Download Author Version (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRP Mediation
molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants. -
Pharmacokinetics of Daikenchuto, a Traditional Japanese Medicine (Kampo) After Single Oral Administration to Healthy Japanese Volunteers
DMD Fast Forward. Published on July 1, 2011 as DOI: 10.1124/dmd.111.040097 DMDThis Fast article Forward. has not been Published copyedited and on formatted. July 1, The2011 final as version doi:10.1124/dmd.111.040097 may differ from this version. DMD #040097 Pharmacokinetics of daikenchuto, a traditional Japanese medicine (Kampo) after single oral administration to healthy Japanese volunteers Masaya Munekage, Hiroyuki Kitagawa, Kengo Ichikawa, Junko Watanabe, Katsuyuki Aoki, Toru Kono, Kazuhiro Hanazaki Department of Surgery, Kochi Medical School, Nankoku, Kochi, Japan (M.M., H.K., K.I., K.H); Downloaded from Tsumura Laboratories, TSUMURA & CO., Ami, Ibaraki, Japan (J.W.); Pharmaceutical & Quality Research Department, TSUMURA & CO., Ami, Ibaraki , Japan (K.A.); Division of dmd.aspetjournals.org Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Hokkaido, Japan (T.K.). at ASPET Journals on September 26, 2021 1 Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. DMD Fast Forward. Published on July 1, 2011 as DOI: 10.1124/dmd.111.040097 This article has not been copyedited and formatted. The final version may differ from this version. DMD #040097 Running title: Pharmacokinetics study of daikenchuto Address correspondence to: Kazuhiro Hanazaki, M.D., Ph.D. Department of Surgery, Kochi Medical School, Oko-cho kohasu, Nankoku-shi, Kochi 783-8505, Japan. E-mail: [email protected] , Phone: 81-88-880-2370, Fax: 81-88-880-2371 Number of text pages: 17 Downloaded from Number of Tables: 1 Number of Figures: 2 dmd.aspetjournals.org Number of References: 17 Number of Words: Abstract: 199 at ASPET Journals on September 26, 2021 Introduction: 377 Results and Discussion: 855 ABBREVIATIONS: TJ-100, daikenchuto; HAS, hydroxy-α-sanshool; HBS, hydroxy-β-sanshool; 6S, [6]-shogaol; 10S, [10]-shogaol; GRB1, ginsenoside Rb1; GRG1, ginsenoside Rg1; HPLC, high-performance liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry 2 DMD Fast Forward. -
Less Than Lethal Weapons
PUBLIC ORDER MANAGEMENT Less Than Lethal Weapons UN Peacekeeping PDT Standards for Formed Police Units 1st edition 2015 Public Order Management 1 Less Than Lethal Weapons Background Before the inception of UN Peacekeeping mission, the Department of Peacekeeping Operations requests TCC/PCC to contribute with their forces to the strength of the mission. The UN Police component is composed by Individual Police Officers (IPO) and Formed Police Units (FPU). The deployment of FPU is subject to a Memorandum of Understanding between the UN and the contributing country and the compliance with the force requirements of the mission. The force requirement lists the equipment and the weapons that the FPU has to deploy with. Despite the fact ‘Guidelines on the Use of Force by Law Enforcement Agencies’ recommends the development and the deployment of less than lethal weapons and ammunitions, FPUs usually do not possess this type of equipment. Until the development of less-lethal weapons, police officers around the world had few if any less-lethal options for riot control. Common tactics used by police that were intended to be non-lethal or less than lethal included a slowly advancing wall of men with batons. Considering the tasks the FPUs are demanded to carry out, those weapons should be mandatory as part of their equipment. The more equipped with these weapons FPUs are, the more they will be able to efficiently respond to the different type of threats and situation. Non-lethal weapons, also called less-lethal weapons, less-than-lethal weapons, non- deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be used in the scale of Use of Force before using any lethal weapon. -
Toxic Materials to Cornea INTRODUCTION
International Journal of Veterinary and Animal Research Uluslararası Veteriner ve Hayvan Araştırmaları Dergisi E-ISSN: 2651-3609 2(1): 06-10, 2019 Toxic Materials to Cornea Eren Ekici1, Ender Yarsan2* 1Ankara Ulucanlar Eye Training and Research Hospital, Department of Ophtalmology, Ankara, Turkey 2Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara, Turkey *Corresponding Author Received: February 12, 2019 E-mail:[email protected] Accepted: March 6, 2019 Abstract Every day; many chemical agents, materials or medicines whether in the pharmaceutical industry or daily life are offered for consuming for human beings. At this point, it has great importance that if the substances threaten heath or not. Because the toxicity of materials can lead to many target organ damage. The eye, together with many anatomical layers that make it up is among the target organs exposed to toxicity. In this review, we handled the classification, effects and treatment methods of toxic materials on the corneal layer of the eye. Keywords: Cornea, toxic materials, chemicals, eye INTRODUCTION and materials known to be toxic in high-risk situations (ie Toxic material is a chemical substance that breaks down aminoglycosides, some glaucoma medications, antivirals, normal physiological and biochemical mechanisms when chronic disease, dry eyes and patients on multiple topical it enters the living organism (human and warm-blooded therapies) is effective to protect from toxicity (Dart, 2003). animals) through mouth, respiration, skin, and infection, or Table 1: Classification by route of exposure and time course. causes the death of the creature in an excess amount. For Local action, immediate corneal toxicity; there are many methods of classification Examples effects based on the disease, route of exposure and duration or agent Caustic chemicals Acids and alkalis (Grant, 1986). -
Pain in the Periphery - Nociception
SHL ITEM BARCODE 19 1702512 9 REFERENCE ONLY UNIVERSITY OF LONDON THESIS Degree Year i o o ^ Name of Author C O P YR IG H T This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOANS Theses may not be lent to individuals, but the Senate House Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: Inter-Library Loans, Senate House Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the Senate House Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962.Permission granted only upon the prior written consent of the author. (The Senate House Library will provide addresses where possible). B. 1962- 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. -
[Invented Name] 4 Mg/G + 25 Mg/G Ointment SUMMARY of PRODUCT CHARACTERISTICS
AT/H/0661/001/DC, final SmPC SUMMARY OF PRODUCT CHARACTERISTICS [Invented name] 4 mg/g + 25 mg/g ointment 1 AT/H/0661/001/DC, final SmPC 1. NAME OF THE MEDICINAL PRODUCT [Invented name] 4 mg/g + 25 mg/g ointment 2. QUALITATIVE AND QUANTITATIVE COMPOSITION 1 g ointment contains 4 mg nonylic acid vanillylamide (nonivamide) and 25 mg β-butoxyethylester of nicotinic acid (nicoboxil). Excipient(s) with known effect 1 g ointment contains 2 mg sorbic acid. Fragrance with with α-Isomethyl ionone, α-Amylcinnamaldehyde, α-Amylcinnamyl alcohol, Anisyl alcohol, Evernia furfuracea extract (Treemoss extract), Benzyl alcohol, Benzyl benzoate, Benzyl cinnamate, Benzyl salicylate, Citral, Citronellol, Coumarin, Oakmoss extract, Eugenol, Farnesol, Geraniol, α-Hexylcinnamaldehyde, Hydroxycitronellal, Isoeugenol, Butylphenyl methylpropional (Lilial), Limonene, Linalool, Hydroxyisohexyl 3-Cyclohexene Carboxaldehyde (Lyral), Methyl heptane carbonate, Cinnamaldehyde, Cinnamyl alcohol . (see section 4.4) Benzyl alcohol: less than 0.002 mg/100g (see section 4.4) For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Ointment Almost white or slightly yellowish, opaque, smooth homogeneous ointment with odour of citronella oil. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications To stimulate blood flow in the skin for treating muscle and joint complaints. For treatment of acute low back pain with no signs of neuropathic origin. To stimulate blood flow in the skin before taking a capillary blood sample, e.g. from the earlobe or the digital pulp. 4.2 Posology and method of administration Posology Treatment should start with a very small quantity and on a very small skin area to test individual reaction. -
TRP Channel Transient Receptor Potential Channels
TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Antagonists, Inhibitors, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: ≥98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat. -
Role of the TRPV Channels in the Endoplasmic Reticulum Calcium Homeostasis
cells Review Role of the TRPV Channels in the Endoplasmic Reticulum Calcium Homeostasis Aurélien Haustrate 1,2, Natalia Prevarskaya 1,2 and V’yacheslav Lehen’kyi 1,2,* 1 Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France; [email protected] (A.H.); [email protected] (N.P.) 2 Univ. Lille, Inserm, U1003 – PHYCEL – Physiologie Cellulaire, F-59000 Lille, France * Correspondence: [email protected]; Tel.: +33-320-337-078 Received: 14 October 2019; Accepted: 21 January 2020; Published: 28 January 2020 Abstract: It has been widely established that transient receptor potential vanilloid (TRPV) channels play a crucial role in calcium homeostasis in mammalian cells. Modulation of TRPV channels activity can modify their physiological function leading to some diseases and disorders like neurodegeneration, pain, cancer, skin disorders, etc. It should be noted that, despite TRPV channels importance, our knowledge of the TRPV channels functions in cells is mostly limited to their plasma membrane location. However, some TRPV channels were shown to be expressed in the endoplasmic reticulum where their modulation by activators and/or inhibitors was demonstrated to be crucial for intracellular signaling. In this review, we have intended to summarize the poorly studied roles and functions of these channels in the endoplasmic reticulum. Keywords: TRPV channels; endoplasmic reticulum; calcium signaling 1. Introduction: TRPV Channels Subfamily Overview Functional TRPV channels are tetrameric complexes and can be both homo or hetero-tetrameric. They can be divided into two groups: TRPV1, TRPV2, TRPV3, and TRPV4 which are thermosensitive channels, and TRPV5 and TRPV6 channels as the second group. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0106690 A1 BUCKS Et Al
US 201601 06690A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0106690 A1 BUCKS et al. (43) Pub. Date: Apr. 21, 2016 (54) PAIN RELIEF COMPOSITIONS, Publication Classification MANUFACTURE AND USES (51) Int. Cl. (71) Applicant: API GENESIS, LLC, Fairfax, VA (US) A613 L/65 (2006.01) A69/06 (2006.01) (72) Inventors: Daniel BUCKS, Millbrae, CA (US); A619/00 (2006.01) Philip J. BIRBARA, West Hartford, CT A63L/96 (2006.01) (US) A63L/25 (2006.01) A63L/045 (2006.01) A63L/05 (2006.01) (73) Assignee: API GENESIS, LLC, Fairfax, VA (US) A619/08 (2006.01) A613/618 (2006.01) (52) U.S. Cl. (21) Appl. No.: 14/482,930 CPC ................. A61 K31/165 (2013.01); A61 K9/08 (2013.01); A61 K9/06 (2013.01); A61 K9/0014 (22) Filed: Sep. 10, 2014 (2013.01); A61 K3I/618 (2013.01); A61 K 31/125 (2013.01); A61 K3I/045 (2013.01); A6 IK3I/05 (2013.01); A61 K31/196 (2013.01) Related U.S. Application Data - - - (57) ABSTRACT (62) Division of application No. 13/609,100, filed on Sep. The present invention relates to TRPV1 selective agonist 10, 2012, now Pat. No. 8,889,659. topical compositions including capsaicinoid- - - and analgesic (60) Provisional application No. 61/533,120, filed on Sep. agent compositions and methods of manufacture and meth 9, 2011, provisional application No. 61/642.942, filed ods of providing pain relief as well as treating a variety of on May 4, 2012. disorders with Such compositions. Patent Application Publication Apr. 21, 2016 Sheet 1 of 4 US 2016/0106690 A1 FIGURE 1 - API-CAPSTOLERABILITY COMPOSTE AP-CAPSTOERABLTY FOR RGH & LEFT KNEES ASA FUNCTION OF CAPSACN CONCENTRATIONS (Tolerability measurements taken after 1530, 45 & 60 minutes post dosage application for 4 visits) O%. -
JPET#119412 1 TRPV1 Agonists Cause Endoplasmic Reticulum
JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 JPET ThisFast article Forward. has not been Published copyedited onand formatted.March 1, The 2007 final versionas DOI:10.1124/jpet.107.119412 may differ from this version. JPET#119412 TRPV1 Agonists Cause Endoplasmic Reticulum Stress and Cell Death in Human Lung Cells Karen C. Thomas, Ashwini S. Sabnis, Mark E. Johansen, Diane L. Lanza, Philip J. Moos, Garold Downloaded from S. Yost, and Christopher A. Reilly jpet.aspetjournals.org (K.C.T., A.S.S., M.E.J., D.L.L, P.J.M., G.S.Y., and C.A.R.) Department of Pharmacology and Toxicology, University of Utah, 112 Skaggs Hall, Salt Lake City, UT 84112. at ASPET Journals on September 25, 2021 1 Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted. The final version may differ from this version. JPET#119412 Running title: TRPV1 Agonists, ER Stress, and Cell Death Corresponding Author: Dr. Christopher A. Reilly, Ph.D. University of Utah Department of Pharmacology and Toxicology 30 S. 2000 E., Room 201 Skaggs Hall Downloaded from Salt Lake City, UT 84112 Phone: (801) 581-5236 jpet.aspetjournals.org FAX: (801) 585-3945 Email: [email protected] at ASPET Journals on September 25, 2021 Number of text pages: 32 Number of tables: 2 Figures: 6 References: 40 Number of words in Abstract: 250 Number of words in Introduction: 733 Number of words in Discussion: 1473 Non Standard Abbreviations: GADD153, growth arrest- and DNA damage-inducible transcript 3 (a.k.a. -
Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0 -
The Effects of Vanilloid-Like Agents on Platelet Aggregation
THE EFFECTS OF VANILLOID-LIKE AGENTS ON PLATELET AGGREGATION Safa Yousef Almaghrabi, MBBS School of Human Life Sciences Submitted in fulfilment of the requirements for the degree of Master of Biomedical Science (Research) University of Tasmania October 2012 DECLARATION I hereby declare that this thesis entitled The Effects of Vanilloid-Like Agents on Platelet Aggregation contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the my knowledge and belief no material previously published or written by another person except where due reference is made in the text of thesis, nor does the thesis contain any material that infringes copyright. Date: 24th Oct 2012 Signed: AUTHORITY OF ACCESS This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Date: 24th Oct 2012 Signed: STATEMENT OF ETHICAL CONDUCT The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. Date: 24th Oct 2012 Signed: Full Name: Safa Yousef O. Almaghrabi i ACKNOWLEDGEMENTS First of all, I would like to thank the Government of Saudi Arabia (King Abdulaziz University) for the scholarship and sponsorship. I would also like to sincerely acknowledge my supervisors, Dr. Murray Adams, A/Prof. Dominic Geraghty, and Dr. Kiran Ahuja for their guidance, tolerance and being there whenever needed.