Ecological Genetics of the Moss Physcoahtrella
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany. -
Spore Dispersal Vectors
Glime, J. M. 2017. Adaptive Strategies: Spore Dispersal Vectors. Chapt. 4-9. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-9-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 3 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-9 ADAPTIVE STRATEGIES: SPORE DISPERSAL VECTORS TABLE OF CONTENTS Dispersal Types ............................................................................................................................................ 4-9-2 Wind Dispersal ............................................................................................................................................. 4-9-2 Splachnaceae ......................................................................................................................................... 4-9-4 Liverworts ............................................................................................................................................. 4-9-5 Invasive Species .................................................................................................................................... 4-9-5 Decay Dispersal............................................................................................................................................ 4-9-6 Animal Dispersal .......................................................................................................................................... 4-9-9 Earthworms .......................................................................................................................................... -
Monoicous Species Pairs in the Mniaceae (Bryophyta); Morphology, Sexual Condition and Distiribution
ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019 DOI: 10.2478/cszma-2019-0008 Published: online 1 July 2019, print July 2019 On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution Timo Koponen On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution. – Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019. Abstract: Some early observations seemed to show that, in the Mniaceae, the doubling of the chromo- some set affects a change from dioicous to monoicous condition, larger size of the gametophyte including larger leaf cell size, and to a wider range of the monoicous counterpart. The Mniaceae taxa are divided into four groups based on their sexual condition and morphology. 1. Dioicous – monoicous counterparts which can be distinguished by morphological characters, 2. Dioicous – monoicous taxa which have no morphological, deviating characters, 3. Monoicous species mostly with diploid chromosome number for which no dioicous counterpart is known, and 4. The taxa in Mniaceae with only dioicous plants. Most of the monoicous species of the Mniaceae have wide ranges, but a few of them are endemics in geographically isolated areas. The dioicous species have either a wide holarctic range or a limited range in the forested areas of temperate and meridional North America, Europe and SE Asia, or in subtropical Asia. Some of the monoicous species are evidently autodiploids and a few of them are allopolyploids from cross-sections of two species. Quite recently, several new possible dioicous – monoicous relationships have been discovered. -
Handbook of British Mosses; Comprising All That Are Known to Be
~$&Mm •tfs m tM/< i£-£S Cornell Iniowaitg ffiihrarg Jtljata, »eto fork BOUGHT WITH THE INCOME OF THE FISKE ENDOWMENT FUND THE BEQUESTOF WILLARD FISKE LIBRARIAN OF THE UNIVERSITY 1868-1883 1905 mel,U ''i ™r»«y'-1brary QK 543.B| 1 Ha "tiSh mosses : comprising al 7llini?lMlliiiiriiiif 3 1924 000 522 452" / i^? s?*a4L>*/+ £***~>**->. Z^^mlJt -yf~ cx^l^-^ HANDBOOK BRITISH MOSSES. Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924000522452 : HANDBOOK BRITISH MOSSES COMPEISING- ALL THAT ARE KNOWN TO BE NATIYES OF Rev. M. ^BERKELEY, M.A., F.L.S., AUTHOR OF ' INTEODT/CTIOIT TO CEYPTOGAMIC BOTAMY,' 'OUTLINES OF BRITISH FUNGOLOGY,' ETC. LONDON LOVELL EEEVE & CO., HENRIETTA STREET, COVENT GARDEN. 1863. PJ1INTED Bit JOHN EDWAED TAYLOE, LITTLE QUEEN STEEET, LINCOLN'S INN FIELDS. THE MOST HONOURABLE MARY ANTOINETTE MARCHIONESS OF HUNTLY, 2H>is aSBotft (0 Enscrtbeti WITH ETEBT FEELING OP ESTEEM AND RESPECT BY HEK GEATEFUL AND EUMBLE SEBVANT, THE AUTHOR. PREFACE. This Work is to be regarded as one of a series of Manuals of different branches of Botany, and not as a separate publi- cation. It is by no means the wish or intention of the Au- thor or Publisher, to offer it to the public in any spirit of opposition to the excellent author of the ' Bryologia Britan- nica.' On the contrary, it is hoped that it may be the means of calling the attention of many to his volume, of which it is impossible to speak in too favourable terms, as the slight sketch here presented may excite a wish to apply to the foun- tain-head for fuller information. -
Mosses and Lichens
Chapter 9 Plants That Aren’t “Plants”: Mosses and Lichens Clayton Newberry Department of Biological Sciences 4505 Maryland Parkway Box 454004 Las Vegas, NV 89154-4004 [email protected] Clayton Newberry is a graduate student at University of Nevada at Las Vegas. He received his B.S. in general botany from Brigham Young University and his M.S. in lichenology from Brigham Young University. He is currently working on his Ph.D. at University of Nevada at Las Vegas. His interests include bryophyte systematics and bryophyte floristics in western North America. Reprinted From: Newberry, C. 2004. Plants that aren’t “plants”: Mosses and lichens. Pages 179-197, in th Tested studies for laboratory teaching, Volume 25 (M. A. O’Donnell, Editor). Proceedings of the 25 Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 414 pages. - Copyright policy: http://www.zoo.utoronto.ca/able/volumes/copyright.htm Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibility for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in its proceedings volumes. © 2004 Clayton Newberry Association for Biology Laboratory Education (ABLE) ~ http://www.zoo.utoronto.ca/able 179 180 Mosses and lichens Contents Introduction....................................................................................................................180 -
(A)Sexual Life of Liverworts
School of Doctoral Studies in Biological Sciences University of South Bohemia in České Budějovice Faculty of Science (A)sexual Life of Liverworts Ph.D. Thesis Mgr. Eva Holá Supervisor: Mgr. Jan Kučera, Ph.D. Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice České Budějovice 2015 This thesis should be cited as: Holá E., 2015: (A)sexual Life of Liverworts. Ph.D. Thesis Series, No. 3. University of South Bohemia, Faculty of Science, School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 108 pp. Annotation This thesis comprises of two published papers and one accepted manuscript, focused on various aspects of liverwort reproduction. Treated aspects include patterns of asexual reproduction, sex ratio and sex-specific pattern in vegetative growth, and patterns of genetic variation and spatial genetic structure of populations differing in availability of substrate on localities and the population connectivity, and consequently in size, density, and prevailing reproductive mode. These characteristics were studied on representatives of the family Scapaniaceae s.l., belonging to the largest liverwort order Jungermanniales. The results showed that asexual propagules were formed and present in course of the whole growing season and can be considered as a sufficient substitution for sexual reproduction. In contrast with the female-biased sex ratio observed earlier in most dioicous bryophytes, unexpectedly high male-biased sex ratio was observed in the aquatic liverwort, which was speculated to represent a strategy to overcome sperm dilution in aquatic environment. In addition, no size differences between female and male shoots were detected, although the evidence for higher cost of sexual reproduction in females was found. -
Endemic Genera of Bryophytes of North America (North of Mexico)
Preslia, Praha, 76: 255–277, 2004 255 Endemic genera of bryophytes of North America (north of Mexico) Endemické rody mechorostů Severní Ameriky Wilfred Borden S c h o f i e l d Dedicated to the memory of Emil Hadač Department of Botany, University Boulevard 3529-6270, Vancouver B. C., Canada V6T 1Z4, e-mail: [email protected] Schofield W. B. (2004): Endemic genera of bryophytes of North America (north of Mexico). – Preslia, Praha, 76: 255–277. There are 20 endemic genera of mosses and three of liverworts in North America, north of Mexico. All are monotypic except Thelia, with three species. General ecology, reproduction, distribution and nomenclature are discussed for each genus. Distribution maps are provided. The Mexican as well as Neotropical genera of bryophytes are also noted without detailed discussion. K e y w o r d s : bryophytes, distribution, ecology, endemic, liverworts, mosses, reproduction, North America Introduction Endemism in bryophyte genera of North America (north of Mexico) appears not to have been discussed in detail previously. Only the mention of genera is included in Schofield (1980) with no detail presented. Distribution maps of several genera have appeared in scattered publications. The present paper provides distribution maps of all endemic bryophyte genera for the region and considers the biology and taxonomy of each. When compared to vascular plants, endemism in bryophyte genera in the region is low. There are 20 genera of mosses and three of liverworts. The moss families Andreaeobryaceae, Pseudoditrichaceae and Theliaceae and the liverwort family Gyrothyraceae are endemics; all are monotypic. A total of 16 families of mosses and three of liverworts that possess endemic genera are represented. -
Downloads/figure(Reversal Cost).Svg 1/1
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.08.430207; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Living apart if you can – how genetically and developmentally controlled sex has shaped the 2 evolution of liverworts 3 4 Xiaolan He1, Jorge R. Flores1, Yu Sun2, John L. Bowman3 5 6 1.Finnish Museum of Natural History, University of Helsinki, FI-00014, Helsinki, Finland 7 2. Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi 332900, China 8 3. School of Biological Science, Monash University, Melbourne VIC 3800, Australia 9 10 11 12 Abstract 13 Sexual differentiation in bryophytes occurs in the dominant gametophytic generation. Over half of 14 bryophytes are dioicous, and this pattern in liverworts is even more profound as over 70% of 15 species are dioicous. However, the evolutionary mechanisms leading to the prevalence of dioicy 16 and the shifts of sexual systems between dioicy and monoicy have remained poorly known. These 17 essential factors in reproductive biology are explored here in light of phylogenetics combined with 18 evidence of genomic characterization of sex chromosomes and sex-determination, as well as 19 cytology. Our analyses and discussions on liverworts are focused on: (1) ancestry and shifts in 20 sexuality, (2) evolution of sex chromosomes and maintenance of haploid dioicy, and (3) 21 environmental impact on the evolution of monoicism. -
"Moss Flora of the Willamette Valley, Oregon"
Moss Flora of the Willamette Valley, Oregon BY CLARA J. CHAPMAN AND ETHEL 1. SANBORN ASSOCIATE PROFESSOR OF BOTANY OREGON STATE COLLEGE CORVALLIS, OREGON OREGON STATE MONOGRAPHS Studies in Botany Number 4, June 1941 Published by Oregon State College Oregon State System of Higher Education Corvallis, Oregon PREFACE Although individually inconspicuous, the mosses are an important part of the plant life of the world. These small plants not only add to the beauty of the flora, but are of value in the conservation of water and the prevention of floods in forest regions. Many people who observe the beauty and the delicacy of color and structure of the mosses make collections and attempt their identification. They find the identifications difficult, as the present references are compre hensive and necessarily long and detailed. It is the purpose of this paper to describe the Bryales of a limited area of Oregon-the Willamette Valley-and in this way to simplify their iden tification. Department of Botany Oregon State College June 1941 CLARA J. CHAPMAN ETHEL 1. SANBORN TABLE OF CONTENTS Page Introduction ...................................................................................................... _.............................. 5 Key to the Families of the Bryales ............................................................................................ 6 Key to Genera ................................................................................................................................ 7 Order Bryales ............................................................_................................................................. -
Volume 1, Chapter 3-1: Sexuality: Sexual Strategies
Glime, J. M. and Bisang, I. 2017. Sexuality: Sexual Strategies. Chapt. 3-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. 3-1-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 3 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 3-1 SEXUALITY: SEXUAL STRATEGIES JANICE M. GLIME AND IRENE BISANG TABLE OF CONTENTS Expression of Sex ......................................................................................................................................... 3-1-2 Unisexual and Bisexual Taxa ........................................................................................................................ 3-1-2 Sex Chromosomes ................................................................................................................................. 3-1-6 An unusual Y Chromosome ................................................................................................................... 3-1-7 Gametangial Arrangement ..................................................................................................................... 3-1-8 Origin of Bisexuality in Bryophytes ............................................................................................................ 3-1-11 Monoicy as a Derived/Advanced Character? ........................................................................................ 3-1-11 Multiple Reversals .............................................................................................................................. -
Morphology of Mosses (Phylum Bryophyta)
Morphology of Mosses (Phylum Bryophyta) Barbara J. Crandall-Stotler Sharon E. Bartholomew-Began With over 12,000 species recognized worldwide (M. R. Superclass IV, comprising only Andreaeobryum; and Crosby et al. 1999), the Bryophyta, or mosses, are the Superclass V, all the peristomate mosses, comprising most most speciose of the three phyla of bryophytes. The other of the diversity of mosses. Although molecular data have two phyla are Marchantiophyta or liverworts and been undeniably useful in identifying the phylogenetic Anthocerotophyta or hornworts. The term “bryophytes” relationships among moss lineages, morphological is a general, inclusive term for these three groups though characters continue to provide definition of systematic they are only superficially related. Mosses are widely groupings (D. H. Vitt et al. 1998) and are diagnostic for distributed from pole to pole and occupy a broad range species identification. This chapter is not intended to be of habitats. Like liverworts and hornworts, mosses an exhaustive treatise on the complexities of moss possess a gametophyte-dominated life cycle; i.e., the morphology, but is aimed at providing the background persistent photosynthetic phase of the life cycle is the necessary to use the keys and diagnostic descriptions of haploid, gametophyte generation. Sporophytes are this flora. matrotrophic, permanently attached to and at least partially dependent on the female gametophyte for nutrition, and are unbranched, determinate in growth, Gametophyte Characters and monosporangiate. The gametophytes of mosses are small, usually perennial plants, comprising branched or Spore Germination and Protonemata unbranched shoot systems bearing spirally arranged leaves. They rarely are found in nature as single isolated A moss begins its life cycle when haploid spores are individuals, but instead occur in populations or colonies released from a sporophyte capsule and begin to in characteristic growth forms, such as mats, cushions, germinate. -
Species Fact Sheet
SPECIES FACT SHEET Common Name: Frye's swamp moss Scientific Name: Limbella fryei Recent synonym: Sciaromium tricostatum (= Limbella tricostata) misapplied for records from North America Division: Bryophyta Class: Bryopsida Order: Hypnales Family: Amblystegiaceae Technical Description: Plants dendroid or sometimes trailing, yellow- green to dark green. Stems dark brown, 4-13 cm long, with densely matted dark reddish-brown rhizoids at base. Leaves with a midrib and thickened margins, toothed at the tip and sometimes to the base, contorted when dry, tapering gradually to the tip, or often almost parallel-sided and then tapering rather abruptly at the tip. Distinctive characters: (1) dendroid moss with dark stems, (2) strong midrib and thickened margins visible with a hand lens as three parallel lines, (3) marginal teeth visible with hand lens. Similar species: Leucolepis acanthoneuron has (1) dark green, fine-textured, toothed leaves much smaller and more crowded, and (2) no thickened leaf margins. Climacium dendroides (1) is light green and coarse-textured, (2) with large concave leaves rounded at the tips, (3) no thickened margins or marginal teeth, and (4) orange-brown stems 4-8 cm long, visible through the leaves when wet. Pleuroziopsis ruthenica has (1) yellow-green, fine-textured leaves, (2) greenish-brown stems up to 15 cm tall, (3) no thickened margins, and (4) conspicuous scales sheathing the stem below the branches. Thamnobryum neckeroides has (1) irregular branching, (2) remote stem leaves, (3) no thickened margins, and (4) leaves keeled near the shoot tips. Other descriptions and illustrations: Williams 1933: 52; Grout 1934: 266; Lawton 1971: 287; Christy 1980: 522; Christy 1987: 408; Ochyra 1987: 477; Christy and Wagner 1996: VII-39; Christy 2001, 2002.