Bill Beamish's Contributions to Lamprey Research and Recent Advances in the Field
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 NORTHERN CALIFORNIA BROOK LAMPREY Entosphenus Folletti
NORTHERN CALIFORNIA BROOK LAMPREY Entosphenus folletti (Valdykov and Kott) Status: High Concern. The northern California brook lamprey has a very limited known distribution and aquatic habitats within their range are heavily altered by agriculture and grazing. Their actual distribution and abundance is unknown. Description: This lamprey is a non-predatory species that has an adult size of 17-23 cm in total length (Vladykov and Kott 1976b, Renaud 2011). Adult disc length is 6.6–7.8% of total length and the trunk myomere count is 61-65. The following description of dentition is from Renaud (2011, p. 27): “supraoral lamina, 3 unicuspid teeth, the median one smaller than the lateral ones; infraoral lamina, 5 unicuspid teeth; 4 endolaterals on each side; endolateral formula, typically 2–3–3–2, the fourth endolateral can also be unicuspid; 1–2 rows of anterials; first row of anterials, 2 unicuspid teeth; exolaterals absent; 1 row of posterials with 13–18 teeth, of which 0–4 are bicuspid and the rest unicuspid (some of these teeth may be embedded in the oral mucosa); transverse lingual lamina, 14-20 unicuspid teeth, the median one slightly enlarged; longitudinal lingual laminae teeth are too poorly developed to be counted. Velar tentacles, 8–9, with tubercles. The median tentacle is about the same size as the lateral ones immediately next to it…Oral papillae, 13.” Ammocoetes are described in Renaud (2011). The northern California brook lamprey is similar to the Pit-Klamath brook lamprey, with which it co-occurs, but is somewhat larger (most are >19 cm TL), has a larger oral disk (<6% of TL vs >6% of TL), and has elongate velar tentacles without tubercles. -
Correlating Sea Lamprey Density with Environmental DNA Detections in the Lab
Management of Biological Invasions (2018) Volume 9, Issue 4: 483–495 DOI: https://doi.org/10.3391/mbi.2018.9.4.11 © 2018 The Author(s). Journal compilation © 2018 REABIC This paper is published under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0) Proceedings of the 20th International Conference on Aquatic Invasive Species Research Article Correlating sea lamprey density with environmental DNA detections in the lab Nicholas A. Schloesser1,*, Christopher M. Merkes1, Christopher B. Rees2, Jon J. Amberg1, Todd B. Steeves3 and Margaret F. Docker4 1U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA 2U.S. Fish and Wildlife Service Northeast Fishery Center P.O. Box 75, 227 Washington Ave., Lamar, PA 16848, USA 3DFO Canada Sea Lamprey Control Center, Sault Ste. Mari, ON, Canada 4University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada Author e-mails: [email protected] (NAS), [email protected] (CMM), [email protected] (JJA), [email protected] (CBR), [email protected] (TBS), [email protected] (MFD) *Corresponding author Received: 23 February 2018 / Accepted: 17 September 2018 / Published online: 29 October 2018 Handling editor: Mattias Johannson Co-Editors’ Note: This study was contributed in relation to the 20th International Conference on Aquatic Invasive Species held in Fort Lauderdale, Florida, USA, October 22–26, 2017 (http://www.icais.org/html/previous20.html). This conference has provided a venue for the exchange of information on various aspects of aquatic invasive species since its inception in 1990. -
Noatak National Arctic Range, Alaska and Associated Area of Ecological Concern, Prepared for Fish An
~t·. tv\ ,.! " .., / ANADROMOUS FISH INVENTORY NOATAK NATIONAL ARCTIC RANGE, ALASKA and Associated Area of Ecological Concern I. Pre pared for Fish and Wildlife Service by Acetic Environmenta 1 Information and Data Center University of Alaska, Anchorage September 1975 Alaska Resotlrces 99503 Library InfonY'.ett\011 .Services " ... '-c; ~.---_:·1~ ... ~:-;~,·~·:.: - -~ • Anadromous Fish Inventory . Information Framework a. Bibliography The files of the Arctic Environmental Information and Data Center were utilized for the compilation of an initial bibliography. Refcrenc:ed titles were then obtained and citations pertaining to the area and species of interest which appeared in these reports were added to expand the initial bibliography. References were deleted if, when obtained, the study was not found to pertain to the area or species of interest. lQ a few cases where references were unobtainable, such citations are followed by the note "(not seen)" to indicate that any pertinent data contained in this reference is not included in the remainder of the inventory. All possible reference sources are listed with the exception of those containing extremely general subject matter, most early (before 1910) explor- atory reports, and annual report series such as Alaska Fishery and Jur-Seal Industries in (yeat) which were issued prior to 1960. b. Species Lists A list of anadromous and coastal marine fishes for each proposed refuge or proposed additions to existing refuges was compiled. An initial list was taken from each final environmental statement; however, three major taxonomic references were consulted to add to, or delete from this initial list - List of Fishes of Alaska and Adjacent Waters with a Guide to Some of Their Liter~ture (Quast and Hall 1972), Pacific/ Fishes of Canada (Hart 1973), and Freshwnt~r Flshes of Cannda (Scott and Crossman 1973). -
Simple Genetic Assay Distinguishes Lamprey Genera Entosphenus and Lampetra: Comparison with Existing Genetic and Morphological Identification Methods
North American Journal of Fisheries Management 36:780–787, 2016 © American Fisheries Society 2016 ISSN: 0275-5947 print / 1548-8675 online DOI: 10.1080/02755947.2016.1167146 MANAGEMENT BRIEF Simple Genetic Assay Distinguishes Lamprey Genera Entosphenus and Lampetra: Comparison with Existing Genetic and Morphological Identification Methods Margaret F. Docker* Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada Gregory S. Silver and Jeffrey C. Jolley U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office, 1211 Southeast Cardinal Court, Suite 100, Vancouver, Washington 98683, USA Erin K. Spice Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada Along the West Coast of North America, the lamprey genera Abstract Entosphenus and Lampetra co-occur from Alaska to California Several species of lamprey belonging to the genera (Potter et al. 2015). Six species have been described in the genus Entosphenus Lampetra and , including the widely distributed Entosphenus (including the widely distributed PacificLamprey PacificLampreyE. tridentatus and Western Brook Lamprey L. richardsoni, co-occur along the West Coast of North E. tridentatus). In the genus Lampetra, four species are formally America. These genera can be difficult to distinguish morpho- recognized in North America (including the widely distributed logically during their first few years of larval life in freshwater, Western Brook Lamprey L. richardsoni), although the presence thus hampering research and conservation efforts. However, of genetically distinct populations of Lampetra spp. in Oregon fi existing genetic identi cation methods are time consuming or and California suggests the occurrence of additional, currently expensive. -
Volume III, Chapter 3 Pacific Lamprey
Volume III, Chapter 3 Pacific Lamprey TABLE OF CONTENTS 3.0 Pacific Lamprey (Lampetra tridentata) ...................................................................... 3-1 3.1 Distribution ................................................................................................................. 3-2 3.2 Life History Characteristics ........................................................................................ 3-2 3.2.1 Freshwater Existence........................................................................................... 3-2 3.2.2 Marine Existence ................................................................................................. 3-4 3.2.3 Population Demographics ................................................................................... 3-5 3.3 Status & Abundance Trends........................................................................................ 3-6 3.3.1 Abundance............................................................................................................ 3-6 3.3.2 Productivity.......................................................................................................... 3-8 3.4 Factors Affecting Population Status............................................................................ 3-8 3.4.1 Harvest................................................................................................................. 3-8 3.4.2 Supplementation................................................................................................... 3-9 3.4.3 -
Tennessee Fish Species
The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7 -
Relationships Between Anadromous Lampreys and Their Host
RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA By Kevin A. Siwicke RECOMMENDED: Dr. Trent Sutton / / / c ^ ■ ^/Jy^O^^- Dr. Shannon Atkinson Chair, Graduate Program in Fisheries Division APPROVED: Dr.^Michael Castellini Sciences Date WW* RELATIONSHIPS BETWEEN ANADROMOUS LAMPREYS AND THEIR HOST FISHES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Kevin A. Siwicke, B.S. Fairbanks, Alaska August 2014 v Abstract Arctic Lamprey Lethenteron camtschaticum and Pacific Lamprey Entosphenus tridentatus are ecologically and culturally important anadromous, parasitic species experiencing recent population declines in the North Pacific Ocean. However, a paucity of basic information on lampreys feeding in the ocean precludes an incorporation of the adult trophic phase into our understanding of lamprey population dynamics. The goal of this research was to provide insight into the marine life-history stage of Arctic and Pacific lampreys through lamprey-host interactions in the eastern Bering Sea. An analysis of two fishery-independent surveys conducted between 2002 and 2012 in the eastern Bering Sea revealed that Arctic Lampreys were captured in epipelagic waters of the inner and middle continental shelf and were associated with Pacific Herring Clupea pallasii and juvenile salmonids Oncorhynchus spp. In contrast, Pacific Lampreys were captured in benthic waters along the continental slope associated with bottom-oriented groundfish. Consistent with this analysis of fish assemblages, morphology of recently inflicted lamprey wounds observed on Pacific Cod Gadus macrocephalus was similar to morphology of Pacific Lamprey oral discs, but not that of Arctic Lamprey oral discs. -
FAMILY Mordaciidae Gill, 1893 - Mordaciid Lampreys [=Caragolinae] Notes: Name in Prevailing Recent Practice, Article 35.5 Caragolinae Gill, 1883B:524 [Ref
FAMILY Mordaciidae Gill, 1893 - mordaciid lampreys [=Caragolinae] Notes: Name in prevailing recent practice, Article 35.5 Caragolinae Gill, 1883b:524 [ref. 4941] (subfamily) Caragola [family-group name used as valid after 1899, e. g. by Fowler 1964:33 [ref. 7160]] Mordaciidae Gill, 1893b:129 [ref. 26255] (family) Mordacia [genus inferred from the stem, Article11.7.1.1; family-group name used as valid by: Fontaine 1958, Hubbs & Potter 1971 [ref. 13397], Lindberg 1971 [ref. 27211], Nelson 1976 [ref. 32838], Shiino 1976, Bailey 1980 [ref. 5253], Nelson 1984 [ref. 13596], Nelson 1994 [ref. 26204], Allen, Midgley & Allen 2002 [ref. 25930], Nelson 2006 [ref. 32486], Renaud 2011 [ref. 31770]] GENUS Mordacia Gray, 1851 - mordacid lampreys [=Mordacia Gray [J. E.], 1851:143, Caragola Gray [J. E.], 1851:143] Notes: [ref. 4939]. Fem. Petromyzon mordax Richardson, 1846. Type by monotypy. Also appeared in Gray 1853 [for 1851]:239 [ref. 1886]. First reviser selecting Mordacia over Caragola not researched by us. •Valid as Mordacia Gray, 1851 -- (Hubbs & Potter 1971:56 [ref. 13397], Pequeño 1989:6 [ref. 14125], Gomon et al. 1994:83 [ref. 22532], Dyer 2000:84 [ref. 26678], Kullander & Fernholm in Reis et al. 2003:12 [ref. 27061], Gill et al. 2003:693 [ref. 27254], Paxton et al. 2006:44 [ref. 28994], Gomon 2008:29 [ref. 30616], Lang et al. 2009:43 [ref. 31599], Renaud 2011:19 [ref. 31770]). Current status: Valid as Mordacia Gray, 1851. Mordaciidae. (Caragola) [ref. 4939]. Fem. Caragola lapicida Gray, 1851. Type by monotypy. Also appeared in Gray 1853 [for 1851]:239 [ref. 1886]. •Possibly valid, awaiting additional data (Lang et al. -
Endangered Species
FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S. -
Lampreys of the St. Joseph River Drainage in Northern Indiana, with an Emphasis on the Chestnut Lamprey (Ichthyomyzon Castaneus)
2015. Proceedings of the Indiana Academy of Science 124(1):26–31 DOI: LAMPREYS OF THE ST. JOSEPH RIVER DRAINAGE IN NORTHERN INDIANA, WITH AN EMPHASIS ON THE CHESTNUT LAMPREY (ICHTHYOMYZON CASTANEUS) Philip A. Cochran and Scott E. Malotka1: Biology Department, Saint Mary’s University of Minnesota, 700 Terrace Heights, Winona, MN 55987 USA Daragh Deegan: City of Elkhart Public Works and Utilities, Elkhart, IN 46516 USA ABSTRACT. This study was initiated in response to concern about parasitism by lampreys on trout in the Little Elkhart River of the St. Joseph River drainage in northern Indiana. Identification of 229 lampreys collected in the St. Joseph River drainage during 1998–2012 revealed 52 American brook lampreys (Lethenteron appendix), one northern brook lamprey (Ichthyomyzon fossor), 130 adult chestnut lampreys (I. castaneus), five possible adult silver lampreys (I. unicuspis), and 41 Ichthyomyzon ammocoetes. The brook lampreys are non-parasitic and do not feed as adults, so most if not all parasitism on fish in this system is due to chestnut lampreys. Electrofishing surveys in the Little Elkhart River in August 2013 indicated that attached chestnut lampreys and lamprey marks were most common on the larger fishes [trout (Salmonidae), suckers (Catostomidae), and carp (Cyprinidae)] at each of three sites. This is consistent with the known tendency for parasitic lampreys to select larger hosts. Trout in the Little Elkhart River may be more vulnerable to chestnut lamprey attacks because they are relatively large compared to alternative hosts such as suckers. Plots of chestnut lamprey total length versus date of capture revealed substantial variability on any given date. -
Lamprey, Hagfish
Agnatha - Lamprey, Kingdom: Animalia Phylum: Chordata Super Class: Agnatha Hagfish Agnatha are jawless fish. Lampreys and hagfish are in this class. Members of the agnatha class are probably the earliest vertebrates. Scientists have found fossils of agnathan species from the late Cambrian Period that occurred 500 million years ago. Members of this class of fish don't have paired fins or a stomach. Adults and larvae have a notochord. A notochord is a flexible rod-like cord of cells that provides the main support for the body of an organism during its embryonic stage. A notochord is found in all chordates. Most agnathans have a skeleton made of cartilage and seven or more paired gill pockets. They have a light sensitive pineal eye. A pineal eye is a third eye in front of the pineal gland. Fertilization of eggs takes place outside the body. The lamprey looks like an eel, but it has a jawless sucking mouth that it attaches to a fish. It is a parasite and sucks tissue and fluids out of the fish it is attached to. The lamprey's mouth has a ring of cartilage that supports it and rows of horny teeth that it uses to latch on to a fish. Lampreys are found in temperate rivers and coastal seas and can range in size from 5 to 40 inches. Lampreys begin their lives as freshwater larvae. In the larval stage, lamprey usually are found on muddy river and lake bottoms where they filter feed on microorganisms. The larval stage can last as long as seven years! At the end of the larval state, the lamprey changes into an eel- like creature that swims and usually attaches itself to a fish. -
The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research Jonathan J
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Cooperative Fish & Wildlife Research Nebraska Cooperative Fish & Wildlife Research Unit -- Staff ubP lications Unit 2015 The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research Jonathan J. Spurgeon University of Nebraska–Lincoln, [email protected] Martin J. Hamel University of Nebraska-Lincoln, [email protected] Kevin L. Pope U.S. Geological Survey—Nebraska Cooperative Fish and Wildlife Research Unit,, [email protected] Mark A. Pegg University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/ncfwrustaff Part of the Aquaculture and Fisheries Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons Spurgeon, Jonathan J.; Hamel, Martin J.; Pope, Kevin L.; and Pegg, Mark A., "The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research" (2015). Nebraska Cooperative Fish & Wildlife Research Unit -- Staff Publications. 203. http://digitalcommons.unl.edu/ncfwrustaff/203 This Article is brought to you for free and open access by the Nebraska Cooperative Fish & Wildlife Research Unit at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Cooperative Fish & Wildlife Research Unit -- Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Reviews in Fisheries Science & Aquaculture, 23:329–345, 2015 CopyrightO c Taylor & Francis Group, LLC ISSN: 2330-8249 print / 2330-8257 online DOI: 10.1080/23308249.2015.1068737 The Global Status of Freshwater Fish Age Validation Studies and a Prioritization Framework for Further Research JONATHAN J.