Basin Analysis Análise De Bacias Part 2

Total Page:16

File Type:pdf, Size:1020Kb

Basin Analysis Análise De Bacias Part 2 Basin Analysis Análise de Bacias Part 2 Basin Classification Basins and Sequence Stratigraphy Summary Basin Analysis • Introduction • Mechanisms of Basin Formation • Basin Classification • Basins and Sequence Stratigraphy • Summary Basin Classification Many different classification systems have been proposed (3 parâmetros mais usados para classsificar as bacias): Principal factors 1. Position of the basin in relation to plate margins 2. Crustal/lithospheric substratum Oceanic, continental crust 3. Type of plate boundary Basin Classification Ingersoll and Busby (1995): 26 different types of basin Divided into various settings • Divergent • Intraplate • Convergent • Transform • Hybrid 1983 Basin Classification Alternate approach (Allen and Allen, 2005): focus on basin- forming processes What causes subsidence? Basin Classification This course – hybrid approach: What causes subsidence? What is tectonic setting? We do not have time to cover all types of basins Focus on selected basin types Basin Classification Basins can be related to tectonic setting • Position with respect to plate boundary • Nature of plate boundary “Wilson Cycle” Basin Classification Divergent Plate Boundaries Divergent Plate Boundaries Continental rifting (a) may lead to opening of an ocean with a mid-ocean ridge (b, c) Rift basin evolves into passive margin Basin Classification Rift Basins • Elongate, valleys bounded by normal faults Few km -> 10s of km wide Length – up to 1000s of km • Occur in many plate settings, but most common in divergent settings RIFTES CONTINENTAIS Os riftes continentais são vales definidos por falhas tectónicas com larguras entre 30 a 75 km e comprimento variável, desde as dezenas até às centenas de quilómetros. Mostram-se aqui quatro exemplos de sistemas de rifte recentes. Vale do rifte na parte leste do Nevada no Parque Nacional da Great Basin – vista do Wheeler Peak A Província Basin and Range do Nevada prolonga-se desde Wasatch no Utah até à Sierra Nevada na Caifórnia Os riftes têm pequena espessura crustal (20-30 km) À medida que o rifte vai abrindo a crusta inferior sofre adelgaçamento CRATÃO RIFTE CONTINENTAL O adelgaçamento da crusta durante a formação do rifte deve-se principalmente ao adelgaçamento dúctil das camadas crustais média e inferior Riftes Continentais Riftes Continentais Riftes Continentais Riftes Continentais Basin Classification Rift Basins Seismic studies indicate rifts overlie thinned crust Evidence for thermal anomalies at depth: Negative Bouguer gravity anomalies High heat flow Bimodal volcanic activity À medida que a Terra arrefece, o calor é transferido por convexão do interior do manto para a litosfera, sendo depois conduzido através da litosfera para a superfície. O fluxo de calor que se observa à superfície da Terra pode ser estimado com base na medição do gradiente térmico e na condutividade das rochas. Nas áreas oceânicas, o fluxo de calor (q0) diminui e a profundidade aumenta (d) com a idade (t) da litosfera - ver expressões indicadas acima Basin Classification Rift Basins Active rifting: Mantle upwelling causes crustal thinning (heating) Thinning leads to uplift Uplift leads to tension and rifting Passive rifting: Regional extension causes failure Hot mantle rocks rise and penetrate lithosphere Passive Rifting – regional extension causes rifting, upwelling of hot mantle follows. Example: Rio Grande Active Rifting – Upwelling of hot mantle leads to uplift and extension. Example: East African Rift Como a crosta inferior e a litosfera apresentam comportamento dúctil com a deformação, a área de ascensão astenosférica é maior que a de distensão crustal. Assim, a subsidência termal (sag basin) afeta uma área maior que a subsidência mecânica por ela responsável. Basin Classification Rift Basins Rift fill commonly consists of “continental” deposits Fluvial, lacustrine, alluvial fans Evaporites may form if rift valley/basin is located in a hot, dry area Invasion of the sea Closed drainage basins Volcanic rocks, and associated intrusions, may be present Early Mesozoic Evaporites Evaporites accumulated in shallow basins • As Pangaea broke apart during the Early Mesozoic • Water from the Tethys Sea flowed into the Central Atlantic Ocean Basin Classification Continued rifting can lead to formation of oceanic crust – opening of ocean basin E.g., Red Sea “Rift-Drift” transition Rift-drift transition may be marked by a “breakup unconformity” If rift associated with subaerial relief at onset of drifting Basin Classification Passive Margins Basin Classification Passive Margins • Strongly attenuated continental crust • Stretched over distances of 50-500 km • Overlain by seaward-thickening sediment prisms Typically shallow-marine deposits • Sometimes referred to as “Atlantic- type margins” or “continental rises and terraces” (Boggs) Basin Classification Scotian Shelf Beaumont et al. 1992 – cited in Allen and Allen 2005 Basin Classification Passive Margins Various subsidence mechanisms: Cooling (thermal contraction) following lithospheric thinning [Main mechanism] Phase changes in lower crust/mantle (gabbro to eclogite) Not known if this process can be widespread enough Sediment loading Adds to other effects Basin Classification Passive Margins Subsidence variable in space and time Subsidence rate increases in offshore direction Subsidence rate decreases with time for all parts of the profile Basin Classification Basin Classification Basin Classification Passive Margins Morphology characterized by shelf, slope and continental rise Shelf margin builds out with time Shelf sediments can be clastic or carbonate Water depth stays relatively constant on shelf Abundant sediment supply Basin Classification Passive Margins Slope/rise – material shed from continental shelf during lowstands (clastic systems) Aprons/fans deposited along slope/rise Also pelagic sediments, contourites, etc. Basin Classification Gravity-driven deformation common in drift-phase sediments Listric growth faults, salt tectonics, mud diapirs, etc. Basin Classification Basin Classification Basin Classification Basin Classification Aulacogens •“Failed rifts” •Occur at high angle to continental margin •Fill: non-marine to deep marine Example: Reelfoot Rift (Mississippi valley) Basin Classification Convergent Plate Boundaries Subduction of oceanic plate(d) may lead to closing of ocean basin (e) and ultimately to continental collision (f) Basin Classification Convergent Plate Boundaries Age of oceanic crust affects angle at which it is subducted Young crust (top) – shallow angle subduction, compression behind arc Old crust (bottom) – steep angle subduction, “rollback”, extension behind arc Basin Classification BACIAS ANTE-ARCO FOREARC BASIN Arcos vulcânicos oceânicos Arcos vulcânicos de margem continental BACIA PÓS-ARCO BACK-ARC BASIN ARCO REMANESCENTE Bacia pós-arco Continental Foreland Basin Sedimentação e estruturas cavalgantes Basin Classification Arc-related basins • Forearc and backarc basins dominated by sediment derived from arc Immature clastics Backarc basin may also have component derived from continent • Deep-sea trench has sediments derived from arc and sediments scraped off subducting oceanic crust “Melange” FOSSAS PRISMAS DE ACREÇÃO Basin Classification foreland promontório A natural elevation (especially a rocky one that juts out into the sea) Basin Classification Foreland basins (Bacias de antepaís) • Crustal loading of thrust sheets causes subsidence • May face towards or away from continental interior • Ocean-continent or continent-continent collision • Rate of subsidence greatest adjacent to thrust loading Basin Classification Carreamento(Thrust) Falha geológica inversa muito pouco inclinada, que resulta de um campo de tensões compressivo. Normalmente tem uma grande amplitude (pode ser quilométrica), com grande quantidade de transporte. Basin Classification Basin Classification Underthrusting of continental crust and Compressive shortening and lithosfere, which buoyanty elevates the plateau thickening of both the crust and the lithosfere, folloed by isostatic rebound to form the plateau Basin Classification Basin Classification Depth to basement(km; outcrop=0) Turcotte and Schubert, 1982 Basin Classification Basin Classification Basin Classification Basin Classification Foreland basins Generally clastic – high sediment input from adjacent uplifts “Clastic wedges” Date thrusting Carbonates in some settings Marine or non-marine fill Turbidites, pelagic, deltaic, shoreface/shelf, fluvial Basin Classification Foreland basins Basin fill adjacent to thrusting typically gets caught up in deformation Basin Classification Basin Classification Bacias intracratónicas Riftes Continentais Riftes Continentais Riftes Continentais Riftes Continentais Basin Classification Intracratonic Basins “Interior Basins” Semi-circular to ovate downwarps Within continental interiors Otherwise stable cratonic areas Away from plate boundaries Basin Classification Intracratonic Basins Causes of subsidence •Underlying rifts, large-scale fault blocks •Cooling after intrusion of dense material •Mantle “cold” spots (downwelling) •Phase changes Subsidence greatest towards center of basin Basin Classification Subsidência e levantamento Basin Classification Basin Classification Intracratonic Basins Sedimentary fill terrestrial or marine Carbonates, clastics, evaporites Basin Classification Other basins, e.g. basis associated with wrench faulting, not discussed here (time constaints) Some basins have had multiple-phase history •Sometimes related to reactivation because
Recommended publications
  • Preliminary Catalog of the Sedimentary Basins of the United States
    Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Tectonics and Sedimentation in Foreland Basins: Results from the Integrated Basin Studies Project
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Tectonics and sedimentation in foreland basins: results from the Integrated Basin Studies project ALAIN MASCLE 1 & CAI PUIGDEFABREGAS 2,3 IIFP School, 228-232 avenue Napoldon Bonaparte, 92852 Rueil-Malmaison Cedex, France (e-mail: [email protected]) 2Norsk Hydro Research Centre, Bergen, Norway. 3Institut de Ciences de la Terra, (?SIC, Barcelona, Spain. Why foreland basins? to a better understanding of some basic interact- ing tectonic, sedimentary and hydrologic pro- Over the last ten years or so, since the Fribourg cesses (More & Vrolijk 1992; Touret & van meeting in 1985 (Homewood et al. 1986), the Hinte 1992). Additional data have also been attention given by sedimentologists and struc- obtained through the development of analogue tural geologists to the geology of foreland basins and numerical models (Larroque et al. 1992; has been growing continuously, parallel to the Zoetemeijer 1993). The physical parameters increase of co-operative links between scientists controlling the forward propagation of d6colle- from the two disciplines. A number of reasons ments and thrusts (fluid pressure, roughness, lie behind this development. Attempting to sediment thickness, etc.) have been determined understand the growth of an orogen without and tested. The relationships between rapidly paying due attention to the stratigraphic record subsiding piggyback basins and growing ramp of the derived sediments would be unrealistic. It anticlines have also been imaged, although the would, moreover, be equally unrealistic to con- lack of deep-sea well control still prevents accu- struct restored sections across the chain without rate sedimentological studies. More significant considering the constraints imposed by the has been the progress in our understanding of basin-fill architecture, or to describe the basin- the role of fluids and pore pressure in the fill evolution disregarding the development of development of thrust belts.
    [Show full text]
  • Development of the Rocky Mountain Foreland Basin: Combined Structural
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA Emily Geraghty Ward The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ward, Emily Geraghty, "DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1234. https://scholarworks.umt.edu/etd/1234 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA By Emily M. Geraghty Ward B.A., Whitman College, Walla Walla, WA, 1999 M.S., Washington State University, Pullman, WA, 2002 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology The University of Montana Missoula, MT Spring 2007 Approved by: Dr. David A. Strobel, Dean Graduate School James W. Sears, Chair Department of Geosciences Julia A. Baldwin Department of Geosciences Marc S. Hendrix Department of Geosciences Steven D.
    [Show full text]
  • Lithospheric Folding and Sedimentary Basin Evolution: a Review and Analysis of Formation Mechanisms Sierd Cloething, Evgenii Burov
    Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms Sierd Cloething, Evgenii Burov To cite this version: Sierd Cloething, Evgenii Burov. Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research, Wiley, 2011, 23 (3), pp.257-290. 10.1111/j.1365- 2117.2010.00490.x. hal-00640964 HAL Id: hal-00640964 https://hal.archives-ouvertes.fr/hal-00640964 Submitted on 24 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Basin Research For Review Only Page 1 of 91 Basin Research 1 2 3 4 1 Lithospheric folding and sedimentary basin evolution: 5 6 2 a review and analysis of formation mechanisms 7 8 9 3 10 11 4 12 13 5 14 a,* b 15 6 Sierd Cloetingh and Evgenii Burov 16 7 17 18 8 aNetherlands ResearchFor Centre forReview Integrated Solid EarthOnly Sciences, Faculty of Earth and Life 19 20 9 Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. 21 10 22 23 11 bUniversité Pierre et Marie Curie, Laboratoire de Tectonique, 4 Place Jussieu, 24 25 12 75252 Paris Cedex 05, France.
    [Show full text]
  • Basin Analysis.Pdf
    Basin Analysis Introduction Basin Analysis Mechanisms of Basin Formation Basin Classification Basins and Sequence Stratigraphy Summary Introduction Introduction Basin analysis - Study of sedimentary rocks What is a basin? to determine: Repository for sediment Subsidence history Formed by crustal subsidence relative to Stratigraphic architecture surrounding areas Paleogeographic evolution Surrounding areas sometimes uplifted Tools: Many different shapes, sizes and Geology (outcrops, wireline logs, core) mechanisms of formation Geophysics (seismic, gravity, aeromag) Computers (modeling, data analysis) Introduction Introduction Zonation of the Earth – Composition Zonation of the Upper Earth – Crust Rheology Mantle Lithosphere Core Rigid outer shell Crust and upper mantle Asthenosphere Weaker than lithosphere Flows (plastic deformation) 1 Introduction Introduction Zonation of the Upper Earth – Plate motions Rheology Plate-plate interactions can generate Vertical motions (subsidence, uplift) in vertical crustal movements sedimentary basins are primarily in We will examine basins according to their response to deformation of lithosphere positions with respect to plate and asthenosphere boundaries and plate-plate interactions “Wilson Cycle” – opening and closing of ocean basins Mechanisms of Basin Introduction Formation Three types of plate boundaries: Major mechanisms for regional Divergent – plates moving apart subsidence/uplift: Mid-ocean ridges, rifts Isostatic – changes in crustal or Convergent –
    [Show full text]
  • Stages of Development in the Polish Carpathian Foredeep Basin
    Cent. Eur. J. Geosci. • 4(1) • 2012 • 138-162 DOI: 10.2478/s13533-011-0044-0 Central European Journal of Geosciences Stages of development in the Polish Carpathian Foredeep Basin Review article Nestor Oszczypko1∗∗, Marta Oszczypko – Clowes1† 1 Institute of Geological Sciences, Jagiellonian University, 30-063 Kraków, Poland Received 27 September 2011; accepted 16 November 2011 Abstract: In southern Poland, Miocene deposits have been recognised both in the Outer Carpathians and the Carpathian Foredeep (PCF). In the Outer Carpathians, the Early Miocene deposits represent the youngest part of the flysch sequence, while in the Polish Carpathian Foredeep they are developed on the basement platform. The inner foredeep (beneath the Carpathians) is composed of Early to Middle Miocene deposits, while the outer foredeep is filled up with the Middle Miocene (Badenian and Sarmatian) strata, up to 3,000 m thick. The Early Miocene strata are mainly terrestrial in origin, whereas the Badenian and Sarmatian strata are marine. The Carpathian Foredeep developed as a peripheral foreland basin related to the moving Carpathian front. The main episodes of intensive subsidence in the PCF correspond to the period of progressive emplacement of the Western Carpathians onto the foreland plate. The important driving force of tectonic subsidence was the emplacement of the nappe load related to subduction roll-back. During that time the loading effect of the thickening of the Carpathian accretionary wedge on the foreland plate increased and was followed by progressive acceleration of total subsidence. The mean rate of the Carpathian overthrusting, and north to north-east migration of the axes of depocentres reached 12 mm/yr at that time.
    [Show full text]
  • Fluid Systems in Foreland Fold-And-Thrust Belts : on Overview from the Southern Pyrennees A
    Fluid systems in foreland fold-and-thrust belts : on overview from the Southern Pyrennees A. Travé, Pierre Labaume, J. Vergès To cite this version: A. Travé, Pierre Labaume, J. Vergès. Fluid systems in foreland fold-and-thrust belts : on overview from the Southern Pyrennees. O. Lacombe; F. Roure; J. Lavé; J. Vergés. Thrust belts and foreland basins, from fold kinematics to hydrocarbon systems, Springer, pp.93-115, 2007, 10.1007/978-3-540- 69426-7_5. hal-00408001 HAL Id: hal-00408001 https://hal.archives-ouvertes.fr/hal-00408001 Submitted on 6 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Fluid Systems in Foreland Fold-and-Thrust Belts: An Overview from the Southern Pyrenees Travé, A. · Labaume, P. · Vergés, J. Abstract. The analysis of three different regions of the South- The progressive increase of the 87Sr/86Sr ratio through time is Pyrenean fold-and-thrust belt reveals that during the Tertiary due to the progressive uplift, exposure and erosion of the in- compression the hydrological system was compartmental- ternal Pyrenean Axial Zone. ised in time and space.
    [Show full text]
  • Sequential Laramide Deformation and Paleocene Depositional Patterns in Deep Gas-Prone Basins of the Rocky Mountain Region
    Contents Previous Section Sequential Laramide Deformation and Paleocene Depositional Patterns in Deep Gas-Prone Basins of the Rocky Mountain Region By William J. Perry, Jr., and R.M. Flores GEOLOGIC CONTROLS OF DEEP NATURAL GAS RESOURCES IN THE UNITED STATES T OF EN TH U.S. GEOLOGICAL SURVEY BULLETIN 2146–E TM E R I A N P T E E D R . I O S . R U M 9 A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1997 CONTENTS Abstract .......................................................................................................................... 49 Introduction .................................................................................................................... 49 Hanna Basin ................................................................................................................... 51 Wind River Basin ........................................................................................................... 55 References Cited ............................................................................................................ 58 FIGURES 1. Map of Rocky Mountain foreland province showing principal Laramide basins and uplifts ......................................... 50 2. Map showing sequence of inception of Laramide deformation in Rocky Mountain region........................................... 51 3. Tectonic map of Hanna Basin region .............................................................................................................................. 52 4. Schematic cross section
    [Show full text]
  • A N–S-Trending Active Extensional Structure, the Fiuhut (Afyon) Graben
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 16, 2007, pp. 391–416. Copyright ©TÜB‹TAK A N–S-trending Active Extensional Structure, the fiuhut (Afyon) Graben: Commencement Age of the Extensional Neotectonic Period in the Isparta Angle, SW Turkey AL‹ KOÇY‹⁄‹T & fiULE DEVEC‹ Middle East Technical University, Department of Geological Engineering, Active Tectonics and Earthquake Research Laboratory, TR–06531 Ankara, Turkey (E-mail: [email protected]) Abstract: The fiuhut graben is an 8–11-km-wide, 24-km-long, N–S-trending, active extensional structure located on the southern shoulder of the Akflehir-Afyon graben, near the apex of the outer Isparta Angle. The fiuhut graben developed on a pre-Upper Pliocene rock assemblage comprising pre-Jurassic metamorphic rocks, Jurassic–Lower Cretaceous platform carbonates, the Lower Miocene–Middle Pliocene Afyon stratovolcanic complex and a fluvio- lacustrine volcano-sedimentary sequence. The eastern margin of the fiuhut graben is dominated by the Afyon volcanics and their well-bedded fluvio- lacustrine sedimentary cover, which is folded into a series of NNE-trending anticlines and synclines. This volcano- sedimentary sequence was deformed during a phase of WNW–ESE contraction, and is overlain with angular unconformity by nearly horizontal Plio–Quaternary graben infill. Palaeostress analyses of slip-plane data recorded in the lowest unit of the modern graben infill and on the marginal active faults indicate that the fiuhut graben has been developing as a result of ENE–WSW extension since the latest Pliocene. The extensional neotectonic period in the Isparta Angle started in the latest Pliocene. All margins of the fiuhut graben are determined and controlled by a series of oblique-slip normal fault sets and isolated fault segments.
    [Show full text]
  • 8 Foreland Basin Evolution and the Growth of an Orogenic Wedge
    A a) 8 Foreland basin Foldandthrustbelt Marginal(rem nant) ocean basin evolution and the Forelandbasin nant) ocean basin growth of an orogenic Marginal(rem Forebulge wedge Craton B b) Foldand thrustbelt 8.1 Introduction Forelandbasin Forebulge A B Peripheral foreland basin systems (DeCelles and Giles, 1996) result from the flexural down- bending of continental lithosphere in response Forelandbasinsystem to tectonic and topographic loading during Orogenicwedge continent-continent collision (Price, 1973). The TF DF Wedge-top Foredeep Forebulge Backbulge spatial evolution of the associated depozones, i. e., Foldandthrustbelt wedge-top, foredeep, forebulge and backbulge D (Fig. 8.1) and their respective sedimentary infill, Passivemargindeposits c) is strongly dependent on (i) the effective elastic Figure 8.1: (a) Schematic map view of a foreland basin, thickness (Te) of the involved lithospheres; (ii) the bounded longitudinally by a pair of marginal ocean basins. The scale is not specified, but would be of the order of 102 level of horizontal stresses; (iii) the magnitude to 103 km. Vertical line at right indicates the orientation of of the loads imposed on the foreland by the oro- a cross-section that would resemble what is shown in (b). genic wedge and the subducted lithospheric slab; (b) The generally accepted notion of foreland-basin geome- (iv) the dip-angle of the latter; (v) the rate and try in transverse cross-section. Note the unrealistic geometry direction of convergence; (vi) the amount of ero- of the boundary between the basin and the thrust belt. Ver- tical exaggeration is of the order of 10 times. (c) Schematic sion of the orogenic wedge and the dispersal sys- cross-section depicting a revised concept of a foreland basin tem within the foreland and (vii) eustasy (Beau- system, with the wedge-top, foredeep, forebulge and back- mont, 1981; Turcotte and Schubert, 2002; Allen bulge depozones shown at approximately true scale.
    [Show full text]
  • Active Strike-Slip Faults and an Outer Frontal Thrust in the Himalayan Foreland Basin
    Active strike-slip faults and an outer frontal thrust in the Himalayan foreland basin Michael J. Duvalla, John W. F. Waldrona,1, Laurent Godinb, and Yani Najmanc aDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G2E3, Canada; bDepartment of Geological Sciences and Geological Engineering, Queen’s University, Kingston ON K7L 3N6, Canada; and cLancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom Edited by Lisa Tauxe, University of California San Diego, La Jolla, CA, and approved June 11, 2020 (received for review February 2, 2020) The Himalayan foreland basin formed by flexure of the Indian Plate unconformably on Proterozoic mobile belts, sedimentary basins, below the advancing orogen. Motion on major thrusts within the and an Archean craton, exposed along the southern edge of the orogen has resulted in damaging historical seismicity, whereas south basin. The stratigraphy of the basin is known from drilling and of the Main Frontal Thrust (MFT), the foreland basin is typically from outcrop in the sub-Himalaya and Lesser Himalaya (22). portrayed as undeformed. Using two-dimensional seismic reflection The basin fill is divided by an Oligocene disconformity in the sub- data from eastern Nepal, we present evidence of recent deformation Himalaya (23, 24), below which a thin (>90 m) Paleogene suc- propagating >37 km south of the MFT. A system of tear faults at a cession is dominated by marine mudstone (25). The overlying high angle to the orogen is spatially localized above the Munger- Miocene to Quaternary rocks are fluvial deposits that filled the Saharsa basement ridge. A blind thrust fault is interpreted in the subsiding basin (4).
    [Show full text]
  • Techniques for Understanding Fold-And-Thrust Belt Kinematics and Thermal Evolution
    The Geological Society of America Memoir 213 Techniques for understanding fold-and-thrust belt kinematics and thermal evolution Nadine McQuarrie Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Todd A. Ehlers Department of Geoscience, University of Tübingen, Tübingen 72074, Germany ABSTRACT Fold-and-thrust belts and their adjacent foreland basins provide a wealth of information about crustal shortening and mountain-building processes in conver- gent orogens. Erosion of the hanging walls of these structures is often thought to be synchronous with deformation and results in the exhumation and cooling of rocks exposed at the surface. Applications of low-temperature thermochronology and bal- anced cross sections in fold-and-thrust belts have linked the record of rock cooling with the timing of deformation and exhumation. The goal of these applications is to quantify the kinematic and thermal history of fold-and-thrust belts. In this review, we discuss different styles of deformation preserved in fold-and-thrust belts, and the ways in which these structural differences result in different rock cooling histories as rocks are exhumed to the surface. Our emphasis is on the way in which different numerical modeling approaches can be combined with low-temperature thermochro- nometry and balanced cross sections to resolve questions surrounding the age, rate, geometry, and kinematics of orogenesis. INTRODUCTION for fold-and-thrust belt formation is an extensive preexisting sedimentary basin of platformal to passive-margin strata (Fig. 1). Folding and thrust faulting are the primary mechanisms for The mechanical anisotropy of stratigraphic layering exerts a fi rst- the shortening and thickening of continental crust and thus are order control on the style and magnitude of shortening (Price, common geologic features of convergent margins.
    [Show full text]