JPET#119412 1 TRPV1 Agonists Cause Endoplasmic Reticulum

Total Page:16

File Type:pdf, Size:1020Kb

JPET#119412 1 TRPV1 Agonists Cause Endoplasmic Reticulum JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 JPET ThisFast article Forward. has not been Published copyedited onand formatted.March 1, The 2007 final versionas DOI:10.1124/jpet.107.119412 may differ from this version. JPET#119412 TRPV1 Agonists Cause Endoplasmic Reticulum Stress and Cell Death in Human Lung Cells Karen C. Thomas, Ashwini S. Sabnis, Mark E. Johansen, Diane L. Lanza, Philip J. Moos, Garold Downloaded from S. Yost, and Christopher A. Reilly jpet.aspetjournals.org (K.C.T., A.S.S., M.E.J., D.L.L, P.J.M., G.S.Y., and C.A.R.) Department of Pharmacology and Toxicology, University of Utah, 112 Skaggs Hall, Salt Lake City, UT 84112. at ASPET Journals on September 25, 2021 1 Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted. The final version may differ from this version. JPET#119412 Running title: TRPV1 Agonists, ER Stress, and Cell Death Corresponding Author: Dr. Christopher A. Reilly, Ph.D. University of Utah Department of Pharmacology and Toxicology 30 S. 2000 E., Room 201 Skaggs Hall Downloaded from Salt Lake City, UT 84112 Phone: (801) 581-5236 jpet.aspetjournals.org FAX: (801) 585-3945 Email: [email protected] at ASPET Journals on September 25, 2021 Number of text pages: 32 Number of tables: 2 Figures: 6 References: 40 Number of words in Abstract: 250 Number of words in Introduction: 733 Number of words in Discussion: 1473 Non Standard Abbreviations: GADD153, growth arrest- and DNA damage-inducible transcript 3 (a.k.a. DDIT3 and CHOP); GADD45α, growth arrest and DNA-damage-inducible, alpha (a.k.a. DDIT1); GRP78/BiP, 2 JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted. The final version may differ from this version. JPET#119412 glucose regulated protein, 70kDa (a.k.a. HSPA5); ATF3, activating transcription factor 3; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; CCND1, cyclin D1; CCNG2, cyclin G2, EIF2α, eukaryotic translation initiation factor 2, subunit 1 (alpha, 35kDa); EIF2α-P, phosphorylated eukaryotic translation initiation factor 2, subunit 1; Bcl-2, B-cell lymphoma protein 2; Akt/PKB, protein kinase B; NF-kB, nuclear factor of kappa light polypeptide gene enhancer in B cells; RT-PCR, reverse transcription-polymerase chain reaction; Downloaded from TRPV1, transient receptor protein vanilloid 1 (a.k.a. VR1 or the Capsaicin Receptor); LC50, concentration at which 50% loss in viability (lethality) is observed. jpet.aspetjournals.org Recommended Section Assignment: Toxicology at ASPET Journals on September 25, 2021 3 JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted. The final version may differ from this version. JPET#119412 Abstract: TRPV1 is a calcium-selective ion channel expressed in human lung cells. We show that activation of the intracellular sub-population of TRPV1 causes endoplasmic reticulum (ER) stress and cell death in human bronchial epithelial and alveolar cells. TRPV1 agonist (nonivamide) treatment caused calcium release from the ER and altered the transcription of GADD153, GADD45α, GRP78/BiP, ATF3, CCND1, and CCNG2 in a manner comparable to prototypical ER stress-inducing agents. The TRPV1 antagonist LJO-328 inhibited mRNA Downloaded from responses and cytotoxicity. EGTA and ruthenium red inhibited cell surface TRPV1 activity, but did not prevent ER stress gene responses or cytotoxicity. Cytotoxicity paralleled EIF2α jpet.aspetjournals.org phosphorylation and the induction of GADD153 mRNA and protein. Transient over-expression of GADD153 caused cell death independent of agonist treatment, and cells selected for stable over-expression of a GADD153 dominant negative mutant exhibited reduced sensitivity. at ASPET Journals on September 25, 2021 Salubrinal, an inhibitor of ER stress-induced cytotoxicity via the EIF2αK3/EIF2α pathway, or stable over-expression of the EIF2α-S52A dominant negative mutant also inhibited cell death. Treatment of the TRPV1-null HEK293 cell line with TRPV1 agonists did not initiate ER stress responses. Similarly, n-benzylnonanamide, an inactive analogue of nonivamide, failed to cause ER calcium release, an increase in GADD153 expression, and cytotoxicity. We conclude that activation of ER-bound TRPV1 and stimulation of GADD153 expression via the EIF2αK3/EIF2α pathway represents a common mechanism for cytotoxicity by cell-permeable TRPV1 agonists. These findings are significant within the context of lung inflammatory diseases where elevated concentrations of endogenous TRPV1 agonists are likely produced in sufficient quantities to cause TRPV1 activation and lung cell death. 4 JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted. The final version may differ from this version. JPET#119412 Introduction: Lung cell damage causes acute respiratory distress and contributes to the pathogenesis of chronic lung diseases (Knight and Holgate, 2003). Evidence suggests that the transient receptor potential vanilloid type-1 receptor (TRPV1, capsaicin receptor, VR1; Hs. 268202) may be a mediator of lung pathologies caused by xenobiotic toxicants and endogenous agonists as well as a therapeutic target for treating and/or preventing lung disorders (Jia et al., 2005; Szallasi et al., 2006). Downloaded from TRPV1 is widely expressed in the respiratory tract including nasal mucosal cells (Seki et al., 2006), C-fiber neurons and airway smooth muscle cells (Mitchell et al., 2005; Watanabe et jpet.aspetjournals.org al., 2005), and alveolar and bronchial epithelial cells (Veronesi et al., 1999; Reilly et al., 2003; Agopyan et al., 2004). TRPV1 is selectively activated by capsaicin, the primary pain producing chemical in hot peppers, and a variety of exogenous and endogenous respiratory toxicants at ASPET Journals on September 25, 2021 including anandamide (Van Der Stelt and Di Marzo, 2004), products of arachidonic acid metabolism by lipoxygenases (Hwang et al., 2000), H2S (Trevisani et al., 2005), ethanol (Trevisani et al., 2004), acids (Tominaga et al., 1998; Ricciardolo et al., 2004), and particulate pollutants (Veronesi et al., 1999; Agopyan et al., 2004). Capsaicin and other TRPV1 agonists are routinely used to study the TRPV1 pharmacology and have proven instrumental in defining the physiological roles of TRPV1 in the lung and other organs. Here we use capsaicin to elucidate toxicological phenomena associated with TRPV1 activation in lung cells. Capsaicin is used clinically to induce cough (Morice et al., 2001) and to treat rhinitis (van Rijswijk and Gerth van Wijk, 2006). However, numerous case reports have described adverse respiratory effects and death in humans following exposures to concentrated capsaicinoid aerosols (Heck, 1995; Steffee et al., 1995; Billmire et al., 1996). In animal models, high doses of 5 JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted. The final version may differ from this version. JPET#119412 capsaicin cause acute respiratory and cardiovascular failure, independent of the route of administration (Glinsukon et al., 1980). Inhalation of capsaicinoids by rats causes lung inflammation and widespread damage to tracheal, bronchial and alveolar cells (Reilly et al., 2003). In vitro studies with human bronchial epithelial cells have demonstrated two principal outcomes associated with TRPV1 activation: pro-inflammatory cytokine (IL-6 and IL-8) production and oncotic cell death (Reilly et al., 2003; Reilly et al., 2005). Cytokine synthesis and cell death were inhibited by TRPV1 antagonists that prevented calcium release from the Downloaded from endoplasmic reticulum (ER) and included LJO-328, SC0030, 5-iodo-RTX. Conversely, inhibition of the cell surface population of TRPV1 using EGTA, ruthenium red and calcium-free jpet.aspetjournals.org media only prevented cytokine responses. In mammalian cells, depletion of ER calcium initiates a homeostatic stress response program termed ER stress. ER stress is generally initiated by a reduction in protein processing at ASPET Journals on September 25, 2021 efficiency in the ER and its roles in human diseases and xenobiotic toxicities have been reviewed (Cribb et al., 2005; Schroder and Kaufman, 2005; Zhang and Kaufman, 2006). ER stress is predominantly regulated by three sensors: Activating transcription factor 6 (ATF6; Hs. 492740), eukaryotic initiation factor 2α kinase-3 (EIF2αK3 or PERK; Hs. 591589), and ER to nucleus signaling 1 and 2 (ERN1 and 2, a.k.a. IRE1α and β; Hs. 133982 and Hs. 592041) (Schroder and Kaufman, 2005). Activation of one or more of these proximal sensors is dependent upon the type of cellular stress. For example, the prototypical ER stress-inducing agent thapsigargin preferentially activates the “translational branch” involving EIF2αK3. Activated EIF2αK3 catalyzes the phosphorylation of cytosolic EIF2α (Hs. 151777) (Lu et al., 2004; Boyce et al., 2005). Heterodimerization of EIF2α-P with EIF2β promotes ATF4 translation (Hs. 496487) and inhibits the translation of “non-essential” genes (Wek et al., 2006). ATF4 translocates to the 6 JPET Fast Forward. Published on March 1, 2007 as DOI: 10.1124/jpet.107.119412 This article has not been copyedited and formatted.
Recommended publications
  • TRP Mediation
    molecules Review Remedia Sternutatoria over the Centuries: TRP Mediation Lujain Aloum 1 , Eman Alefishat 1,2,3 , Janah Shaya 4 and Georg A. Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] (L.A.); Eman.alefi[email protected] (E.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates 3 Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11941, Jordan 4 Pre-Medicine Bridge Program, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; [email protected] * Correspondence: [email protected]; Tel.: +971-50-413-4525 Abstract: Sneezing (sternutatio) is a poorly understood polysynaptic physiologic reflex phenomenon. Sneezing has exerted a strange fascination on humans throughout history, and induced sneezing was widely used by physicians for therapeutic purposes, on the assumption that sneezing eliminates noxious factors from the body, mainly from the head. The present contribution examines the various mixtures used for inducing sneezes (remedia sternutatoria) over the centuries. The majority of the constituents of the sneeze-inducing remedies are modulators of transient receptor potential (TRP) channels. The TRP channel superfamily consists of large heterogeneous groups of channels that play numerous physiological roles such as thermosensation, chemosensation, osmosensation and mechanosensation. Sneezing is associated with the activation of the wasabi receptor, (TRPA1), typical ligand is allyl isothiocyanate and the hot chili pepper receptor, (TRPV1), typical agonist is capsaicin, in the vagal sensory nerve terminals, activated by noxious stimulants.
    [Show full text]
  • Pharmacokinetics of Daikenchuto, a Traditional Japanese Medicine (Kampo) After Single Oral Administration to Healthy Japanese Volunteers
    DMD Fast Forward. Published on July 1, 2011 as DOI: 10.1124/dmd.111.040097 DMDThis Fast article Forward. has not been Published copyedited and on formatted. July 1, The2011 final as version doi:10.1124/dmd.111.040097 may differ from this version. DMD #040097 Pharmacokinetics of daikenchuto, a traditional Japanese medicine (Kampo) after single oral administration to healthy Japanese volunteers Masaya Munekage, Hiroyuki Kitagawa, Kengo Ichikawa, Junko Watanabe, Katsuyuki Aoki, Toru Kono, Kazuhiro Hanazaki Department of Surgery, Kochi Medical School, Nankoku, Kochi, Japan (M.M., H.K., K.I., K.H); Downloaded from Tsumura Laboratories, TSUMURA & CO., Ami, Ibaraki, Japan (J.W.); Pharmaceutical & Quality Research Department, TSUMURA & CO., Ami, Ibaraki , Japan (K.A.); Division of dmd.aspetjournals.org Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Hokkaido, Japan (T.K.). at ASPET Journals on September 26, 2021 1 Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. DMD Fast Forward. Published on July 1, 2011 as DOI: 10.1124/dmd.111.040097 This article has not been copyedited and formatted. The final version may differ from this version. DMD #040097 Running title: Pharmacokinetics study of daikenchuto Address correspondence to: Kazuhiro Hanazaki, M.D., Ph.D. Department of Surgery, Kochi Medical School, Oko-cho kohasu, Nankoku-shi, Kochi 783-8505, Japan. E-mail: [email protected] , Phone: 81-88-880-2370, Fax: 81-88-880-2371 Number of text pages: 17 Downloaded from Number of Tables: 1 Number of Figures: 2 dmd.aspetjournals.org Number of References: 17 Number of Words: Abstract: 199 at ASPET Journals on September 26, 2021 Introduction: 377 Results and Discussion: 855 ABBREVIATIONS: TJ-100, daikenchuto; HAS, hydroxy-α-sanshool; HBS, hydroxy-β-sanshool; 6S, [6]-shogaol; 10S, [10]-shogaol; GRB1, ginsenoside Rb1; GRG1, ginsenoside Rg1; HPLC, high-performance liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry 2 DMD Fast Forward.
    [Show full text]
  • Less Than Lethal Weapons
    PUBLIC ORDER MANAGEMENT Less Than Lethal Weapons UN Peacekeeping PDT Standards for Formed Police Units 1st edition 2015 Public Order Management 1 Less Than Lethal Weapons Background Before the inception of UN Peacekeeping mission, the Department of Peacekeeping Operations requests TCC/PCC to contribute with their forces to the strength of the mission. The UN Police component is composed by Individual Police Officers (IPO) and Formed Police Units (FPU). The deployment of FPU is subject to a Memorandum of Understanding between the UN and the contributing country and the compliance with the force requirements of the mission. The force requirement lists the equipment and the weapons that the FPU has to deploy with. Despite the fact ‘Guidelines on the Use of Force by Law Enforcement Agencies’ recommends the development and the deployment of less than lethal weapons and ammunitions, FPUs usually do not possess this type of equipment. Until the development of less-lethal weapons, police officers around the world had few if any less-lethal options for riot control. Common tactics used by police that were intended to be non-lethal or less than lethal included a slowly advancing wall of men with batons. Considering the tasks the FPUs are demanded to carry out, those weapons should be mandatory as part of their equipment. The more equipped with these weapons FPUs are, the more they will be able to efficiently respond to the different type of threats and situation. Non-lethal weapons, also called less-lethal weapons, less-than-lethal weapons, non- deadly weapons, compliance weapons, or pain-inducing weapons are weapons intended to be used in the scale of Use of Force before using any lethal weapon.
    [Show full text]
  • Toxic Materials to Cornea INTRODUCTION
    International Journal of Veterinary and Animal Research Uluslararası Veteriner ve Hayvan Araştırmaları Dergisi E-ISSN: 2651-3609 2(1): 06-10, 2019 Toxic Materials to Cornea Eren Ekici1, Ender Yarsan2* 1Ankara Ulucanlar Eye Training and Research Hospital, Department of Ophtalmology, Ankara, Turkey 2Ankara University Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ankara, Turkey *Corresponding Author Received: February 12, 2019 E-mail:[email protected] Accepted: March 6, 2019 Abstract Every day; many chemical agents, materials or medicines whether in the pharmaceutical industry or daily life are offered for consuming for human beings. At this point, it has great importance that if the substances threaten heath or not. Because the toxicity of materials can lead to many target organ damage. The eye, together with many anatomical layers that make it up is among the target organs exposed to toxicity. In this review, we handled the classification, effects and treatment methods of toxic materials on the corneal layer of the eye. Keywords: Cornea, toxic materials, chemicals, eye INTRODUCTION and materials known to be toxic in high-risk situations (ie Toxic material is a chemical substance that breaks down aminoglycosides, some glaucoma medications, antivirals, normal physiological and biochemical mechanisms when chronic disease, dry eyes and patients on multiple topical it enters the living organism (human and warm-blooded therapies) is effective to protect from toxicity (Dart, 2003). animals) through mouth, respiration, skin, and infection, or Table 1: Classification by route of exposure and time course. causes the death of the creature in an excess amount. For Local action, immediate corneal toxicity; there are many methods of classification Examples effects based on the disease, route of exposure and duration or agent Caustic chemicals Acids and alkalis (Grant, 1986).
    [Show full text]
  • [Invented Name] 4 Mg/G + 25 Mg/G Ointment SUMMARY of PRODUCT CHARACTERISTICS
    AT/H/0661/001/DC, final SmPC SUMMARY OF PRODUCT CHARACTERISTICS [Invented name] 4 mg/g + 25 mg/g ointment 1 AT/H/0661/001/DC, final SmPC 1. NAME OF THE MEDICINAL PRODUCT [Invented name] 4 mg/g + 25 mg/g ointment 2. QUALITATIVE AND QUANTITATIVE COMPOSITION 1 g ointment contains 4 mg nonylic acid vanillylamide (nonivamide) and 25 mg β-butoxyethylester of nicotinic acid (nicoboxil). Excipient(s) with known effect 1 g ointment contains 2 mg sorbic acid. Fragrance with with α-Isomethyl ionone, α-Amylcinnamaldehyde, α-Amylcinnamyl alcohol, Anisyl alcohol, Evernia furfuracea extract (Treemoss extract), Benzyl alcohol, Benzyl benzoate, Benzyl cinnamate, Benzyl salicylate, Citral, Citronellol, Coumarin, Oakmoss extract, Eugenol, Farnesol, Geraniol, α-Hexylcinnamaldehyde, Hydroxycitronellal, Isoeugenol, Butylphenyl methylpropional (Lilial), Limonene, Linalool, Hydroxyisohexyl 3-Cyclohexene Carboxaldehyde (Lyral), Methyl heptane carbonate, Cinnamaldehyde, Cinnamyl alcohol . (see section 4.4) Benzyl alcohol: less than 0.002 mg/100g (see section 4.4) For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Ointment Almost white or slightly yellowish, opaque, smooth homogeneous ointment with odour of citronella oil. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications To stimulate blood flow in the skin for treating muscle and joint complaints. For treatment of acute low back pain with no signs of neuropathic origin. To stimulate blood flow in the skin before taking a capillary blood sample, e.g. from the earlobe or the digital pulp. 4.2 Posology and method of administration Posology Treatment should start with a very small quantity and on a very small skin area to test individual reaction.
    [Show full text]
  • TRP Channel Transient Receptor Potential Channels
    TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Antagonists, Inhibitors, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: ≥98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0106690 A1 BUCKS Et Al
    US 201601 06690A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0106690 A1 BUCKS et al. (43) Pub. Date: Apr. 21, 2016 (54) PAIN RELIEF COMPOSITIONS, Publication Classification MANUFACTURE AND USES (51) Int. Cl. (71) Applicant: API GENESIS, LLC, Fairfax, VA (US) A613 L/65 (2006.01) A69/06 (2006.01) (72) Inventors: Daniel BUCKS, Millbrae, CA (US); A619/00 (2006.01) Philip J. BIRBARA, West Hartford, CT A63L/96 (2006.01) (US) A63L/25 (2006.01) A63L/045 (2006.01) A63L/05 (2006.01) (73) Assignee: API GENESIS, LLC, Fairfax, VA (US) A619/08 (2006.01) A613/618 (2006.01) (52) U.S. Cl. (21) Appl. No.: 14/482,930 CPC ................. A61 K31/165 (2013.01); A61 K9/08 (2013.01); A61 K9/06 (2013.01); A61 K9/0014 (22) Filed: Sep. 10, 2014 (2013.01); A61 K3I/618 (2013.01); A61 K 31/125 (2013.01); A61 K3I/045 (2013.01); A6 IK3I/05 (2013.01); A61 K31/196 (2013.01) Related U.S. Application Data - - - (57) ABSTRACT (62) Division of application No. 13/609,100, filed on Sep. The present invention relates to TRPV1 selective agonist 10, 2012, now Pat. No. 8,889,659. topical compositions including capsaicinoid- - - and analgesic (60) Provisional application No. 61/533,120, filed on Sep. agent compositions and methods of manufacture and meth 9, 2011, provisional application No. 61/642.942, filed ods of providing pain relief as well as treating a variety of on May 4, 2012. disorders with Such compositions. Patent Application Publication Apr. 21, 2016 Sheet 1 of 4 US 2016/0106690 A1 FIGURE 1 - API-CAPSTOLERABILITY COMPOSTE AP-CAPSTOERABLTY FOR RGH & LEFT KNEES ASA FUNCTION OF CAPSACN CONCENTRATIONS (Tolerability measurements taken after 1530, 45 & 60 minutes post dosage application for 4 visits) O%.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • The Effects of Vanilloid-Like Agents on Platelet Aggregation
    THE EFFECTS OF VANILLOID-LIKE AGENTS ON PLATELET AGGREGATION Safa Yousef Almaghrabi, MBBS School of Human Life Sciences Submitted in fulfilment of the requirements for the degree of Master of Biomedical Science (Research) University of Tasmania October 2012 DECLARATION I hereby declare that this thesis entitled The Effects of Vanilloid-Like Agents on Platelet Aggregation contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the my knowledge and belief no material previously published or written by another person except where due reference is made in the text of thesis, nor does the thesis contain any material that infringes copyright. Date: 24th Oct 2012 Signed: AUTHORITY OF ACCESS This thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Date: 24th Oct 2012 Signed: STATEMENT OF ETHICAL CONDUCT The research associated with this thesis abides by the international and Australian codes on human and animal experimentation, the guidelines by the Australian Government’s Office of Gene Technology Regulator and the rulings of the Safety, Ethics and Institutional Biosafety Committees of the University. Date: 24th Oct 2012 Signed: Full Name: Safa Yousef O. Almaghrabi i ACKNOWLEDGEMENTS First of all, I would like to thank the Government of Saudi Arabia (King Abdulaziz University) for the scholarship and sponsorship. I would also like to sincerely acknowledge my supervisors, Dr. Murray Adams, A/Prof. Dominic Geraghty, and Dr. Kiran Ahuja for their guidance, tolerance and being there whenever needed.
    [Show full text]
  • 1.01 Understanding Our World with Chemistry
    1.01 Understanding Our World with Chemistry Dr. Fred Omega Garces Chemistry 111 Chemistry in Society 1 Understanding our World through Chemistry January 10 Exploring our Water Supply California interconnected water system serves over 30 million people and irrigates over 5,680,000 acres (2,300,000 hectare, 1 ha = 100m2) of farmland. As the world’s largest, most productive, and most controversial water system, it manages over 40,000,000 acre feet (49 km3) of water per year. Map of water storage and delivery facilities as well as major rivers and cities in the state of California 2 Understanding our World through Chemistry January 10 LA Scandal for Water Everyone who lives here should appreciate just how it is that we are able to live in a desert that is drier than Beirut, yet still maintain green lawns and golf courses and have enough running water to serve the population of the 2nd largest metropolis in the whole of the US. Southern California owes its tenuous existence to some spectacular feats of engineering, which bring water in from remote sources hundreds of miles away. Before these were There are 3 main water sources coming into the SoCal serving different geographic regions: constructed, the city of LA was reliant upon the intermittent flows Los Angeles Aqueduct - constructed in 1908-1913 of the Los Angeles river which Colorado Aqueduct - constructed around 1940 effectively limited population California Aqueduct- constructed in the 1970s growth. 3 Understanding our World through Chemistry January 10 Cadillac Desert; Owen’s Valley and Mulholland Cadillac Desert. http://www.youtube.com/watch?v=hkbebOhnCjA Here's a statistic: The State of California consumes more energy pumping water around, than some other states use for their entire energy needs.
    [Show full text]
  • X-Ray Fluorescence Analysis Method Röntgenfluoreszenz-Analyseverfahren Procédé D’Analyse Par Rayons X Fluorescents
    (19) & (11) EP 2 084 519 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 23/223 (2006.01) G01T 1/36 (2006.01) 01.08.2012 Bulletin 2012/31 C12Q 1/00 (2006.01) (21) Application number: 07874491.9 (86) International application number: PCT/US2007/021888 (22) Date of filing: 10.10.2007 (87) International publication number: WO 2008/127291 (23.10.2008 Gazette 2008/43) (54) X-RAY FLUORESCENCE ANALYSIS METHOD RÖNTGENFLUORESZENZ-ANALYSEVERFAHREN PROCÉDÉ D’ANALYSE PAR RAYONS X FLUORESCENTS (84) Designated Contracting States: • BURRELL, Anthony, K. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Alamos, NM 87544 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Albrecht, Thomas Kraus & Weisert (30) Priority: 10.10.2006 US 850594 P Patent- und Rechtsanwälte Thomas-Wimmer-Ring 15 (43) Date of publication of application: 80539 München (DE) 05.08.2009 Bulletin 2009/32 (56) References cited: (60) Divisional application: JP-A- 2001 289 802 US-A1- 2003 027 129 12164870.3 US-A1- 2003 027 129 US-A1- 2004 004 183 US-A1- 2004 017 884 US-A1- 2004 017 884 (73) Proprietors: US-A1- 2004 093 526 US-A1- 2004 235 059 • Los Alamos National Security, LLC US-A1- 2004 235 059 US-A1- 2005 011 818 Los Alamos, NM 87545 (US) US-A1- 2005 011 818 US-B1- 6 329 209 • Caldera Pharmaceuticals, INC. US-B2- 6 719 147 Los Alamos, NM 87544 (US) • GOLDIN E M ET AL: "Quantitation of antibody (72) Inventors: binding to cell surface antigens by X-ray • BIRNBAUM, Eva, R.
    [Show full text]
  • PDF-Document
    1 of 20 Table S1. Proliferative effects of the exogenous TRPV1 agonists capsaicin and glycolic acid, the endogenous agonist AEA and its analogue, SKM-4-45-1, and the antagonists capsazepine and AMG9810. TRPV1-mediated proliferation is associated with Ca2+ influx, ATP release into the cytosol, and EGFR transactivation. Cancerous cell lines are highlighted in gray. Effect Source Item Dose Cell Line Increases [Ca2+]i Glycolic Acid In-vitro Reconstructed Skin Equivalent Model 100 mM; pH [65] Causes ATP release Glycolic Acid In-vitro Reconstructed Skin Equivalent Model 5 M; pH 2.4 [65] Upregulates (activates/phosphorylates) EGFR AMG9810 Skin tumors, DMBA-initiated SKH-1 mice 1 mg [63] AMG9810 N/TERT1 1 µM [63] Capsaicin HCEC 10 µM [62] Upregulates (activates/phosphorylates) Akt AMG9810 Skin tumors, DMBA-initiated SKH-1 mice 1 mg [63] AMG9810 Dorsal trunk skin, SKH-1 mice 1 mg [63] AMG9810 N/TERT 1 1 µM [63] Capsaicin HCEC 10 µM [62] Upregulates (phosphorylates) ERK 1/2 Capsaicin HCEC 10 µM [62] Causes proliferation Glycolic Acid In-vitro Reconstructed Skin Equivalent Model 1 M; pH 2.4 [65] Capsaicin In-vitro Reconstructed Skin Equivalent Model 10 µM [65] Capsaicin ECFC 0.1 µM [41] AEA ECFC 0.01-1 µM [41] SKM 4-45-1 ECFC 1 µM [41] Capsaicin ASMC, Sprague-Dewley rats 1 µM [35] Capsaicin ASMC, chronic asthmatic Sprague-Dewley 1 µM [35] Capsaicin Eca109 -- [66] Capsaicin CF.41 0.0001-100 µM [42] Capsazepine CF.41 0.0001-100 µM [42] AMG9810 Skin tumors, DMBA-initiated SKH-1 mice 1 mg [63] AMG9810 N/TERT1 1 µM [63] Capsaicin HCEC 10 µM [62] 2 of 20 Table S2.
    [Show full text]