The Evolutionary Ecology of Lampreys (Petromyzontiformes)

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Ecology of Lampreys (Petromyzontiformes) Hume, John B. (2013) The evolutionary ecology of lampreys (Petromyzontiformes). PhD thesis http://theses.gla.ac.uk/4125/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The Evolutionary Ecology of Lampreys (Petromyzontiformes) John B. Hume Scottish Centre for Ecology & the Natural Environment, Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy November 2012 “A parasite for instance, is a shocking and a baneful monster, yet still Nature has infused into his blandishments a not unpolished charm.” Plato ii ABSTRACT Lampreys (Petromyzontiformes) are an ancient vertebrate group, comprising 40 currently recognised species that range throughout the Northern and Southern Hemispheres. Despite a conserved morphology, lampreys nevertheless express a diverse range of life history strategies. Unusually for vertebrates larval lampreys are filter-feeding organisms prior to undergoing an extensive anatomical reorganisation, and the adoption of either a parasitic or a non-parasitic adult life. Parasitic lampreys consume the flesh and blood of actinopterygian fishes, either in marine or freshwater environments, while non-parasitic lampreys do not feed following their metamorphosis from the larval form. Morphological and genetic similarities between pairs of parasitic and non-parasitic lampreys have led to taxonomic confusion regarding the specific status of many non-parasitic forms, and the suggestion that the loss of the trophic adult phenotype is the result of a single species capable of producing alternative life history strategies. In this thesis it is argued that at least some paired species of lampreys do not comprise two distinct evolutionary lineages; rather, that non-parasitic lampreys represent one extreme in a continuum of life history variation expressed by a parasitic species. Some lamprey species, such as the European river lamprey Lampetra fluviatilis, are morphologically variable, exhibiting divergent phenotypes in response to ecological pressures, such as alternative foraging environments. Loch Lomond, Scotland contains a population of L. fluviatilis that feeds exclusively in the lake and exhibits a reduced body size and an overall morphology distinct from the typical anadromous form. Its foraging strategy indicates that it may be capable of switching hosts in the face of declining numbers of a presumed favoured and formerly abundant host, suggesting a certain amount of plasticity in its trophic ecology that may have ensured its survival in this freshwater lake. This freshwater-resident form, as well as anadromous L. fluviatilis and the non- parasitic species L. planeri, were found to spawn in a single river system within the Loch Lomond basin, and this site is crucial for the continued presence of this life history variant in Loch Lomond. The appearance of sexually mature specimens of three discrete phenotypes in this river, each representing an alternative life history strategy that may, or may not, belong to a single species, provides a crucial opportunity to test the strength of assortative mating between lamprey species pairs. Within this system the strength of assortative mating was iii found to be weak, and points to the possibility that freshwater-resident L. fluviatilis are mitigating gene flow between large anadromous parasitic L. fluviatilis, and small, non- parasitic L. planeri. As well as weak behavioural isolation, inter-specific sneak male mating tactics were documented among these populations, and represents the first time this phenomenon has been observed between paired lamprey species. Such behaviour indicates a lack of species-specific cues acting between L. fluviatilis and L. planeri, and suggests that hybrid offspring could be common in some systems. Testing hybrid viability (survivorship) between Loch Lomond’s two L. fluviatilis life history strategies and the sympatric L. planeri revealed no post-zygotic barriers to gene flow, at least in the form of gamete incompatibility. Perhaps more convincingly though, when comparing traditional morphometrics and body shape variation, as well as mitochondrial DNA sequences, between L. fluviatilis expressing different foraging strategies with populations of L. planeri, no robust species specific differentiation was observed. In fact, species delimitation between L. fluviatilis and L. planeri appears to be related solely to overall body size, which is itself a function of life history strategy. However, life history strategy was not correlated with current species designation as relationships among mtDNA haplotypes indicate non-parasitic populations have evolved independently multiple times throughout the geographic range of L. fluviatilis in Europe. Therefore, L. planeri should not be considered as a distinct species, either morphologically or genetically. Instead, L. fluviatilis appears capable of expressing a range of life history strategies; from parasitic anadromous populations through to non-parasitic stream-resident populations. The overall research approach employed in this thesis, i.e., the combination of ecological, behavioural, taxonomic and molecular studies, could be used to robustly examine the evolutionary ecology of parasitic and non-parasitic lampreys elsewhere. iv CONTENTS Abstract………………………………………………………………………….....................iii List of Tables………………………………………………………………………………….xi List of Figures………………………………………………………………………………..xv List of Publications………………………………………………………………………….xxi Appendices………………………………………………………………………………….xxii Acknowledgments………………………………………………………………………….xxiii Author’s Declaration…………………………………………………………….................xxiv CHAPTER ONE An introduction to the biology of lampreys (Petromyzontiformes), with particular reference to paired species……………………………………………….....1 1.1 GENERAL INTRODUCTION……………………………………………………………1 1.2 LARVAL STAGE…………………………………………………………………………3 1.2.1 Early Development………………………………………………………………….....5 1.2.2 Burrowing……………………………………………………………………………...6 1.2.3 Habitat…………………………………………………………………………………7 1.2.4 Density…………………………………………………………………………………8 1.2.5 Movement…………………………………………………………………………….10 1.2.6 Diet…………………………………………………………………………………...11 1.2.7 Growth………………………………………………………………………………..12 1.2.8 Larval Duration……………………………………………………………………....14 1.2.9 Teratology……………………………………………………………………………16 1.3 METAMORPHOSIS……………………………………………………………………..17 1.3.1 Anatomical Rorganisation............................................................................................18 1.3.2 Timing & Causes……………………………………………………………………..19 1.3.3 Migration……………………………………………………………………………..22 1.4 POST-METAMORPHIC FEEDING…………………………………………………….23 v 1.4.1 Feeding Location on Hosts…………………………………………………………..25 1.4.2 Duration of Feeding Attachments……………………………………………………26 1.4.3 Host Size……………………………………………………………………………...27 1.4.4 Diversity of Host Species……………………………………………………………..28 1.4.5 Locating Hosts………………………………………………………………………..29 1.4.6 Growth………………………………………………………………………………..30 1.4.7 Duration of the Juvenile Period……………………………………………………...31 1.4.8 Alternative Foraging Strategies……………………………………………………...32 1.5 ADULT STAGE………………………………………………………………………....33 1.5.1 Spawning Migration………………………………………………………………….34 1.5.2 Pheromones…………………………………………………………………………..37 1.5.3 Barriers to Migration………………………………………………………………...38 1.5.4 Energetics…………………………………………………………………………….39 1.5.5 Sexual Maturation……………………………………………………………………39 1.5.6 Sex Ratio……………………………………………………………………………...40 1.5.7 Spawning Behaviour…………………………………………………………………41 1.5.8 Fecundity……………………………………………………………………………..45 1.5.9 Death…………………………………………………………………………………46 1.6 PAIRED SPECIES……………………………………………………………………….48 1.6.1 Morphological & Life History Differences…………………………………………..49 1.6.2 Molecular Ecology…………………………………………………………………...52 1.7 THESIS AIMS…………………………………………………………………………...54 CHAPTER TWO Evidence of a recent decline in lamprey parasitism of a nationally rare whitefish Coregonus lavaretus in Loch Lomond, Scotland: is there a diamond in the ruffe?................................................................................................................................63 2.1 ABSTRACT……………………………………………………………………………...63 2.2 INTRODUCTION……………………………………………………………………….63 2.3 MATERIALS & METHODS……………………………………………………………65 vi 2.4 RESULTS………………………………………………………………………………...66 2.5 DISCUSSION……………………………………………………………………………66 2.6 FIGURES & TABLES…………………………………………………………………...70 CHAPTER THREE Pre-spawning migration of lampreys, Lampetra spp., in the Loch Lomond basin, Scotland……………………………………………………………………………………..74 3.1 ABSTRACT……………………………………………………………………………...74 3.2 INTRODUCTION……………………………………………………………………….74 3.3 MATERIALS & METHODS…………………………………………………………….77 3.4 RESULTS………………………………………………………………………………...78 3.5 DISCUSSION……………………………………………………………………………81 3.6 FIGURES & TABLES…………………………………………………………………...86 CHAPTER FOUR No evidence of behavioural barriers
Recommended publications
  • Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic
    water Review Fresh- and Brackish-Water Cold-Tolerant Species of Southern Europe: Migrants from the Paratethys That Colonized the Arctic Valentina S. Artamonova 1, Ivan N. Bolotov 2,3,4, Maxim V. Vinarski 4 and Alexander A. Makhrov 1,4,* 1 A. N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 2 Laboratory of Molecular Ecology and Phylogenetics, Northern Arctic Federal University, 163002 Arkhangelsk, Russia; [email protected] 3 Federal Center for Integrated Arctic Research, Russian Academy of Sciences, 163000 Arkhangelsk, Russia 4 Laboratory of Macroecology & Biogeography of Invertebrates, Saint Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] * Correspondence: [email protected] Abstract: Analysis of zoogeographic, paleogeographic, and molecular data has shown that the ancestors of many fresh- and brackish-water cold-tolerant hydrobionts of the Mediterranean region and the Danube River basin likely originated in East Asia or Central Asia. The fish genera Gasterosteus, Hucho, Oxynoemacheilus, Salmo, and Schizothorax are examples of these groups among vertebrates, and the genera Magnibursatus (Trematoda), Margaritifera, Potomida, Microcondylaea, Leguminaia, Unio (Mollusca), and Phagocata (Planaria), among invertebrates. There is reason to believe that their ancestors spread to Europe through the Paratethys (or the proto-Paratethys basin that preceded it), where intense speciation took place and new genera of aquatic organisms arose. Some of the forms that originated in the Paratethys colonized the Mediterranean, and overwhelming data indicate that Citation: Artamonova, V.S.; Bolotov, representatives of the genera Salmo, Caspiomyzon, and Ecrobia migrated during the Miocene from I.N.; Vinarski, M.V.; Makhrov, A.A.
    [Show full text]
  • Review of the Lampreys (Petromyzontidae) in Bosnia and Herzegovina: a Current Status and Geographic Distribution
    Review of the lampreys (Petromyzontidae) in Bosnia and Herzegovina: a current status and geographic distribution Authors: Tutman, Pero, Buj, Ivana, Ćaleta, Marko, Marčić, Zoran, Hamzić, Adem, et. al. Source: Folia Zoologica, 69(1) : 1-13 Published By: Institute of Vertebrate Biology, Czech Academy of Sciences URL: https://doi.org/10.25225/jvb.19046 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Journal-of-Vertebrate-Biology on 13 Feb 2020 Terms of Use: https://bioone.org/terms-of-use Journal of Open Acces Vertebrate Biology J. Vertebr. Biol. 2020, 69(1): 19046 DOI: 10.25225/jvb.19046 Review of the lampreys (Petromyzontidae) in Bosnia and Herzegovina:
    [Show full text]
  • Correlating Sea Lamprey Density with Environmental DNA Detections in the Lab
    Management of Biological Invasions (2018) Volume 9, Issue 4: 483–495 DOI: https://doi.org/10.3391/mbi.2018.9.4.11 © 2018 The Author(s). Journal compilation © 2018 REABIC This paper is published under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0) Proceedings of the 20th International Conference on Aquatic Invasive Species Research Article Correlating sea lamprey density with environmental DNA detections in the lab Nicholas A. Schloesser1,*, Christopher M. Merkes1, Christopher B. Rees2, Jon J. Amberg1, Todd B. Steeves3 and Margaret F. Docker4 1U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA 2U.S. Fish and Wildlife Service Northeast Fishery Center P.O. Box 75, 227 Washington Ave., Lamar, PA 16848, USA 3DFO Canada Sea Lamprey Control Center, Sault Ste. Mari, ON, Canada 4University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada Author e-mails: [email protected] (NAS), [email protected] (CMM), [email protected] (JJA), [email protected] (CBR), [email protected] (TBS), [email protected] (MFD) *Corresponding author Received: 23 February 2018 / Accepted: 17 September 2018 / Published online: 29 October 2018 Handling editor: Mattias Johannson Co-Editors’ Note: This study was contributed in relation to the 20th International Conference on Aquatic Invasive Species held in Fort Lauderdale, Florida, USA, October 22–26, 2017 (http://www.icais.org/html/previous20.html). This conference has provided a venue for the exchange of information on various aspects of aquatic invasive species since its inception in 1990.
    [Show full text]
  • Noatak National Arctic Range, Alaska and Associated Area of Ecological Concern, Prepared for Fish An
    ~t·. tv\ ,.! " .., / ANADROMOUS FISH INVENTORY NOATAK NATIONAL ARCTIC RANGE, ALASKA and Associated Area of Ecological Concern I. Pre pared for Fish and Wildlife Service by Acetic Environmenta 1 Information and Data Center University of Alaska, Anchorage September 1975 Alaska Resotlrces 99503 Library InfonY'.ett\011 .Services " ... '-c; ~.---_:·1~ ... ~:-;~,·~·:.: - -~ • Anadromous Fish Inventory . Information Framework a. Bibliography The files of the Arctic Environmental Information and Data Center were utilized for the compilation of an initial bibliography. Refcrenc:ed titles were then obtained and citations pertaining to the area and species of interest which appeared in these reports were added to expand the initial bibliography. References were deleted if, when obtained, the study was not found to pertain to the area or species of interest. lQ a few cases where references were unobtainable, such citations are followed by the note "(not seen)" to indicate that any pertinent data contained in this reference is not included in the remainder of the inventory. All possible reference sources are listed with the exception of those containing extremely general subject matter, most early (before 1910) explor- atory reports, and annual report series such as Alaska Fishery and Jur-Seal Industries in (yeat) which were issued prior to 1960. b. Species Lists A list of anadromous and coastal marine fishes for each proposed refuge or proposed additions to existing refuges was compiled. An initial list was taken from each final environmental statement; however, three major taxonomic references were consulted to add to, or delete from this initial list - List of Fishes of Alaska and Adjacent Waters with a Guide to Some of Their Liter~ture (Quast and Hall 1972), Pacific/ Fishes of Canada (Hart 1973), and Freshwnt~r Flshes of Cannda (Scott and Crossman 1973).
    [Show full text]
  • Bl12-2Pgs.Pdf
    Volume 12, Number 2 $8.50 ARTISTS’ BOOKSbBOOKBINDINGbPAPERCRAFTbCALLIGRAPHY Volume 12, Number 2, February 2015. 3 Creating Double-Stroke Letterforms by Martin Jackson 8 Dancing Letters Scholarship Fund 12 Creating a Scroll-Tip Pilot Parallel Pen by Carol DuBosch 14 Between Verse and Vision by Risa Gettler 22 Heraldry for Calligraphy by Helen Scholes 28 Spinning Letters by Judy Black, Susan Gunter, and Marilyn Rice 30 A Passionate Gallery 37 New Tools & Materials 38 Passionate Pen Envelopes 40 Leporello Accordion Book by Carol DuBosch 42 Contributors / credits 47 Subscription information A Few Excerpts from the Now Intergalactic Song Fest and Cosmic Miscelany. 2014. Risa Gettler. Hand- lettered and illustrated manuscript book of nineteen poems by John S. Tumlin. 40 pages, images and text on recto pages only. Leather binding is by Edna Wright. Each page is held in an open-front sleeve that is sewn into the binding. The front of the sleeve serves as a frame for its book page (which can be removed). 22" x 13" x 4". Photo by Risa Gettler. “Between Verse and Vision,” page 14. Bound & Lettered b Spring 2015 1 All calligraphy shown in this article is by the author. CREATING DOUBLE-STROKE LETTERFORMS BY MARTIN JACKSON There are two methods to create double-stroke letterforms. One is to use a scroll (or split) nib or pen. These are made to automatically produce double strokes – the pen/nib does it for you. A variety of writing instruments offer scroll versions: Mitchell makes six differ- ent scroll dip pen nibs, Manuscript offers two different scroll nibs (Scroll 4 and Scroll 6) for some of its fountain pens, and four of the Automatic pens have split nibs (numbers 7, 8, 9, and 10).
    [Show full text]
  • Volume III, Chapter 3 Pacific Lamprey
    Volume III, Chapter 3 Pacific Lamprey TABLE OF CONTENTS 3.0 Pacific Lamprey (Lampetra tridentata) ...................................................................... 3-1 3.1 Distribution ................................................................................................................. 3-2 3.2 Life History Characteristics ........................................................................................ 3-2 3.2.1 Freshwater Existence........................................................................................... 3-2 3.2.2 Marine Existence ................................................................................................. 3-4 3.2.3 Population Demographics ................................................................................... 3-5 3.3 Status & Abundance Trends........................................................................................ 3-6 3.3.1 Abundance............................................................................................................ 3-6 3.3.2 Productivity.......................................................................................................... 3-8 3.4 Factors Affecting Population Status............................................................................ 3-8 3.4.1 Harvest................................................................................................................. 3-8 3.4.2 Supplementation................................................................................................... 3-9 3.4.3
    [Show full text]
  • Relationships Between Anadromous Lampreys and Their Host
    RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA By Kevin A. Siwicke RECOMMENDED: Dr. Trent Sutton / / / c ^ ■ ^/Jy^O^^- Dr. Shannon Atkinson Chair, Graduate Program in Fisheries Division APPROVED: Dr.^Michael Castellini Sciences Date WW* RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Kevin A. Siwicke, B.S. Fairbanks, Alaska August 2014 v Abstract Arctic Lamprey Lethenteron camtschaticum and Pacific Lamprey Entosphenus tridentatus are ecologically and culturally important anadromous, parasitic species experiencing recent population declines in the North Pacific Ocean. However, a paucity of basic information on lampreys feeding in the ocean precludes an incorporation of the adult trophic phase into our understanding of lamprey population dynamics. The goal of this research was to provide insight into the marine life-history stage of Arctic and Pacific lampreys through lamprey-host interactions in the eastern Bering Sea. An analysis of two fishery-independent surveys conducted between 2002 and 2012 in the eastern Bering Sea revealed that Arctic Lampreys were captured in epipelagic waters of the inner and middle continental shelf and were associated with Pacific Herring Clupea pallasii and juvenile salmonids Oncorhynchus spp. In contrast, Pacific Lampreys were captured in benthic waters along the continental slope associated with bottom-oriented groundfish. Consistent with this analysis of fish assemblages, morphology of recently inflicted lamprey wounds observed on Pacific Cod Gadus macrocephalus was similar to morphology of Pacific Lamprey oral discs, but not that of Arctic Lamprey oral discs.
    [Show full text]
  • FAMILY Mordaciidae Gill, 1893 - Mordaciid Lampreys [=Caragolinae] Notes: Name in Prevailing Recent Practice, Article 35.5 Caragolinae Gill, 1883B:524 [Ref
    FAMILY Mordaciidae Gill, 1893 - mordaciid lampreys [=Caragolinae] Notes: Name in prevailing recent practice, Article 35.5 Caragolinae Gill, 1883b:524 [ref. 4941] (subfamily) Caragola [family-group name used as valid after 1899, e. g. by Fowler 1964:33 [ref. 7160]] Mordaciidae Gill, 1893b:129 [ref. 26255] (family) Mordacia [genus inferred from the stem, Article11.7.1.1; family-group name used as valid by: Fontaine 1958, Hubbs & Potter 1971 [ref. 13397], Lindberg 1971 [ref. 27211], Nelson 1976 [ref. 32838], Shiino 1976, Bailey 1980 [ref. 5253], Nelson 1984 [ref. 13596], Nelson 1994 [ref. 26204], Allen, Midgley & Allen 2002 [ref. 25930], Nelson 2006 [ref. 32486], Renaud 2011 [ref. 31770]] GENUS Mordacia Gray, 1851 - mordacid lampreys [=Mordacia Gray [J. E.], 1851:143, Caragola Gray [J. E.], 1851:143] Notes: [ref. 4939]. Fem. Petromyzon mordax Richardson, 1846. Type by monotypy. Also appeared in Gray 1853 [for 1851]:239 [ref. 1886]. First reviser selecting Mordacia over Caragola not researched by us. •Valid as Mordacia Gray, 1851 -- (Hubbs & Potter 1971:56 [ref. 13397], Pequeño 1989:6 [ref. 14125], Gomon et al. 1994:83 [ref. 22532], Dyer 2000:84 [ref. 26678], Kullander & Fernholm in Reis et al. 2003:12 [ref. 27061], Gill et al. 2003:693 [ref. 27254], Paxton et al. 2006:44 [ref. 28994], Gomon 2008:29 [ref. 30616], Lang et al. 2009:43 [ref. 31599], Renaud 2011:19 [ref. 31770]). Current status: Valid as Mordacia Gray, 1851. Mordaciidae. (Caragola) [ref. 4939]. Fem. Caragola lapicida Gray, 1851. Type by monotypy. Also appeared in Gray 1853 [for 1851]:239 [ref. 1886]. •Possibly valid, awaiting additional data (Lang et al.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Lamprey, Hagfish
    Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish.
    [Show full text]
  • The Mediaeval Bestiary and Its Textual Tradition
    THE MEDIAEVAL BESTIARY AND ITS TEXTUAL TRADITION Volume 1: Text Patricia Stewart A Thesis Submitted for the Degree of PhD at the University of St Andrews 2012 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/3628 This item is protected by original copyright The Mediaeval Bestiary and its Textual Tradition Patricia Stewart This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews 17th August, 2012 1. Candidate’s declarations: I, Patricia Stewart, hereby certify that this thesis, which is approximately 88 000 words in length, has been written by me, that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September, 2007 and as a candidate for the degree of PhD in May, 2008; the higher study for which this is a record was carried out in the University of St Andrews between 2007 and 2012. Date 17th August, 2012 signature of candidate ……… 2. Supervisor’s declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date 17th August, 2012 signature of supervisor ……… 3. Permission for electronic publication: (to be signed by both candidate and supervisor) In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]