Washington State Annual Communicable Disease Report 2005

Total Page:16

File Type:pdf, Size:1020Kb

Washington State Annual Communicable Disease Report 2005 State of Washington COMMUNICABLE DISEASE REPORT 2005 For additional copies of this document, or to obtain this document in an alternative format, please contact: Washington State Department of Health Communicable Disease Epidemiology Section 1610 NE 150th Street Shoreline, WA 98155 206.418.5500 or 1.877.539.4344 Images on cover courtesy of Wikipedia WASHINGTON STATE DEPARTMENT OF HEALTH Epidemiology, Health Statistics and Public Health Laboratories Communicable Disease Epidemiology Section 1610 NE 150th Street Shoreline, WA 98155 206-418-5500 or 1-877-539-4344 COMMUNICABLE DISEASE REPORT 2005 CONTRIBUTORS COMMUNICABLE DISEASE EPIDEMIOLOGY Rebecca Baer, MPH Mary Chadden Chas DeBolt, RN, MPH Donna Duffy, RN, MPH Marcia Goldoft, MD, MPH Jo Hofmann, MD Amynah Janmohamed, MPH Lara Kidoguchi, MPH Mira Leslie, DVM, MPH Kathy Lofy, MD Phillip Lowe, BS, BA Kathryn MacDonald, PhD Judith May, RN, MPH Ruby Taylor Eric Sergienko, MD Phyllis Shoemaker, BA Deborah Todd, RN, MPH Megan Tuft Wayne Turnberg, PhD, MPH INFECTIOUS DISEASE AND REPRODUCTIVE HEALTH Maria Courogen, MPH Anna Easton, BA Alexia Exarchos, MPH INFORMATION RESOURCE MANAGEMENT Craig Erickson 1 Mary Selecky Secretary of Health Maxine Hayes, MD, MPH Health Officer Jude VanBuren, PhD, MPH, RN, RS Assistant Secretary Epidemiology, Health Statistics and Public Health Laboratories Jo Hofmann, MD State Epidemiologist for Communicable Disease Romesh Gautom, PhD Director, Public Health Laboratories Juliet Van Eenwyk, PhD, MS State Epidemiologist for Non-Infectious Disease This report represents a summary of Washington State communicable disease surveillance: the ongoing collection, analysis and dissemination of morbidity and mortality data to prevent and control communicable disease. This is the twenty-first report from the Communicable Disease Epidemiology Section since 1982. In addition to the contributors listed on the previous page, we would like to recognize the staff of the Public Health Laboratories and the thousands of people in local health jurisdictions, clinics, hospitals and clinical laboratories throughout Washington whose disease reports constitute the basis for this document. 2 TABLE OF CONTENTS Technical notes ................................................................................................................................6 Executive summary .........................................................................................................................7 Notification and contact information ..............................................................................................8 Notifiable conditions and the healthcare provider ..........................................................................9 Notifiable conditions and Washington’s hospitals ........................................................................10 Notifiable conditions and Washington’s laboratories ....................................................................11 Notifiable conditions and the veterinarian ....................................................................................12 AIDS (Acquired Immunodeficiency Syndrome) ..........................................................................14 Arboviral disease ..........................................................................................................................14 Botulism ........................................................................................................................................15 Brucellosis .....................................................................................................................................16 Campylobacteriosis .......................................................................................................................17 Chancroid ......................................................................................................................................18 Chlamydia trachomatis .................................................................................................................19 Cholera ..........................................................................................................................................21 Cryptosporidiosis ..........................................................................................................................21 Cyclosporiasis ...............................................................................................................................22 Diphtheria .....................................................................................................................................22 Enterohemorrhagic E. coli ...........................................................................................................23 Foodborne outbreaks .....................................................................................................................24 Giardiasis ......................................................................................................................................29 Gonorrhea .....................................................................................................................................30 Granuloma inguinale .....................................................................................................................32 Haemophilus influenzaeinvasive disease .....................................................................................32 Hantavirus pulmonary syndrome ..................................................................................................32 Hemolytic uremic syndrome (HUS) .............................................................................................33 Hepatitis A .................................................................................................................................... 34 Hepatitis B (acute) ........................................................................................................................35 Hepatitis C (acute).........................................................................................................................36 Hepatitis, unspecified (infectious) ................................................................................................37 Herpes simplex, genital and neonatal ...........................................................................................37 HIV infection/AIDS ......................................................................................................................38 Legionellosis .................................................................................................................................40 Leptospirosis .................................................................................................................................41 Listeriosis ......................................................................................................................................42 Lyme disease .................................................................................................................................42 Lymphogranuloma venereum .......................................................................................................43 Malaria ..........................................................................................................................................43 Measles (Rubeola) ........................................................................................................................44 Meningococcal disease .................................................................................................................44 Mumps ..........................................................................................................................................46 Paralytic shellfish poisoning .........................................................................................................46 3 Pertussis ........................................................................................................................................47 Plague ............................................................................................................................................50 Poliomyelitis .................................................................................................................................50 Psittacosis ......................................................................................................................................50 Q fever ..........................................................................................................................................51 Rabies ............................................................................................................................................51 Rare diseases of public health significance ...................................................................................57 Relapsing fever .............................................................................................................................58 Rubella ..........................................................................................................................................58 Salmonellosis ................................................................................................................................59 Shigellosis .....................................................................................................................................62
Recommended publications
  • Melioidosis: a Clinical Model for Gram-Negative Sepsis
    J. Med. Microbiol. Ð Vol. 50 2001), 657±658 # 2001 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 EDITORIAL Melioidosis: a clinical model for gram-negative sepsis The recently published study of recombinant human clinical sepsis model over the current heterogeneous activated protein C drotrecogin-á, Eli Lilly, Indiana- clinical trials. Our knowledge of melioidosis and its polis, IN, USA) in severe sepsis makes welcome causative organism, Burkholderia formerly Pseudomo- reading. At last a clinical trial of an augmentative nas) pseudomallei, has expanded considerably over the therapy in severe sepsis has managed to show a last 15 years. Melioidosis was originally described in mortality bene®t from the trial agent [1]. Most studies Myanmar then Burma) in 1911 and came to of augmentative treatments in serious sepsis have failed prominence during the Vietnam con¯ict, when French to show clear bene®t. Sepsis studies commonly involve and American soldiers became infected. It has been a syndrome caused by a myriad of organisms, occurring described in most countries of south-east Asia, in a very heterogeneous group of patients, who may be including the Peoples Republic of China and the Lao enrolled in one of several centres. This introduces PDR [5], but Thailand has the greatest reported disease multiple confounding factors. Agood model for clinical burden [6]. It is also endemic to northern Australia [7]. sepsis studies would ideally cause disease in a relatively Understanding of the epidemiology of the disease has homogeneous population, be acquired in a community been improved by the demonstration of two pheno- setting, present in large numbers to a single institution, typically similar but genetically distinct biotypes in the be caused by a single organism, and ordinarily result in environment [8], only one of which appears to be a substantial mortality rate.
    [Show full text]
  • Kellie ID Emergencies.Pptx
    4/24/11 ID Alert! recognizing rapidly fatal infections Susan M. Kellie, MD, MPH Professor of Medicine Division of Infectious Diseases, UNMSOM Hospital Epidemiologist UNMHSC and NMVAHCS Fever and…. Rash and altered mental status Rash Muscle pain Lymphadenopathy Hypotension Shortness of breath Recent travel Abdominal pain and diarrhea Case 1. The cross-country trucker A 30 year-old trucker driving from Oklahoma to California is hospitalized in Deming with fever and headache He is treated with broad-spectrum antibiotics, but deteriorates with obtundation, low platelet count, and a centrifugal petechial rash and is transferred to UNMH 1 4/24/11 What is your diagnosis? What is the differential diagnosis of fever and headache with petechial rash? (in the US) Tickborne rickettsioses ◦ RMSF Bacteria ◦ Neisseria meningitidis Key diagnosis in this case: “doxycycline deficiency” Key vector-borne rickettsioses treated with doxycycline: RMSF-case-fatality 5-10% ◦ Fever, nausea, vomiting, myalgia, anorexia and headache ◦ Maculopapular rash progresses to petechial after 2-4 days of fever ◦ Occasionally without rash Human granulocytotropic anaplasmosis (HGA): case-fatality<1% Human monocytotropic ehrlichiosis (HME): case fatality 2-3% 2 4/24/11 Lab clues in rickettsioses The total white blood cell (WBC) count is typicallynormal in patients with RMSF, but increased numbers of immature bands are generally observed. Thrombocytopenia, mild elevations in hepatic transaminases, and hyponatremia might be observed with RMSF whereas leukopenia
    [Show full text]
  • Can Leptospirosis Be Treated Without Any Kind of Medication?
    ISSN: 2573-9565 Research Article Journal of Clinical Review & Case Reports Can Leptospirosis Be Treated Without Any Kind of Medication? Huang W L* *Corresponding author Huang Wei Ling, Rua Homero Pacheco Alves, 1929, Franca, Sao Paulo, Infectologist, general practitioner, nutrition doctor, acupuncturist, 14400-010, Brazil, Tel: (+55 16) 3721-2437; E-mail: [email protected] pain management, Medical Acupuncture and Pain Management Clinic, Franca, Sao Paulo, Brazil Submitted: 16 Apr 2018; Accepted: 23 Apr 2018; Published: 10 May 2018 Abstract Introduction: Leptospirosis is an acute infectious disease caused by pathogenic Leptospira. Spread in a variety of ways, though the digestive tract infection is the main route of infection. As the disease pathogen final position in the kidney, the urine has an important role in the proliferation of the disease spreading [1]. Purpose: The purpose of this study was to show if leptospirosis can be treated without any kind of medication. The methodology used was the presentation of one case report of a woman presenting three days of generalized pain all over her body, especially in her muscles, mainly the calves of her legs, fever, headache and trembling. A blood exam was asked, as well as serology and acupuncture to relieve her symptoms. Findings: she recovered very well after five sessions of Acupuncture once a day. A month later, she came back with the results of her serology: it was positive leptospirosis. Conclusion: In this case, leptospirosis was cured without the use any kind of medication, being acupuncture a good therapeutic option, reducing the necessity of the patient’s admittance into a hospital, minimizing the costs of the treatmentand restoring the patient to a normal life very quickly.
    [Show full text]
  • WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA).
    [Show full text]
  • Pearls: Infectious Diseases
    Pearls: Infectious Diseases Karen L. Roos, M.D.1 ABSTRACT Neurologists have a great deal of knowledge of the classic signs of central nervous system infectious diseases. After years of taking care of patients with infectious diseases, several symptoms, signs, and cerebrospinal fluid abnormalities have been identified that are helpful time and time again in determining the etiological agent. These lessons, learned at the bedside, are reviewed in this article. KEYWORDS: Herpes simplex virus, Lyme disease, meningitis, viral encephalitis CLINICAL MANIFESTATIONS does not have an altered level of consciousness, sei- zures, or focal neurologic deficits. Although the ‘‘classic triad’’ of bacterial meningitis is The rash of a viral exanthema typically involves the fever, headache, and nuchal rigidity, vomiting is a face and chest first then spreads to the arms and legs. common early symptom. Suspect bacterial meningitis This can be an important clue in the patient with in the patient with fever, headache, lethargy, and headache, fever, and stiff neck that the meningitis is vomiting (without diarrhea). Patients may also com- due to echovirus or coxsackievirus. plain of photophobia. An altered level of conscious- Suspect tuberculous meningitis in the patient with ness that begins with lethargy and progresses to stupor either several weeks of headache, fever, and night during the emergency evaluation of the patient is sweats or a fulminant presentation with fever, altered characteristic of bacterial meningitis. mental status, and focal neurologic deficits. Fever (temperature 388C[100.48F]) is present in An Ixodes tick must be attached to the skin for at least 84% of adults with bacterial meningitis and in 80 to 24 hours to transmit infection with the spirochete 1–3 94% of children with bacterial meningitis.
    [Show full text]
  • Reportable Disease Surveillance in Virginia, 2013
    Reportable Disease Surveillance in Virginia, 2013 Marissa J. Levine, MD, MPH State Health Commissioner Report Production Team: Division of Surveillance and Investigation, Division of Disease Prevention, Division of Environmental Epidemiology, and Division of Immunization Virginia Department of Health Post Office Box 2448 Richmond, Virginia 23218 www.vdh.virginia.gov ACKNOWLEDGEMENT In addition to the employees of the work units listed below, the Office of Epidemiology would like to acknowledge the contributions of all those engaged in disease surveillance and control activities across the state throughout the year. We appreciate the commitment to public health of all epidemiology staff in local and district health departments and the Regional and Central Offices, as well as the conscientious work of nurses, environmental health specialists, infection preventionists, physicians, laboratory staff, and administrators. These persons report or manage disease surveillance data on an ongoing basis and diligently strive to control morbidity in Virginia. This report would not be possible without the efforts of all those who collect and follow up on morbidity reports. Divisions in the Virginia Department of Health Office of Epidemiology Disease Prevention Telephone: 804-864-7964 Environmental Epidemiology Telephone: 804-864-8182 Immunization Telephone: 804-864-8055 Surveillance and Investigation Telephone: 804-864-8141 TABLE OF CONTENTS INTRODUCTION Introduction ......................................................................................................................................1
    [Show full text]
  • HIV (Human Immunodeficiency Virus)
    TABLE OF CONTENTS AFRICAN TICK BITE FEVER .........................................................................................3 AMEBIASIS .....................................................................................................................4 ANTHRAX .......................................................................................................................5 ASEPTIC MENINGITIS ...................................................................................................6 BACTERIAL MENINGITIS, OTHER ................................................................................7 BOTULISM, FOODBORNE .............................................................................................8 BOTULISM, INFANT .......................................................................................................9 BOTULISM, WOUND .................................................................................................... 10 BOTULISM, OTHER ...................................................................................................... 11 BRUCELLOSIS ............................................................................................................. 12 CAMPYLOBACTERIOSIS ............................................................................................. 13 CHANCROID ................................................................................................................. 14 CHLAMYDIA TRACHOMATIS INFECTION .................................................................
    [Show full text]
  • Leptospirosis Associated Equine Recurrent Uveitis Answers to Your Important Questions What Is Leptospirosis Associated Equine Recurrent Uveitis (LAERU)?
    Lisa Dauten, DVM Tri-State Veterinary Services LLC " Leptospirosis Associated Equine Recurrent Uveitis Answers to your Important Questions! What is Leptospirosis Associated Equine Recurrent Uveitis (LAERU)? Let’s start by breaking down some terminology.! Uveitis- inflammation of the uvea. Resulting in cloudiness of the eye, pain, and potential blindness. Also know as “Moon Blindness”. Caused by trauma, infection, or corneal disease.! Uvea- part of the eye containing the iris, ciliary body, and choroid. It keeps the lens of the eye in place, maintains fluid in the eye, and keeps things in the blood from entering the inside of the eye (blood-ocular barrier). ! Recurrent Uveitis- inflammation of the uvea that sporadically reoccurs through out a horses life time. Each time there is a reoccurring episode, the damage to the eye is made worse, eventually leading to permanent damage and potential blindness. ! Leptospirosis- bacteria found in the environment shed in the urine of wildlife and livestock. Horses usually are exposed when grazing pastures or drinking from natural water sources.! LAERU- Recurrent Uveitis in horses caused by Leptospirosis.! What are the clinical signs of Uveitis? Uveitis can come on very suddenly. A lot of times horses present with severe pain in the eye, tearing, squinting, and rubbing face. The eye itself is cloudy, white or blue in color. Sometimes the signs are not as dramatic. The color change of the eye may progress slowly. In these cases, horse owners may mistake the changes for cataracts.! What do I do if I think my horse has Uveitis? Call your veterinarian to request an appointment.
    [Show full text]
  • Health: Epidemiology Subchapter 41A
    CHAPTER 41 – HEALTH: EPIDEMIOLOGY SUBCHAPTER 41A – COMMUNICABLE DISEASE CONTROL SECTION .0100 – REPORTING OF COMMUNICABLE DISEASES 10A NCAC 41A .0101 REPORTABLE DISEASES AND CONDITIONS (a) The following named diseases and conditions are declared to be dangerous to the public health and are hereby made reportable within the time period specified after the disease or condition is reasonably suspected to exist: (1) acquired immune deficiency syndrome (AIDS) - 24 hours; (2) anthrax - immediately; (3) botulism - immediately; (4) brucellosis - 7 days; (5) campylobacter infection - 24 hours; (6) chancroid - 24 hours; (7) chikungunya virus infection - 24 hours; (8) chlamydial infection (laboratory confirmed) - 7 days; (9) cholera - 24 hours; (10) Creutzfeldt-Jakob disease - 7 days; (11) cryptosporidiosis - 24 hours; (12) cyclosporiasis - 24 hours; (13) dengue - 7 days; (14) diphtheria - 24 hours; (15) Escherichia coli, shiga toxin-producing - 24 hours; (16) ehrlichiosis - 7 days; (17) encephalitis, arboviral - 7 days; (18) foodborne disease, including Clostridium perfringens, staphylococcal, Bacillus cereus, and other and unknown causes - 24 hours; (19) gonorrhea - 24 hours; (20) granuloma inguinale - 24 hours; (21) Haemophilus influenzae, invasive disease - 24 hours; (22) Hantavirus infection - 7 days; (23) Hemolytic-uremic syndrome – 24 hours; (24) Hemorrhagic fever virus infection - immediately; (25) hepatitis A - 24 hours; (26) hepatitis B - 24 hours; (27) hepatitis B carriage - 7 days; (28) hepatitis C, acute - 7 days; (29) human immunodeficiency
    [Show full text]
  • One Vaccine, Two Diseases, Three Lessons
    Wednesday, 2 October 2019 One vaccine, two diseases, three lessons Helen Petousis-Harris, PhD Senior Lecturer, Vaccinology Dept General Practice and Primary Health Care Overview Virtues of an outer Kissing cousins, two Serendipity and membrane vesicle vaccine? divergent diseases opportunity Wednesday, October 2, 2019 • Most meningococcal vaccines based on polysaccharide antigens (groups A, C, W135, Y) • Meningococcal Group B oligosaccharides cross react with fetal neuro tissue – not suitable vaccine antigen • Meningococcal Group B vaccine approaches needed to be 3 different – non PS-Conjugate Solution – outer membrane vesicles There are many other antigenic structures aside from PS Outer-membrane vesicles generate mainly strain specific responses against PorA which is highly variable across strains Developed in 1980’s and used Cuba and Norway 4 2/10/2019 Tan LKK, Carlone GM, Borrow R. Advances in the Development of Vaccines against Neisseria meningitidis. New England Journal of Medicine. 2010;362:1511-20. Meet the family 80-90% homology in primary sequences High level of recombination 5 Muzzi, A., Mora, M., Pizza, M., Rappuoli, R., & Donati, C. (2013). Conservation of meningococcal antigens in the genus Neisseria. MBio, 4(3), e00163-13. What is gonorrhoea? 6 2/10/2019 How common is gonorrhoea? • Second most reported sexually transmitted disease in US (600,000 cases per annum) • In NZ ~3000 cases per annum (60-90 per 100,000) • To put in context – Invasive Pneumococal Disease pre-vaccine <2s ~100 per 100,000 – Meningococcal disease at its height 17 per 100,000 • Tairawhiti DHB 400 per 100,000 7 No correlate of protection and repeat infections • Natural infection with gonorrhoea does not induce a protective immune response.
    [Show full text]
  • Leptospirosis: a Waterborne Zoonotic Disease of Global Importance
    August 2006 volume 22 number 08 Leptospirosis: A waterborne zoonotic disease of global importance INTRODUCTION syndrome has two phases: a septicemic and an immune phase (Levett, 2005). Leptospirosis is considered one of the most common zoonotic diseases It is in the immune phase that organ-specific damage and more severe illness globally. In the United States, outbreaks are increasingly being reported is seen. See text box for more information on the two phases. The typical among those participating in recreational water activities (Centers for Disease presenting signs of leptospirosis in humans are fever, headache, chills, con- Control and Prevention [CDC], 1996, 1998, and 2001) and sporadic cases are junctival suffusion, and myalgia (particularly in calf and lumbar areas) often underdiagnosed. With the onset of warm temperatures, increased (Heymann, 2004). Less common signs include a biphasic fever, meningitis, outdoor activities, and travel, Georgia may expect to see more leptospirosis photosensitivity, rash, and hepatic or renal failure. cases. DIAGNOSIS OF LEPTOSPIROSIS Leptospirosis is a zoonosis caused by infection with the bacterium Leptospira Detecting serum antibodies against leptospira interrogans. The disease occurs worldwide, but it is most common in temper- • Microscopic Agglutination Titers (MAT) ate regions in the late summer and early fall and in tropical regions during o Paired serum samples which show a four-fold rise in rainy seasons. It is not surprising that Hawaii has the highest incidence of titer confirm the diagnosis; a single high titer in a per- leptospirosis in the United States (Levett, 2005). The reservoir of pathogenic son clinically suspected to have leptospirosis is highly leptospires is the renal tubules of wild and domestic animals.
    [Show full text]
  • Leptospirosis and Coinfection: Should We Be Concerned?
    International Journal of Environmental Research and Public Health Review Leptospirosis and Coinfection: Should We Be Concerned? Asmalia Md-Lasim 1,2, Farah Shafawati Mohd-Taib 1,* , Mardani Abdul-Halim 3 , Ahmad Mohiddin Mohd-Ngesom 4 , Sheila Nathan 1 and Shukor Md-Nor 1 1 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; [email protected] (A.M.-L.); [email protected] (S.N.); [email protected] (S.M.-N.) 2 Herbal Medicine Research Centre (HMRC), Institute for Medical Research (IMR), National Institue of Health (NIH), Ministry of Health, Shah Alam 40170, Selangor, Malaysia 3 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; [email protected] 4 Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Federal Territory of Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-12-3807701 Abstract: Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, Citation: Md-Lasim, A.; Mohd-Taib, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with F.S.; Abdul-Halim, M.; Mohd-Ngesom, other pathogenic bacteria.
    [Show full text]