Finite Boolean Algebras for Solid Geometry Using Julia's Sparse Arrays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Object Oriented Programming
No. 52 March-A pril'1990 $3.95 T H E M TEe H CAL J 0 URN A L COPIA Object Oriented Programming First it was BASIC, then it was structures, now it's objects. C++ afi<;ionados feel, of course, that objects are so powerful, so encompassing that anything could be so defined. I hope they're not placing bets, because if they are, money's no object. C++ 2.0 page 8 An objective view of the newest C++. Training A Neural Network Now that you have a neural network what do you do with it? Part two of a fascinating series. Debugging C page 21 Pointers Using MEM Keep C fro111 (C)rashing your system. An AT Keyboard Interface Use an AT keyboard with your latest project. And More ... Understanding Logic Families EPROM Programming Speeding Up Your AT Keyboard ((CHAOS MADE TO ORDER~ Explore the Magnificent and Infinite World of Fractals with FRAC LS™ AN ELECTRONIC KALEIDOSCOPE OF NATURES GEOMETRYTM With FracTools, you can modify and play with any of the included images, or easily create new ones by marking a region in an existing image or entering the coordinates directly. Filter out areas of the display, change colors in any area, and animate the fractal to create gorgeous and mesmerizing images. Special effects include Strobe, Kaleidoscope, Stained Glass, Horizontal, Vertical and Diagonal Panning, and Mouse Movies. The most spectacular application is the creation of self-running Slide Shows. Include any PCX file from any of the popular "paint" programs. FracTools also includes a Slide Show Programming Language, to bring a higher degree of control to your shows. -
A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons
A Computational Basis for Conic Arcs and Boolean Operations on Conic Polygons Eric Berberich, Arno Eigenwillig, Michael Hemmer Susan Hert, Kurt Mehlhorn, and Elmar Schomer¨ [eric|arno|hemmer|hert|mehlhorn|schoemer]@mpi-sb.mpg.de Max-Planck-Institut fur¨ Informatik, Stuhlsatzenhausweg 85 66123 Saarbruck¨ en, Germany Abstract. We give an exact geometry kernel for conic arcs, algorithms for ex- act computation with low-degree algebraic numbers, and an algorithm for com- puting the arrangement of conic arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be obtained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations. The algorithm and its implementation are complete (they can handle all cases), exact (they give the mathematically correct result), and efficient (they can handle inputs with several hundred primitives). 1 Introduction We give an exact geometry kernel for conic arcs, algorithms for exact computation with low-degree algebraic numbers, and a sweep-line algorithm for computing arrangements of curved arcs that immediately leads to a realization of regularized boolean operations on conic polygons. A conic polygon, or polygon for short, is anything that can be ob- tained from linear or conic halfspaces (= the set of points where a linear or quadratic function is non-negative) by regularized boolean operations (Figure 1). A regularized boolean operation is a standard boolean operation (union, intersection, complement) followed by regularization. Regularization replaces a set by the closure of its interior and eliminates dangling low-dimensional features. -
Generalized Inverse Limits and Topological Entropy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork. -
On Combinatorial Approximation Algorithms in Geometry Bruno Jartoux
On combinatorial approximation algorithms in geometry Bruno Jartoux To cite this version: Bruno Jartoux. On combinatorial approximation algorithms in geometry. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Paris-Est, 2018. English. NNT : 2018PESC1078. tel- 02066140 HAL Id: tel-02066140 https://pastel.archives-ouvertes.fr/tel-02066140 Submitted on 13 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris-Est École doctorale MSTIC On Combinatorial Sur les algorithmes d’approximation Approximation combinatoires Algorithms en géométrie in Geometry Bruno Jartoux Thèse de doctorat en informatique soutenue le 12 septembre 2018. Composition du jury : Lilian Buzer ESIEE Paris Jean Cardinal Université libre de Bruxelles président du jury Guilherme Dias da Fonseca Université Clermont Auvergne rapporteur Jesús A. de Loera University of California, Davis rapporteur Frédéric Meunier École nationale des ponts et chaussées Nabil H. Mustafa ESIEE Paris directeur Vera Sacristán Universitat Politècnica de Catalunya Kasturi R. Varadarajan The University of Iowa rapporteur Last revised 16th December 2018. Thèse préparée au laboratoire d’informatique Gaspard-Monge (LIGM), équipe A3SI, dans les locaux d’ESIEE Paris. LIGM UMR 8049 ESIEE Paris Cité Descartes, bâtiment Copernic Département IT 5, boulevard Descartes Cité Descartes Champs-sur-Marne 2, boulevard Blaise-Pascal 77454 Marne-la-Vallée Cedex 2 93162 Noisy-le-Grand Cedex Bruno Jartoux 2018. -
2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (Chair), Bobby Kleinberg September 14Th, 2020
2020 SIGACT REPORT SIGACT EC – Eric Allender, Shuchi Chawla, Nicole Immorlica, Samir Khuller (chair), Bobby Kleinberg September 14th, 2020 SIGACT Mission Statement: The primary mission of ACM SIGACT (Association for Computing Machinery Special Interest Group on Algorithms and Computation Theory) is to foster and promote the discovery and dissemination of high quality research in the domain of theoretical computer science. The field of theoretical computer science is the rigorous study of all computational phenomena - natural, artificial or man-made. This includes the diverse areas of algorithms, data structures, complexity theory, distributed computation, parallel computation, VLSI, machine learning, computational biology, computational geometry, information theory, cryptography, quantum computation, computational number theory and algebra, program semantics and verification, automata theory, and the study of randomness. Work in this field is often distinguished by its emphasis on mathematical technique and rigor. 1. Awards ▪ 2020 Gödel Prize: This was awarded to Robin A. Moser and Gábor Tardos for their paper “A constructive proof of the general Lovász Local Lemma”, Journal of the ACM, Vol 57 (2), 2010. The Lovász Local Lemma (LLL) is a fundamental tool of the probabilistic method. It enables one to show the existence of certain objects even though they occur with exponentially small probability. The original proof was not algorithmic, and subsequent algorithmic versions had significant losses in parameters. This paper provides a simple, powerful algorithmic paradigm that converts almost all known applications of the LLL into randomized algorithms matching the bounds of the existence proof. The paper further gives a derandomized algorithm, a parallel algorithm, and an extension to the “lopsided” LLL. -
Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part I)
Mathematics of Bioinformatics ---Theory, Practice, and Applications (Part I) Matthew He, Ph.D. Professor/Director Division of Math, Science, and Technology Nova Southeastern University, Florida, USA December 18-21, 2010, Hong Kong, China BIBM 2010 OUTLINE INTRODUCTION: FUNDAMENTAL QUESTIONS PART I : GENETIC CODES , BIOLOGICAL SEQUENCES , DNA AND PROTEIN STRUCTURES PART II: BIOLOGICAL FUNCTIONS, NETWORKS, SYSTEMS BIOLOGY AND COGNITIVE INFORMATICS TABLE OF TOPICS: PART I I. Bioinformatics and Mathematics 1.1 Introduction 12G1.2 Genet ic Co de an dMd Mat hemat ics 1.3 Mathematical Background 1.4 Converting Data to Knowledge 1.5 Big Picture: Informatics 16Chll1.6 Challenges and dP Perspect ives II. Genetic Codes, Matrices, and Symmetrical Techniques 2.1 Introduction 2.2 Matrix Theory and Symmetry Preliminaries 2.3 Genetic Codes and Matrices 2.4 Challenges and Perspectives III. Biological Sequences, Sequence Alignment, and Statistics 3.1 Introduction 3.2 Mathematical Sequences 3.3 Sequence Alignment 3.4 Sequence Analysis/Further Discussions 3.5 Challenges and Perspectives TABLE OF TOPICS: PART I IV. Structures of DNA and Knot Theory 4.1 Introduction 4.2 Knot Theory Preliminaries 4.3 DNA Knots and Links 4.4 Challenggpes and Perspectives V. Protein Structures, Geometry, and Topology 51I5.1 In tro duc tion 5.2 Computational Geometry and Topology 5.3 Protein Structures and Prediction 5.4 Statistical Approach and Discussions 5. 5 Cha llenges an d Perspec tives TABLE OF TOPICS: PART II VI. Biological Networks and Graph Theory 6. 1 Introduction 6.2 Graph Theory and Network Topology 6.3 Models of Biological Networks 6.4 Challenges and Perspectives VII. -
Computational Geometry and Computer Graphics by Dobkin
Computational Geometry and Computer Graphics David P. Dobkin+ Department of Computer Science Princeton University Princeton, NJ 08544 ABSTRACT Computer graphics is a de®ning application for computational geometry. The interaction between these ®elds is explored through two scenarios. Spatial subdivisions studied from the viewpoint of computa- tional geometry are shown to have found application in computer graph- ics. Hidden surface removal problems of computer graphics have led to sweepline and area subdivision algorithms in computational geometry. The paper ends with two promising research areas with practical applica- tions: precise computation and polyhedral decomposition. 1. Introduction Computational geometry and computer graphics both consider geometric phenomena as they relate to computing. Computational geometry provides a theoretical foundation involving the study of algorithms and data structures for doing geometric computations. Computer graphics concerns the practical development of the software, hardware and algorithms necessary to create graphics (i.e. to display geometry) on the computer screen. At the interface lie many common problems which each discipline must solve to reach its goal. The techniques of the ®eld are often similar, sometimes dif- ferent. And, each ®elds has built a set of paradigms from which to operate. Thus, it is natural to ask the question: How do computer graphics and computational geometry interact? It is this question that motivates this paper. I explore here life at the interface between computational geometry and computer graphics. Rather than striving for completeness (see e.g. Yao [Ya] for a broader survey), I consider in detail two scenarios in which the two ®elds have overlapped. The goal is to trace the development of the ideas used in the two areas and to document the movement back and forth. -
45 ROBUST GEOMETRIC COMPUTATION Vikram Sharma and Chee K
45 ROBUST GEOMETRIC COMPUTATION Vikram Sharma and Chee K. Yap INTRODUCTION Nonrobustness refers to qualitative or catastrophic failures in geometric algorithms arising from numerical errors. Section 45.1 provides background on these problems. Although nonrobustness is already an issue in “purely numerical” computation, the problem is compounded in “geometric computation.” In Section 45.2 we character- ize such computations. Researchers trying to create robust geometric software have tried two approaches: making fixed-precision computation robust (Section 45.3), and making the exact approach viable (Section 45.4). Another source of nonro- bustness is the phenomenon of degenerate inputs. General methods for treating degenerate inputs are described in Section 45.5. For some problems the exact ap- proach may be expensive or infeasible. To ensure robustness in this setting, a recent extension of exact computation, the so-called “soft exact approach,” has been proposed. This is described in Section 45.6. 45.1 NUMERICAL NONROBUSTNESS ISSUES Numerical nonrobustness in scientific computing is a well-known and widespread phenomenon. The root cause is the use of fixed-precision numbers to represent real numbers, with precision usually fixed by the machine word size (e.g., 32 bits). The unpredictability of floating-point code across architectural platforms in the 1980s was resolved through a general adoption of the IEEE standard 754-1985. But this standard only makes program behavior predictable and consistent across platforms; the errors are still present. Ad hoc methods for fixing these errors (such as treating numbers smaller than some ε as zero) cannot guarantee their elimination. Nonrobustness is already problematic in purely numerical computation: this is well documented in numerous papers in numerical analysis with the key word “pitfalls” in their title. -
Continuous Monoids and Semirings
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 318 (2004) 355–372 www.elsevier.com/locate/tcs Continuous monoids and semirings Georg Karner∗ Alcatel Austria, Scheydgasse 41, A-1211 Vienna, Austria Received 30 October 2002; received in revised form 11 December 2003; accepted 19 January 2004 Communicated by Z. Esik Abstract Di1erent kinds of monoids and semirings have been deÿned in the literature, all of them named “continuous”. We show their relations. The main technical tools are suitable topologies, among others a variant of the well-known Scott topology for complete partial orders. c 2004 Elsevier B.V. All rights reserved. MSC: 68Q70; 16Y60; 06F05 Keywords: Distributive -algebras; Distributive multioperator monoids; Complete semirings; Continuous semirings; Complete partial orders; Scott topology 1. Introduction Continuous semirings were deÿned by the “French school” (cf. e.g. [16,22]) using a purely algebraic deÿnition. In a recent paper, Esik and Kuich [6] deÿne continuous semirings via the well-known concept of a CPO (complete partial order) and claim that this is a generalisation of the established notion. However, they do not give any proof to substantiate this claim. In a similar vein, Kuich deÿned continuous distributive multioperator monoids (DM-monoids) ÿrst algebraically [17,18] and then, again with Esik, via CPOs. (In the latter paper, DM-monoids are called distributive -algebras.) Also here the relation between the two notions of continuity remains unclear. The present paper clariÿes these issues and discusses also more general concepts. A lot of examples are included. -
Math Morphing Proximate and Evolutionary Mechanisms
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales. -
Computational Geometry
Computational Geometry Third Edition Mark de Berg · Otfried Cheong Marc van Kreveld · Mark Overmars Computational Geometry Algorithms and Applications Third Edition 123 Prof. Dr. Mark de Berg Dr. Marc van Kreveld Department of Mathematics Department of Information and Computer Science and Computing Sciences TU Eindhoven Utrecht University P.O. Box 513 P.O. Box 80.089 5600 MB Eindhoven 3508 TB Utrecht The Netherlands The Netherlands [email protected] [email protected] Dr. Otfried Cheong, ne´ Schwarzkopf Prof. Dr. Mark Overmars Department of Computer Science Department of Information KAIST and Computing Sciences Gwahangno 335, Yuseong-gu Utrecht University Daejeon 305-701 P.O. Box 80.089 Korea 3508 TB Utrecht [email protected] The Netherlands [email protected] ISBN 978-3-540-77973-5 e-ISBN 978-3-540-77974-2 DOI 10.1007/978-3-540-77974-2 ACM Computing Classification (1998): F.2.2, I.3.5 Library of Congress Control Number: 2008921564 © 2008, 2000, 1997 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. -
An Investigation of Droplets and Films Falling Over Horizontal Tubes
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 An investigation of droplets and films falling vo er horizontal tubes Jesse David Killion Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Killion, Jesse David, "An investigation of droplets and films falling vo er horizontal tubes" (2003). Retrospective Theses and Dissertations. 19454. https://lib.dr.iastate.edu/rtd/19454 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. An investigation of droplets and films falling over horizontal tubes by Jesse David Killion A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Srinivas Garimella, Major Professor Richard H. Pletcher James C. Hill Iowa State University Ames, Iowa 2003 Copyright OO Jesse David Killion, 2003. All rights reserved. 11 Graduate College Iowa State University This is to certify that the master's thesis of Jesse David Killion has met the thesis requirements of Iowa State University Signatures have been redacted for privacy 111 TABLE OF CONTENTS ABSTRACT V ACKNOWLEDGEMENTS