Delhi-110028 for Lovely Professional University Phagwara SYLLABUS Topology Objectives: For some time now, topology has been firmly established as one of basic disciplines of pure mathematics. It's ideas and methods have transformed large parts of geometry and analysis almost beyond recognition. In this course we will study not only introduce to new concept and the theorem but also put into old ones like continuous functions. Its influence is evident in almost every other branch of mathematics.In this course we study an axiomatic development of point set topology, connectivity, compactness, separability, metrizability and function spaces. Sr. No. Content 1 Topological Spaces, Basis for Topology, The order Topology, The Product Topology on X * Y, The Subspace Topology. 2 Closed Sets and Limit Points, Continuous Functions, The Product Topology, The Metric Topology, The Quotient Topology. 3 Connected Spaces, Connected Subspaces of Real Line, Components and Local Connectedness, 4 Compact Spaces, Compact Subspaces of Real Line, Limit Point Compactness, Local Compactness 5 The Count ability Axioms, The Separation Axioms, Normal Spaces, Regular Spaces, Completely Regular Spaces 6 The Urysohn Lemma, The Urysohn Metrization Theorem, The Tietze Extension Theorem, The Tychonoff Theorem 7 The Stone-Cech Compactification, Local Finiteness, Paracompactness 8 The Nagata-Smirnov Metrization Theorem, The
    [Show full text]
  • Minimal First Countable Topologies
    MINIMAL FIRST COUNTABLE TOPOLOGIES BY R. M. STEPHENSON, JR. 1. Introduction. If & is a property of topologies, a space (X, 3~) is ^-minimal or minimal & if 3~ has property 0, but no topology on X which is strictly weaker ( = smaller) than 3~ has 0. (X, f) is ^»-closed if P has property 0 and (X, T) is a closed subspace of every ^-space in which it can be embedded. ^-minimal and ^-closed spaces have been investigated for the cases áa = Haus- dorff, regular, Urysohn, completely Hausdorff, completely regular, locally com- pact, zero-dimensional, normal, completely normal, paracompact, and metric. A well-known result is that for any of these properties, a compact á^-space is minimal &. If ^ = Hausdorff [6], Urysohn [13], regular [13], or completely Hausdorff [14], ^-minimality is a sufficient, but not a necessary condition for ^-closedness. If 2P= completely regular [4], [6], normal [4], [6], [16], zero-dimensional [3], locally compact [4], [6], completely normal [14], paracompact [14], or metric [14], then on any ^-space ^-minimality, ^-closedness, and compactness are equivalent con- ditions. In this paper, we consider first countable- and ^-minimal spaces and first countable- and ^-closed spaces. A space (X, $~) is called first countable- and 0- minimal if 3~ is first countable and has property 0",and if no first countable topology on X which is strictly weaker than y has property 0. (X, y) is first countable- and ^-closed if y is first countable and has property 0, and (X, y) is a closed subspace of every first countable ^-space in which it can be embedded.
    [Show full text]
  • Test 1 Review Sheet
    Math 431 - Real Analysis I Test 1 Review Sheet Logistics: Our test will occur on Monday, October 15. It will be a 110 minute, no notes, no calculator test. Please bring blank paper on which you will write your solutions. The successful test-taker will have mastered the following concepts. The Axiomatic Foundation of the Real Line · Know the 10 real number axioms: 5 field axioms, 4 order axioms, and 1 completeness axiom · Use the 10 real number axioms to prove well-known facts about the real numbers and their ordering. Properties of the Integers · Definition of an inductive set of real numbers · Definition of Z+ as an inductive set. · Bezout's Identity for the gcd of two integers · Euclid's Lemma · The role of primes in divisibility statements (e.g., if pjab, then pja or pjb). · The unique factorization theorem for integers Properties of Rational Numbers · Use proof by contradiction to prove that a number is irrational. · Use the fact that Q is a field (and is thus closed under the four operations) Bounds, Suprema, and Infima · Know the definition of bounded above, bounded below, bounded, maximum, minimum · Know the definition of a supremum/infimum; use the Completeness Axiom to prove that they exist. · Prove that a number is a supremum or infimum for a given set. · Use the approximation theorem for suprema in proofs · Use the additive and comparison properties for suprema Applications of the Completeness Axiom · Know the proof that Z+ is an unbounded set and how to use it in proofs. · Know the Archimedean Property and how to use it in proofs.
    [Show full text]
  • Measure-Valued Differentiation for Finite Products of Measures : Theory and Applications
    Measure-valued differentiation for finite products of measures : theory and applications Citation for published version (APA): Leahu, H. (2008). Measure-valued differentiation for finite products of measures : theory and applications. Vrije Universiteit Amsterdam. Document status and date: Published: 01/01/2008 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • SMA301 LATEST NOTES.Pdf
    September 15, 2011 UNIVERSITY OF NAIROBI FACULTY OF SCIENCE THIRD YEAR LECTURE NOTES SMA 301: REAL ANALYSIS I First Edition WRITTEN BY : Dr. Bernard Mutuku Nzimbi REVIEWED BY: School of Mathematics, University of Nairobi P.o Box 30197, Nairobi, KENYA. EDITED BY: Copyright ⃝c 2011 Benz, Inc. All rights reserved. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopy- ing, recording or otherwise, without the prior permission of the publisher. This page is intentionally left blank. i Contents About the Author v Preface vi Goals of a Real Analysis I Course viii 1 METRIC SPACES 1 1.1 Introduction . 1 1.2 Rudiments on Metric Spaces . 1 1.3 Examples of Metric and Metric spaces . 3 1.3.1 Useful Inequalities . 6 1.3.2 H¨older's Inequality . 7 1.3.3 Minkowski's Inequality . 8 1.3.4 Subspaces of a metric space . 12 1.4 Equivalent Metrics . 12 1.5 Exercises . 18 2 STRUCTURE OF METRIC SPACES 22 2.1 Topology of a Metric Space . 22 2.1.1 Open Balls and Closed Balls in a Metric Space . 22 2.2 Interior points, Isolated Points and Open sets in a Metric Space . 28 2.2.1 Examples of Open Sets . 30 2.3 Limit Points, Closure Points and Closed Sets in a Metric Space . 33 2.3.1 Examples of Closed Sets . 37 2.4 Subsets and Relative Topology . 40 ii 2.4.1 Relatively Open and Relatively Closed Subsets of Metric Spaces .
    [Show full text]