Normal Blastocyst Development F

Total Page:16

File Type:pdf, Size:1020Kb

Normal Blastocyst Development F Nuclear transfer of putative rabbit embryonic stem cells leads to normal blastocyst development F. Du, J. R. Giles, R. H. Foote, K. H. Graves, X. Yang and R. W. Moreadith Department of Animal Science, Cornell University, Ithaca, New York, USA; and 2The Molecular Cardiology Laboratories, The University of Texas Southwestern Medical Center, Dallas, TX 75235-8573, USA Rabbit embryonic stem-like cells, characterized by embryoid body formation and differen- tiation into cell types representative of all three germ layers, were studied for their ability to promote early embryonic development after nuclear transfer. After culture of the reconstructed embryos, 23% (n = 35) developed successfully into morulae or blastocysts, compared with 34% (n = 62) for cloned embryos derived from nuclear transfer with embryonic blastomeres. The cloned embryos from the embryonic stem-like cells appeared normal, with an average of 26% inner cell mass cells, similar to that of control non-manipulated embryos (25%) or cloned embryos from blastomeres (25%). Thus, nuclear transfer of rabbit embryonic stem-like cells leads to early embryonic development that is indistinguishable from blastomere fusion. These results have implications for the develop- ment of gene targeting in a species (rabbit) that may be a more suitable model for studying certain human diseases. In addition, this technique may be applicable to other species from which putative embryonic stem cells have been derived, particularly agriculturally important animals. Introduction The current methods for production of germline chimaeras use either injection of the putative ES cells directly into a stem (ES) cells or ES-like cells have been Pluripotent embryonic blastocyst, co-culture with zona-free morulae to produce aggre¬ derived from of several mammals, preimplantation embryos gation chimaeras (Wood et al, 1993), or injection of the cells mice (Evans and 1981; including Kaufman, Martin, 1981), into tetraploid embryos generated by cell fusion (Nagy et al, hamsters et (Doetschman al, 1988), pigs (Notarianni et al, 1993). These procedures have been successful only in mice. cattle et 1992; Strelchenko and 1990), (Saito al, Stice, 1994), Nuclear transfer an additional for the mink represents technique (Sukoyan et al, 1992), rats (Iannaccone et al, 1994) and production of viable offspring from ES-like cells (Sims and First, rabbits (Graves and Moreadith, 1993). In several instances, 1994). With this method, early cleavage stage embryonic cells these have been in culture without loss passaged continuously blastomeres, but also inner cell mass cells) are of the and of (typically undifferentiated phenotype, display many the individually isolated and fused with enucleated mature oocytes characteristics of cells. In culture, the expected pluripotential (for recent review see RobI et al, 1992). Nuclear transfer with cells can be induced to differentiate cell terminally into types blastomeres has resulted in in several includ¬ each of the after progeny species, representing germ layers embryoid body ing (Willadsen, 1986, 1989), cattle (Prather et al, 1987; formation in has sheep (pluripotentiality). However, only mice germ- Bondioli et al, 1990), pigs (Prather et al, 1989) and rabbits line the of the ES cells alone to rise to pluripotency, ability give (Stice and Robl, 1988; Yang et al, 1992). In cattle, numerous viable germline animals, been demonstrated (Nagy et al, 1993). offspring have been produced through serial nuclear transfer This and the to property ability introduce precise mutations in using embryonic cells at 8—32-cell stages (Stice and Keefer, these cells in tissue culture via homologous recombination are 1993). However, in mice, nuclear transfer with blastomeres important advances in mouse developmental genetics. It is now beyond the two-cell stage has been unsuccessful (McGrath and to mice of almost theoretically possible produce any genotype, Solter, 1983, 1984). In addition, attempts to use mouse ES cells and to the of defined mutations in the investigate consequences for nuclear transfer result in implantations but no viable context of an intact animal. The technology promises to progeny (Tsunoda and Kato, 1993). This finding suggests that address diverse issues in mammalian important developmental mouse ES cell lines true inner cell mass (ICM) cells, and represent biology medicine. and that they cannot contribute to normal extraembryonic *Correspondence. development (or that the techniques used are insufficient for Received 6 January 1995. complete embryonic development). Unfortunately, except for Downloaded from Bioscientifica.com at 10/07/2021 08:27:51PM via free access mouse ES cells, there have been no continuously passaged ovulated, naturally mated does 48—50 h after injection of LH mammalian ES cell lines that have been shown to contribute to and artificial insemination. The mucin coat and the zona normal development by production of germline chimaeras after pellucida were removed essentially as described by Yang et al blastocyst injection or nuclear transfer. However, the encour¬ (1990). Embryos were treated with acidic PBS (pH 2.4) for aging results with nuclear transfer of blastomeres and briefly 1—2 min at room temperature and transferred to 0.5% (w/v) cultured ICM cells in species other than the mouse (Keefer pronase E (Sigma) in PBS for 1—2 min at 39°C until the mucin et al, 1994; Sims and First, 1994; Stice et al, 1994) opens up the coat and zona were removed. The mucin/zona-free embryos possibility of producing viable animals through nuclear transfer were then washed in PBS plus 15% (v/v) FBS, incubated in of ES cells that retain totipotential properties. 0.25% (w/v) trypsin in Hank's buffered salt solution for Graves and Moreadith (1993) reported the derivation of 1—2 min and gently pipetted with a polished pipette to several putative ES cell lines in rabbits. The current report disaggregate the blastomeres. Blastomeres were washed in PBS describes the results of attempts to demonstrate that these plus 15% (v/v) FBS and transferred to a microdrop of PBS plus ES-like cells can contribute to normal development. In this 10% (v/v) FBS containing 7.5 µg cytochalasin ml-1. A study, nuclear transfer, using two separate, serially passaged blastomere or a small round retractile ES-like cell was trans¬ rabbit cell lines into enucleated rabbit oocytes led to normal ferred to the perivitelline space of an enucleated oocyte. Care blastocyst development. This finding has important impli¬ was taken to place the small ES-like cell in close contact with cations for the subsequent development of rabbit models of the vitelline membrane of the oocyte. disease, and may be broadly applicable to undifferentiated cells Enucleated oocytes with or without transferred donor cells in other species. were transferred to the activation chamber containing acti¬ vation medium mol D-mannitol 1 0.05 mmol calcium (0.3 ~ 1, chloride 1_I and 0.1 mmol magnesium sulfate I-1), aligned Materials and Methods with an AC pulse of 0.1 kVcm~ for 5—10 s and pulsed with 2.4 kVcm-1 DC for 60 µß (Yang et al, 1992). About 30 min Cell culture reagents later, the oocyte-cell complexes were transferred to activation medium and as described above. After Murine leukaemia inhibitory factor (LIF) and Dulbecco's pulsed again washing, they were incubated for a further 30 min in cytochalasin B, minimal essential medium (DMEM) were obtained from Gibco washed in culture medium and cultured in as Life fetal bovine serum microdrops Technologies (Grand Island, NY); (FBS) described below. was obtained from Hyclone (Logan, UT). The manipulated oocytes or embryos were cultured in 50 µ droplets of modified RD medium (Carney and Foote, 1991) Animals overlaid with medical fluid (Dow Corning) at 39°C under a humid atmosphere of 10% C02:5% 02:85% N2. The RD mature albino Dutch rabbits maintained at Cornell Sexually medium consisted of a 1:1 mixture of DMEM (low glucose) University under a 12 h light:12 h dark cycle were super- and RPMI-1640 (Gibco), modified from the earlier 1:1 mixture ovulated using a modified procedure of Kennelly and Foote of high glucose DMEM and RPMI-1640 described by Li et al (1965) with FSH (FSH-P; Schering Corp., Kenilworth, NJ) and (1993). In modified RD medium, DMEM (low glucose) plus LH donor females (Vetrepharm Inc., London, Canada). Embryo 0.1% (w/v) PVA was used. Nuclear transfer embryos, as well as were inseminated at the time of LH with artificially injection enucleated oocytes, were cultured for 5 days. In addition, a semen collected from fertile males. and were Oocytes embryos subset of donor embryos were cultured for collected midventral and the oviducts non-manipulated by laparotomy flushing 2—3 days as controls. with Dulbecco's PBS Grand Island, 0.3% (GIBCO, NY) plus After culture, the mucin coat and the zona pellucida were BSA St (w/v) (Fraction V; Sigma Louis, MO). removed from embryos as described above. Embryos were either fixed in sodium citrate:ethanol and stored at 5°C until examination to Cell culture and nuclear transfer or they were subjected complement-mediated cell lysis (immunosurgery) as described by Solter and Knowles The derivation and culture conditions of rabbit ES-like cells (1975) and Giles et al (1993) and then fixed. After fixation, was described by Graves and Moreadith (1993). Two of the embryos were transferred to a 100 µ droplet of sodium ~ most carefully characterized cell lines, GM3 and GMll (at citrate:ethanol containing 10 µg Hoechst 33342 ml and were washed once in and re- 10 iodide ml and at room passage 7), thawed, DMEM, µg propidium ~ (Sigma) incubated suspended in PBS plus 15% (v/v) FBS containing 7.5 µg temperature for 3—4 min. For blastocysts subjected to the cytochalasin ml- (Sigma). Oocytes were collected 14—15 h immunosurgery procedure, the nuclei of the ICM and trophec- after LH injection from donor females; the oocytes were freed toderm cells were differentially stained and fluoresced blue and of cumulus cells by vortexing in 0.2% (w/v) hyaluronidase in pink, respectively, under a fluorescent microscope (Handyside PBS plus 0.1% (v/v) polyvinyl alcohol (PVA; Sigma), washed and Hunter, 1984).
Recommended publications
  • Human Blastocyst Morphological Quality Is Significantly Improved In
    Human blastocyst morphological quality is significantly improved in embryos classified as fast on day 3 (R10 cells), bringing into question current embryological dogma Martha Luna, M.D.,a,b Alan B. Copperman, M.D.,a,b Marlena Duke, M.Sc.,a,b Diego Ezcurra, D.V.M.,c Benjamin Sandler, M.D.,a,b and Jason Barritt, Ph.D.a,b a Mount Sinai School of Medicine, Department of Obstetrics and Gynecology, Department of Reproductive Endocrinology and Infertility, and b Reproductive Medicine Associates of New York, New York, New York; and c EMD Serono, Rockland, Massachusetts Objective: To evaluate developmental potential of fast cleaving day 3 embryos. Design: Retrospective analysis. Setting: Academic reproductive center. Patient(s): Three thousand five hundred twenty-nine embryos. Intervention(s): Day 3 embryos were classified according to cell number: slow cleaving: %6 cells, intermediate cleaving: 7–9 cells, and fast cleaving: R10 cells, and further evaluated on day 5. The preimplantation genetic diagnosis (PGD) results of 43 fast cleaving embryos were correlated to blastocyst formation. Clinical outcomes of transfers involving only fast cleaving embryos (n ¼ 4) were evaluated. Main Outcome Measure(s): Blastocyst morphology correlated to day 3 blastomere number. Relationship between euploidy and blastocyst formation of fast cleaving embryos. Implantation, pregnancy (PR), and birth rates resulting from fast embryo transfers. Result(s): Blastocyst formation rate was significantly greater in the intermediate cleaving (72.7%) and fast cleav- ing (54.2%) groups when compared to the slow cleaving group (38%). Highest quality blastocysts were formed significantly more often in the fast cleaving group. Twenty fast cleaving embryos that underwent PGD, formed blastocysts, of which 45% (9/20) were diagnosed as euploid.
    [Show full text]
  • Properties of Mouse Inner Cell Masses Isolated by Immunosurgery, Exposure to the Calcium Ionophore A23187 Or Low Osmolarity
    Aust. J. BioI. Sci., 1980,33, 689-97 Properties of Mouse Inner Cell Masses Isolated by Immunosurgery, Exposure to the Calcium Ionophore A23187 or Low Osmolarity G. M. Harlow and P. Quinn Department of Biological Sciences, University of Newcastle, Newcastle, N.S.W. 2308. Abstract Mouse inner cell masses remained intact when exposed to extreme bsmotic stress (distilled water) for short periods, but the trophectoderm was lysed in one-third of blastocysts. However, these inner cell masses were not viable as they could not fluoresce after incubation in fluorescein diacetate nor continue development in vitro. It was concluded that cells of the inner cell mass are not more tolerant of osmotic stresses than those of the trophectoderm. Inner cell masses were isolated from only 50 % of blastocysts when exposed to the calcium ionophore A23187. Some lysing trophectoderm cells are probably able to restore their normal calcium levels after transfer to fresh culture medium allowing normal blastocyst-like development in vitro. Further evidence which suggests that not all trophectoderm cells are removed after incu­ bation in ionophore is that these inner cell masses produced more trophoblast-like outgrowths in vitro and were able to induce the decidual cell reaction in vivo more often than their immuno­ surgically isolated counterparts. Irnmunosurgically isolated inner cell masses were viable as they fluoresced brightly after incu­ bation in fluorescein diacetate and developed normally in vitro. There was little or no contamination of these inner cell masses with trophectoderm cells as they formed considerably smaller outgrowths than control blastocysts and were rarely able to induce the decidual cell reaction in vivo.
    [Show full text]
  • Isolation of a Primate Embryonic Stem Cell Line JAMES A
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 7844-7848, August 1995 Developmental Biology Isolation of a primate embryonic stem cell line JAMES A. THOMSON*t, JENNIFER KALISHMAN*, THADDEUS G. GOLOS*, MAUREEN DURNING*, CHARLEs P. HARRIS*, ROBERT A. BECKER*, AND JOHN P. HEARN*§ *The Wisconsin Regional Primate Research Center, §Department of Physiology, School of Medicine, and tCytogenetics Laboratory, State Hygiene Laboratory, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715-1299 Communicated by Neal L. First, University of Wsconsin, Madison, W1, May 4, 1995 (received for review January 23, 1995) ABSTRACT Embryonic stem cells have the ability to fetal membranes and placenta (15), and in formation of an remain undifferentiated and proliferate indefinitely in vitro embryonic disc instead of an egg cylinder. Human embryonal while maintaining the potential to differentiate into deriva- carcinoma (EC) cells, which are pluripotent, immortal stem tives of all three embryonic germ layers. Here we report the cells from teratocarcinomas, provide an important in vitro derivation ofa cloned cell line (R278.5) from a rhesus monkey model for understanding human differentiation (16). Some EC blastocyst that remains undifferentiated in continuous pas- cell lines can be induced to differentiate in culture (17), which sage for >1 year, maintains a normal XY karyotype, and results in the loss ofspecific cell surface markers [stage-specific expresses the cell surface markers (alkaline phosphatase, embryonic antigen 3 (SSEA-3), SSEA-4, TRA-1-60, and TRA- stage-specific embryonic antigen 3, stage-specific embryonic 1-81] and the appearance of new markers (16). When pluri- antigen 4, TRA-1-60, and TRA-1-81) that are characteristic of potent human EC cells are injected into immunocompromised human embryonal carcinoma cells.
    [Show full text]
  • The Direct Measurement of Embryogenic Volume and Nucleo-Cytoplasmic Ratio During Mouse Pre-Implantation Development
    REPRODUCTIONRESEARCH The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development Catherine E M Aiken, Peter P L Swoboda, Jeremy N Skepper and Martin H Johnson Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK Correspondence should be addressed to M H Johnson; Email: [email protected] Abstract After fertilization, the mammalian conceptus undergoes cleavage, a process of cell proliferation in the absence of interphase growth. It is not known when cleavage ends and gives way to fully replicative cell cycles with a stable nucleo-cytoplasmic ratio. We have used two-photon excitation and confocal microscopy to measure directly volumes and nucleo-cytoplasmic ratios of whole murine concepti and their individual constituent blastomeres during pre-implantation development up to the early uterine attachment stage (day 5). We show that the total cytoplasmic volume of the conceptus remains constant during pre-implantation development, and that the average nucleo-cytoplasmic ratio increases exponen- tially throughout the same period. Data from individual blastomeres show that both volume and nucleo-cytoplasmic ratio diverge in the inner and outer subpopulations evident from the 16-cell stage (fifth developmental cycle) onwards. Cells from emergent outer trophoblast populations are larger and have smaller nucleo-cytoplasmic ratios than those from emer- gent inner pluriblast populations. Moreover, the nucleo-cytoplasmic ratio of the trophoblast appears to be stabilizing, suggesting that for this subpopulation cleavage may end at the 16–32-cell transition. Putative hypoblast and epiblast cell subpopulations within the pluriblast were not distinguishable by volume or nucleo-cytoplasmic ratio. Embryonic stem cell volume was higher than that of either cell subpopulation of expanded blastocysts, and their nucleo-cytoplasmic ratio was similar to that of trophoblast cells.
    [Show full text]
  • Evaluation of the Technique of Immunosurgery for the Isolation of Inner Cell Masses from Mouse Blastocysts
    /. Embryol. exp. Morph. Vol. 37, pp. 217-226, 1977 217 Printed in Great Britain Evaluation of the technique of immunosurgery for the isolation of inner cell masses from mouse blastocysts By A. H. HANDYS1DE1 AND S. C. BARTON1 From the Department of Anatomy, University of Cambridge SUMMARY Inner cell masses (ICMs) immunosurgically-isolated from 3^-day mouse blastocysts were examined for trophoblast cell contamination and developmental capacity. Blastocysts were preincubated in rabbit anti-mouse antiserum, washed thoroughly and then incubated in complement. The ICMs were then easily dissected by drawing through a fine pipette. Various experiments confirmed that the trophectoderm had been completely removed by this treatment. Firstly, the ICMs did not bind a fiuorescein-conjugated antibody directed against rabbit IgG, indicating the absence of cells exposed to the rabbit antiserum during the immunosurgical procedure. Secondly, ICMs dissected from blastocysts preincubated in a suspension of melanin granules did not include any of the trophoblast cells that had phago- cytosed the granules. And, thirdly, the protein synthetic profile of these ICMs was similar to microsurgically dissected ICMs, and in particular, trophoblast specific spots were absent. The developmental capacity of immunosurgically-isolated ICMs was tested by injecting them into blastocysts and transferring to the uterus of 2^-day pseudopregnant recipients. Extensive chimaerism was detected in the majority of implants, 5-6 days after transfer, but only in ICM-derived tissues. This demonstrates both the lack of trophoblast cell contamina- tion and functional viability of these ICMs. INTRODUCTION The 3^-day mouse blastocyst consists of two distinct groups of cells: the inner cell mass (ICM) and the trophectoderm.
    [Show full text]
  • Allogeneic Component to Overcome Rejection in Interspecific Pregnancy Mikael Häggström1
    WikiJournal of Medicine, 2014, 1(1) doi: 10.15347/wjm/2014.004 Figure Article Allogeneic component to overcome rejection in interspecific pregnancy Mikael Häggström1 Introduction Interspecific pregnancy is a pregnancy involving an embryo or fetus belonging to another species than the carrier. The embryo or fetus is called xenoge- neic (the prefix xeno- denotes something from another species), and would be equivalent to a xenograft rather than an allograft, putting a higher demand on gestational immune tolerance in order to avoid an immune reaction toward the fetus. Methods to over- come rejection of the xenogeneic embryo or fetus in- clude the following two: Intercurrently inserting an allogeneic (allo- denotes some- thing from the same species) embryo into the uterus in ad- dition to the xenogeneic one. For example, embryos of the species Spanish Ibex are aborted when inserted alone into the womb of a goat, but when introduced together with a goat embryo, they may develop to term.[1] Covering the outer layer of a xenogeneic embryo with al- logeneic cells. Such envelopment can be created by first isolating the inner cells mass of blastocysts of the species to be reproduced by immunosurgery, wherein the blasto- cyst is exposed to antibodies toward that species. Be- cause only the outer layer, that is, the trophoblastic cells, are exposed to the antibodies, only these cells will be de- stroyed by subsequent exposure to complement. The re- maining inner cell mass can be injected into a blastocele of the recipient species to acquire its tropho- blastic cells.[2] As an example of this method, embryos of Ryuku Mouse(Mus caroli) will survive to term inside the uterus of a house mouse (Mus musculus) only if enveloped in Mus musculus trophoblast cells.[3] Both of these methods involve a xenogeneic pregnancy in addition to an allogeneic component, that is, either a separate allogeneic embryo or an allogeneic tropho- blast.
    [Show full text]
  • Embryo Makes Contact with the Endometrial Lining of the Uterus
    Week 1 • Week 1 - Early zygote • Stage 1 starts at the beginning of • Week 1 Carnegie stage – 1,2,3,4, fertilization • Fertilization • Stage 2 begins with the division • of the zygote into two cells and Zygote ends with the appearance of the • Morula blastocystic cavity • Blastocyst • Stage 3 begins when the blastocystic cavity first appears in the morula and ends when the zona (capsula) pellucida is shed as the embryo makes contact with the endometrial lining of the uterus. • Stage 4 is reserved for the attaching blastocyst to the endometrial lining Week 2 • Week 2 Implantation • Stage 5 Two distinct layers • Week 2 Carnegie stage -5,6 are evident in the • Trophoblast - outer cell trophoblast; 1) a thicker layer outer layer without cell boundaries, called the • Embryoblast - inner cell syncytiotrophoblast and 2) mass a thinner inner layer with • Implantation cell boundaries called the • Bilaminar embryo cytotrophoblast. • Stage 6 the first appearance of chorionic villi. Week 3 • • Stage 7 the presomite • Week 3 - Embryonic disc period and well defined • Week 3 - Carnegie stage – embryonic disc appearance 7,8, &9 of the notochordal process and the gastrulation • Gastrulation (primitive) node. • Notochord formation • Trilaminar embryo • Mesoderm • Somitogenesis • Neurogenesis Week 4 • The heart begins • Week 4 - Carnegie stage -10,11,12 &13 • Heart • Placodes • Pharyngeal arches • Week 5 • Week 7 - Head and limb • Carnegie stages stage 14 development stage 15 • Carnegie stages stage 18 • stage 19 • Week 6 - Early face • Week 8 deevelopment • Last embryonic stage • Carnegie stages Carnegie stage – 20 21 22 • Week 6 - Carnegie stage 16 &23 & 17 • Last week of embryonic development.
    [Show full text]
  • Early Embryonic Development Till Gastrulation (Humans)
    Gargi College Subject: Comparative Anatomy and Developmental Biology Class: Life Sciences 2 SEM Teacher: Dr Swati Bajaj Date: 17/3/2020 Time: 2:00 pm to 3:00 pm EARLY EMBRYONIC DEVELOPMENT TILL GASTRULATION (HUMANS) CLEAVAGE: Cleavage in mammalian eggs are among the slowest in the animal kingdom, taking place some 12-24 hours apart. The first cleavage occurs along the journey of the embryo from oviduct toward the uterus. Several features distinguish mammalian cleavage: 1. Rotational cleavage: the first cleavage is normal meridional division; however, in the second cleavage, one of the two blastomeres divides meridionally and the other divides equatorially. 2. Mammalian blastomeres do not all divide at the same time. Thus the embryo frequently contains odd numbers of cells. 3. The mammalian genome is activated during early cleavage and zygotically transcribed proteins are necessary for cleavage and development. (In humans, the zygotic genes are activated around 8 cell stage) 4. Compaction: Until the eight-cell stage, they form a loosely arranged clump. Following the third cleavage, cell adhesion proteins such as E-cadherin become expressed, and the blastomeres huddle together and form a compact ball of cells. Blatocyst: The descendents of the large group of external cells of Morula become trophoblast (trophoblast produce no embryonic structure but rather form tissues of chorion, extraembryonic membrane and portion of placenta) whereas the small group internal cells give rise to Inner Cell mass (ICM), (which will give rise to embryo proper). During the process of cavitation, the trophoblast cells secrete fluid into the Morula to create blastocoel. As the blastocoel expands, the inner cell mass become positioned on one side of the ring of trophoblast cells, resulting in the distinctive mammalian blastocyst.
    [Show full text]
  • Cultured Human Pre-Gastrulation Embryos
    Protocol for a developmental landscape of 3D- cultured human pre-gastrulation embryos Lifeng Xiang Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology Yu Yin Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology Tianqing Li ( [email protected] ) Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology Method Article Keywords: Human pre-gastrulation embryo, three-dimensional (3D) culture, primitive streak anlage, immunouorescence imaging, single cell RNA-seq Posted Date: December 12th, 2019 DOI: https://doi.org/10.21203/rs.2.16169/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/9 Abstract Human embryogenesis is not well understood. Knowledge detailing human pre-gastrulation embryonic development including spatial self-organization and cell type ontogeny remains limited by available two- dimensional technological platforms. Here, we present a three-dimensional (3D) blastocyst-culture system, which enables human blastocyst development through primitive streak anlage (PSA). By the 3D- platform combined with immunouorescence imaging and single-cell RNA-Seq, we reveal a developmental landscape of human pre-gastrulation embryos. Our protocol allows recording and analysis of embryo developmental landmarks and mechanisms from human blastocysts to pre- gastrulation stage (day 14 post- fertilization). Introduction Early human embryogenesis, such as architecture formation and cell type specication, is obscure owing to technical challenge and unavailable materials. Recent in vitro implantation platforms using a two- dimensional (2D) culture approach have revealed some developmental landmarks of in vivo early human embryos1,2.
    [Show full text]
  • Fresh Blastocyst Embryo Transfer Is Superior to Morula Embryo Transfer in Young Patients Undergoing in Vitro Fertilization
    Open Access Austin Journal of Reproductive Medicine & Infertility Research Article Fresh Blastocyst Embryo Transfer is Superior to Morula Embryo Transfer in Young Patients Undergoing in Vitro Fertilization Malik S1, Balassiano E1, Hobeika E1, Knochenhauer ES1,2 and Traub ML1,2* Abstract 1 Department of Obstetrics and Gynecology, Staten Island Objective: To determine if blastocyst embryo transfer yields better University Hospital, USA, 475 Seaview Avenue, Staten pregnancy outcomes compared to morula embryo transfer for fresh and frozen Island, NY, USA cycles and in donor oocyte recipients. 2Island Reproductive Services, USA, 1110 South Avenue, Suite 305, Staten Island, NY, USA Study Design: Retrospective cohort of patients undergoing in vitro fertilization at a single center. Fresh, frozen, and donor egg recipient cycles *Corresponding author: Traub ML, Department of between January 1, 2008 and December 31, 2012 were studied. Patients were Obstetrics and Gynecology, Staten Island University excluded if they were considered poor prognosis and underwent day 3 embryo Hospital, Island Reproductive Services, USA transfers. Received: April 16, 2015; Accepted: June 29, 2015; Results: In patients under age 35 undergoing fresh IVF cycle, implantation Published: June 30, 2015 rates (52% v 29%, p<0.01), clinical pregnancy rates (63% v 38%, p=0.001), and live birth rates (54% v 33%, p<0.01) were all higher after blastocyst embryo transfer. No differences were seen in other SART age groups during fresh IVF. For patients undergoing FET and in donor oocyte recipients, no differences in any pregnancy outcome were between blastocyst and morula embryo transfer. Conclusions: Blastocyst embryo transfer was found to improve pregnancy outcomes in young patients undergoing fresh IVF.
    [Show full text]
  • Human Development Summary
    Human Development Laboratory Activity Gametogenesis Male The sperm develop within the highly coiled seminiferous tubules of the testes. When the sperm are fully mature they are extremely small, being little more than a bag of genetic material with a tail. The head of the sperm oell contains the nucleus and little else. The tail consists of a flagellum which allows the sperm to swim through the female reproductive tract to the egg. Female The egg is one of the largest cells in the body. As the egg ripens in the ovary it accumulates yolk which will serve as food for the young embryo until the placenta and umbilical cord are fully functional. Egg development is acomplished with the help of special nurse cells called follicle cells. When the egg is fully formed it bursts from the ovary in a process called ovulation. Ovulation is governed by complex nervous and hormonaI controls. After the egg is released from the ovary it enters the oviduct. Embryonic Development Fertilization Fertilization takes place in the fallopian tubes or oviducts. Although thousands of sperm cells may complete the trip to the egg only one will penetrate the cells outermost membrane and fertilize it. From this point on the egg is referred to as a zygote. Cleavage Divisions Almost as soon as the egg is fertilized it begins to divide. First into two cells, then 4, then 8 and so on. These divisions produce a solid clump of 32-64 cells called the morula. Blastocyst The morula continues its trip down the oviduct to the uterus.
    [Show full text]
  • A New Model for Human Blastocyst Development
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans RESEARCH HIGHLIGHT OPEN Blastoids: a new model for human blastocyst development Heiner Niemann1 and Bob Seamark2 Signal Transduction and Targeted Therapy (2021) 6:239; https://doi.org/10.1038/s41392-021-00663-8 Recently, two research groups report in Nature1,2 the ex-vivo and neither has yet been sufficiently disclosed for full assesment of production of blastocyst-like structures, called blastoids, that the blastoids. Given the specific embyo culture procedures required, exhibit many of the landmarks in human early development found the epigenetic status of the blastoids is of particular interest. in viable blastocysts (Fig. 1). Numerous studies have shown that in vitro culture of early embryos The formation of a blastocyst is a critical step in early embryo can profoundly affect normal patterns of DNA methylation, resulting development denoting a key change from the early cleavage stages in deviations from the physiological gene expression patterns.4 to gastrulation. Typically, the blastocyst, differentiated from the early Following fertilisation, the parental genomes undergo a wave of de- cleavage stages, is a fluid filled vesicular structure comprised of cells and re-methylation, during early embryogenesis, creating the of now, three distinct cell lineages, namely those of the trophoblast, methylation patterns, needed for normal development, through the outer enclosing cell layer, and those of the inner cell mass (ICM) the activation and silencing of specific genes. Typically, global with the hypoblast and epiblast, found in the central fluid filled methylation of the mammalian genome declines to a nadir at the cavity (the blastocoel).
    [Show full text]