Botanical Vampires! Parasitic and Carnivorous Plants in the Ecology Reserve

Total Page:16

File Type:pdf, Size:1020Kb

Botanical Vampires! Parasitic and Carnivorous Plants in the Ecology Reserve Arboretum Botanical Vampires Walk (updated August 2010) www.mq.edu.au/arboretum Botanical Vampires! Parasitic and Carnivorous Plants in the Ecology Reserve This patch of bush consists of Hawkesbury Sandstone Vegetation with some riparian vegetation along the river. Would you expect to find parasitic and carnivorous plants here? Does it surprise you to know that you could find more than ten different species? But many of these plants are hard to find: some are ephemeral (short‐lived), some very small, a few grow high in the branches of trees and others are rare. Because of this the plants are not labelled or mapped ‐ you will have to hunt for them! Take a copy of the Field Guide to the Native Plants of Sydney1 with you, to help you. Parasitic plants Parasitic plants derive some or all of their sustenance, both organic compounds and nutrients, from other plants. There are over 4000 parasitic plant species in the world. Parasitic plants are either obligate parasites, which means they cannot complete their lifecycles without a host, or facultative, where a host is not essential to the completion of the plant’s lifecycle. Wholly parasitic plants, called holoparasites, do not produce chlorophyll and therefore cannot photosynthesise. Other parasitic plants do photosynthesise, but take water, nutrients and some organic material from the host or hosts, and these plants are called hemiparasites. Parasitic plants have modified roots, called haustoria, which invade the host plant and connect to the xylem, phloem or both to absorb water, organic compounds and nutrients. Parasitic plants can invade the roots or stems of their hosts. The plant parasites in the Ecology Reserve include trees, herbs and shrubs, stem and root parasites and hemi‐ and holoparasites. 1. Exocarpus cupressiformis (Native cherry, SANTALACEAE) Exocarpus cupressiformis, a small tree, is a root parasite. It is a hemiparasite on nearby Eucalypts. The plant is also unusual in that the flower stalks become larger and succulent at fruiting time, forming a hard green fruit on a tasty stem. The fleshy, tasty stalk attracts birds to eat the stalk and fruit and spread the seed. This method of attraction for seed dispersal differs from many other plants, which produce a tasty fruit around the seed as an attractant. Developing fruit on Exocarpus cupressiformis 2. Mistletoes (LORANTHACEAE) on Eucalyptus haemastoma Mistletoes are stem/branch parasites, and you may be able to spot some high in the branches of the scribbly gums (Eucalyptus haemastoma) by looking for a cluster of leaves that have a form and shape slightly different to the other branches and leaves. Three different mistletoe species can grow on this eucalypt including Amyema pendula, Dendrophthoe vitellina and Muellerina eucalyptoides2. Australian mistletoes have co‐evolved with the mistletoe bird, Dicaeum hirundinaceum, which eats the fruit produced by the mistletoes. The seeds pass quickly through the birds which digest the sweet fruit around it, leaving a sticky coat on the seed. When the birds poo, they wipe their bottoms on a branch, leaving the mistletoe seed stuck in a perfect spot to grow a new plant, high in the canopy! 3. Cassytha glabella and C. pubescens (Devil’s twine, CASSYTHACEAE) Parasitic plants can be generalists, parasitising multiple species, which may include several hosts at the same time. Cassytha is a generalist parasite and can be seen sprawled across several plants. Species in the Cassytha genus are hemiparasitic vines. Soon after a Cassytha plant germinates, its shoot (which initially contains chlorophyll) swings around in the air until it touches another plant. Then haustoria form and once the Cassytha can obtain sap from the host, the part of the plant that is rooted in the ground dies off and the plant becomes a holoparasite3. Two species of Cassytha may be found here, the hairy and warty C. pubescens, and C. glabella which has Cassytha glabella with hausteria (top left) and much thinner stems fruit (bottom) visible 4. Olax stricta (OLACACEAE) Olax stricta is another root parasite. It is a slender erect shrub that occurs in heath and woodland on sandstone, but it is not abundant and may not be easy to find. Parasitism results in harm to the host and may often limit the density of a host plant. A parasite must remain in balance with its host to minimise the risk of damaging too many hosts at the one time. Such impacts may limit the number of available hosts for the parasite in the future. 5. Choretrum candollei (Snow Bush, SANTALACEAE) There are three plants in this area from the SANTALACEAE family which are all root parasites. Choretrum candollei is rare here, but is recognisable by its angular stems and lack of leaves. It is a shrub that grows to 2 m tall. In the spring and summer this species produces an abundance of racemes of small, white flowers which produce an overpowering, sweet smell. 6. Leptomeria acida (Acid drops, native current, SANTALACEAE) Leptomeria acida is the final member of the Santalaceae family found here, together with Exocarpus cupressiformis and Choretrum condollei. It is a shrub that grows to 2 m high and a root parasite. Similar to the Exocarpus, this species has leaves that are reduced to scales. Its stems are triangular in cross section. Leptomeria acida produces edible fruits that are very acidic and high in vitamin C1. 2 of 4 7. Cryptostylis erecta and C. subulata (Slipper orchids, ORCHIDACEAE) Some plants derive some of their nutrients from mycorrhizal fungi. These are called myco‐heterotrophs rather than parasites as the plant provides carbon to the fungi in return. Many orchids are myco‐ heterotrophs. Cryptostylis erecta (hooded orchid) and C. subulata (large tongue orchid) grow in the Ecology reserve. For much of the year, these orchids appear as a single leaf growing from the ground, with C. erecta leaves easily distinguished by a purple underside. In spring a long stem produces several flowers which are pollinated by male wasps which mistake the flowers for female wasps. This pollination strategy is called sexual deception. The orchids produce dust‐ like seeds and with almost no reserves stored in the seeds, young orchid plants are Cryptostylis erecta in flower (left) and leaves (top dependent on the mycorrhizal fungi. right) and the leaves of C. subulata (bottom right). Carnivorous Plants In contrast to parasitic plants, carnivorous plants acquire some of their nutrients, but not energy, from animals or protozoa. They do not acquire organic molecules from their prey which means they still need to produce chlorophyll to photosynthesise. Nitrogen, obtained from the amino acids in the insects’ bodies, is one of the most important elements acquired in this way by the plants. There are over 600 species of carnivorous plants worldwide. 8. Drosera peltata (Sundew, DROSERACEAE) You may find Drosera peltata growing in damp patches of ground . These small herbs have leaves in a rosette on the ground and a long, erect stem with stalked crescent shaped leaves. All leaves have reddish glandular hairs each with a drop of clear, sticky liquid on the end. Small insects become trapped in the sticky liquid. After a capture, the leaves roll up enclosing the insect which is dissolved and digested, providing the plant with nitrogen, an element often lacking in the sandy soils they inhabit. Drosera peltata also photosynthesises and absorbs nutrients through its roots, so the insect meals can be considered as supplements. Droseras are very attractive plants, both because of the pretty flowers and their glistening, colourful leaves. The insect catching leaves of Drosera peltata. 3 of 4 9. Stylidium graminifolium (STYLIDIACEAE) Stylidium graminifolium is a perennial herb that can be found all year round. Look for the flowers, as species in the genus Stylidium have a very unusual mechanism for pollination. Two anthers and the style are fused together on an elastic stalk which is normally bent back behind the flower. When the centre of the flower is touched, usually by an insect attracted to the flower by the attractive petals, a trigger releases the style and anthers, which flies forward, showering the pollinator with pollen or collecting pollen from a previously showered insect. The trigger resets itself. You can trigger the mechanism by gently inserting a small twig into the middle of the flower. There are over 140 species of Stylidium, mainly Australian, and they are commonly called trigger plants. In addition Stylidium species are carnivorous with glandular trichomes on the flowers and scape which can catch and digest small insects4. Stylidium are better known for their triggered pollination mechanism than for their carnivory. 10. Utricularia species (LENTIBULARIACEAE) Right down by the river or small tributaries, you might be lucky enough to find some Utricularia plants. These are carnivorous plants like Drosera and Stylidium, but use a different mechanism to capture food. Microscopic organisms from the water are captured by modified leaves that grow from low down on the stem. The leaves form small bladders ending in tufts of hairs. These suck in small amounts of water and organisms from the water. When the captured organisms are digested, the trap resets itself. There are several species of Ultricularia that may occur here including U. biloba, U. dichotoma, U. gibba, U. laterifolia, U. uliginosa and U. uniflora. Conclusion What a range of parasitic and carnivorous plants in this little patch of bush! Why are there so many? The sandy soils derived from Hawkesbury Sandstone are very poor in nutrients. They are particularly low in phosphorus, but also in nitrogen5,6. Carnivory and parasitism in plants are considered adaptations to low nutrient soils as they provide an alternative method of acquiring nutrients to absorbing them through normal plant roots7. This is one explanation as to why there are so many carnivorous and parasitic plant species here.
Recommended publications
  • Foraging Modes of Carnivorous Plants Aaron M
    Israel Journal of Ecology & Evolution, 2020 http://dx.doi.org/10.1163/22244662-20191066 Foraging modes of carnivorous plants Aaron M. Ellison* Harvard Forest, Harvard University, 324 North Main Street, Petersham, Massachusetts, 01366, USA Abstract Carnivorous plants are pure sit-and-wait predators: they remain rooted to a single location and depend on the abundance and movement of their prey to obtain nutrients required for growth and reproduction. Yet carnivorous plants exhibit phenotypically plastic responses to prey availability that parallel those of non-carnivorous plants to changes in light levels or soil-nutrient concentrations. The latter have been considered to be foraging behaviors, but the former have not. Here, I review aspects of foraging theory that can be profitably applied to carnivorous plants considered as sit-and-wait predators. A discussion of different strategies by which carnivorous plants attract, capture, kill, and digest prey, and subsequently acquire nutrients from them suggests that optimal foraging theory can be applied to carnivorous plants as easily as it has been applied to animals. Carnivorous plants can vary their production, placement, and types of traps; switch between capturing nutrients from leaf-derived traps and roots; temporarily activate traps in response to external cues; or cease trap production altogether. Future research on foraging strategies by carnivorous plants will yield new insights into the physiology and ecology of what Darwin called “the most wonderful plants in the world”. At the same time, inclusion of carnivorous plants into models of animal foraging behavior could lead to the development of a more general and taxonomically inclusive foraging theory.
    [Show full text]
  • Status of Insectivorous Plants in Northeast India
    Technical Refereed Contribution Status of insectivorous plants in northeast India Praveen Kumar Verma • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box # 136 • Jorhat 785 001 (Assam) • India • [email protected] Jan Schlauer • Zwischenstr. 11 • 60594 Frankfurt/Main • Germany • [email protected] Krishna Kumar Rawat • CSIR-National Botanical Research Institute • Rana Pratap Marg • Lucknow -226 001 (U.P) • India Krishna Giri • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box #136 • Jorhat 785 001 (Assam) • India Keywords: Biogeography, India, diversity, Red List data. Introduction There are approximately 700 identified species of carnivorous plants placed in 15 genera of nine families of dicotyledonous plants (Albert et al. 1992; Ellison & Gotellli 2001; Fleischmann 2012; Rice 2006) (Table 1). In India, a total of five genera of carnivorous plants are reported with 44 species; viz. Utricularia (38 species), Drosera (3), Nepenthes (1), Pinguicula (1), and Aldrovanda (1) (Santapau & Henry 1976; Anonymous 1988; Singh & Sanjappa 2011; Zaman et al. 2011; Kamble et al. 2012). Inter- estingly, northeastern India is the home of all five insectivorous genera, namely Nepenthes (com- monly known as tropical pitcher plant), Drosera (sundew), Utricularia (bladderwort), Aldrovanda (waterwheel plant), and Pinguicula (butterwort) with a total of 21 species. The area also hosts the “ancestral false carnivorous” plant Plumbago zelayanica, often known as murderous plant. Climate Lowland to mid-altitude areas are characterized by subtropical climate (Table 2) with maximum temperatures and maximum precipitation (monsoon) in summer, i.e., May to September (in some places the highest temperatures are reached already in April), and average temperatures usually not dropping below 0°C in winter.
    [Show full text]
  • Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem.
    [Show full text]
  • Jervis Bay Territory Page 1 of 50 21-Jan-11 Species List for NRM Region (Blank), Jervis Bay Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Assessing Genetic Diversity for the USA Endemic Carnivorous Plant Pinguicula Ionantha R.K. Godfrey (Lentibulariaceae)
    Conserv Genet (2017) 18:171–180 DOI 10.1007/s10592-016-0891-9 RESEARCH ARTICLE Assessing genetic diversity for the USA endemic carnivorous plant Pinguicula ionantha R.K. Godfrey (Lentibulariaceae) 1 1 2 3 David N. Zaya • Brenda Molano-Flores • Mary Ann Feist • Jason A. Koontz • Janice Coons4 Received: 10 May 2016 / Accepted: 30 September 2016 / Published online: 18 October 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Understanding patterns of genetic diversity and data; the dominant cluster at each site corresponded to the population structure for rare, narrowly endemic plant spe- results from PCoA and Nei’s genetic distance analyses. cies, such as Pinguicula ionantha (Godfrey’s butterwort; The observed patterns of genetic diversity suggest that Lentibulariaceae), informs conservation goals and can although P. ionantha populations are isolated spatially by directly affect management decisions. Pinguicula ionantha distance and both natural and anthropogenic barriers, some is a federally listed species endemic to the Florida Pan- gene flow occurs among them or isolation has been too handle in the southeastern USA. The main goal of our recent to leave a genetic signature. The relatively low level study was to assess patterns of genetic diversity and of genetic diversity associated with this species is a con- structure in 17 P. ionantha populations, and to determine if cern as it may impair fitness and evolutionary capability in diversity is associated with geographic location or popu- a changing environment. The results of this study provide lation characteristics. We scored 240 individuals at a total the foundation for the development of management prac- of 899 AFLP markers (893 polymorphic markers).
    [Show full text]
  • Invisible Connections: Introduction to Parasitic Plants Dr
    Invisible Connections: Introduction to Parasitic Plants Dr. Vanessa Beauchamp Towson University What is a parasite? • An organism that lives in or on an organism of another species (its host) and benefits by deriving nutrients at the other's expense. Symbiosis https://www.superpharmacy.com.au/blog/parasites-protozoa-worms-ectoparasites Food acquisition in plants: Autotrophy Heterotrophs (“different feeding”) • True parasites: obtain carbon compounds from host plants through haustoria. • Myco-heterotrophs: obtain carbon compounds from host plants via Image Credit: Flickr User wackybadger, via CC mycorrhizal fungal connection. • Carnivorous plants (not parasitic): obtain nutrients (phosphorus, https://commons.wikimedia.org/wiki/File:Pin nitrogen) from trapped insects. k_indian_pipes.jpg http://www.welivealot.com/venus-flytrap- facts-for-kids/ Parasite vs. Epiphyte https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ By © Hans Hillewaert /, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6289695 True Parasitic Plants • Gains all or part of its nutrition from another plant (the host). • Does not contribute to the benefit of the host and, in some cases, causing extreme damage to the host. • Specialized peg-like root (haustorium) to penetrate host plants. https://www.britannica.com/plant/parasitic-plant https://chatham.ces.ncsu.edu/2014/12/does-mistletoe-harm-trees-2/ Diversity of parasitic plants Eudicots • Parasitism has evolved independently at least 12 times within the plant kingdom. • Approximately 4,500 parasitic species in Monocots 28 families. • Found in eudicots and basal angiosperms • 1% of the dicot angiosperm species • No monocot angiosperm species Basal angiosperms Annu. Rev. Plant Biol. 2016.67:643-667 True Parasitic Plants https://www.alamy.com/parasitic-dodder-plant-cuscuta-showing-penetration-parasitic-haustor The defining structural feature of a parasitic plant is the haustorium.
    [Show full text]
  • Alternative Translation Initiation Codons for the Plastid Maturase Matk: Unraveling the Pseudogene Misconception in the Orchidaceae Michelle M
    Barthet et al. BMC Evolutionary Biology (2015) 15:210 DOI 10.1186/s12862-015-0491-1 RESEARCH ARTICLE Open Access Alternative translation initiation codons for the plastid maturase MatK: unraveling the pseudogene misconception in the Orchidaceae Michelle M. Barthet1,2* , Keenan Moukarzel3, Kayla N. Smith1, Jaimin Patel3 and Khidir W. Hilu3 Abstract Background: The plastid maturase MatK has been implicated as a possible model for the evolutionary “missing link” between prokaryotic and eukaryotic splicing machinery. This evolutionary implication has sparked investigations concerning the function of this unusual maturase. Intron targets of MatK activity suggest that this is an essential enzyme for plastid function. The matK gene, however, is described as a pseudogene in many photosynthetic orchid species due to presence of premature stop codons in translations, and its high rate of nucleotide and amino acid substitution. Results: Sequence analysis of the matK gene from orchids identified an out-of-frame alternative AUG initiation codon upstream from the consensus initiation codon used for translation in other angiosperms. We demonstrate translation from the alternative initiation codon generates a conserved MatK reading frame. We confirm that MatK protein is expressed and functions in sample orchids currently described as having a matK pseudogene using immunodetection and reverse-transcription methods. We demonstrate using phylogenetic analysis that this alternative initiation codon emerged de novo within the Orchidaceae, with several reversal events at the basal lineage and deep in orchid history. Conclusion: These findings suggest a novel evolutionary shift for expression of matK in the Orchidaceae and support the function of MatK as a group II intron maturase in the plastid genome of land plants including the orchids.
    [Show full text]
  • Spring 2014 for Web.Pub
    Spring 2014 Page 1 Botanic Garden News The Botanic Garden Volume 17, No. 1 of Smith College Spring 2014 Orchidelirium at Smith Madelaine Zadik K aren Yu ’16 is a STRIDE scholar who has worked with me since 2012 on educational projects and exhibitions at the Botanic Garden. As a first year, Karen learned about the workings of the Botanic Garden, our plant collections, and our various educational activities, including exhibit production. The plan was that by the end of her two-year STRIDE placement, she would produce an exhibit of her own. She had to hit the ground running, as the exhibit Botanical Printing: Artful Collaborations on Paper and Cloth opened just a month and a half after her arrival. Karen wrote label copy and press releases, learned mounting techniques, helped design the gallery layout with our modular walls, and learned how to use our unique hanging system in the Church Exhibition Gallery. For our next exhibit, From Petals to Paper: Poetic Inspiration from Flowers, Karen was involved in the many months of planning leading up to the installation in March 2013. When given a choice of possible exhibit topics for her own project, Karen chose to use a collection of orchid prints by artist Florence Helen Woolward to create an exhibit that would help illuminate the world of orchids for the visiting public. The prints are from Thesaurus Woolwardiae, Orchids of the Marquis of Lothian, which contained reproductions of 60 of Woolward’s orchid paintings. Woolward produced an impressive body of work, especially considering that she was never formally trained in either art or botany.
    [Show full text]
  • Rare Or Threatened Vascular Plant Species of Wollemi National Park, Central Eastern New South Wales
    Rare or threatened vascular plant species of Wollemi National Park, central eastern New South Wales. Stephen A.J. Bell Eastcoast Flora Survey PO Box 216 Kotara Fair, NSW 2289, AUSTRALIA Abstract: Wollemi National Park (c. 32o 20’– 33o 30’S, 150o– 151oE), approximately 100 km north-west of Sydney, conserves over 500 000 ha of the Triassic sandstone environments of the Central Coast and Tablelands of New South Wales, and occupies approximately 25% of the Sydney Basin biogeographical region. 94 taxa of conservation signiicance have been recorded and Wollemi is recognised as an important reservoir of rare and uncommon plant taxa, conserving more than 20% of all listed threatened species for the Central Coast, Central Tablelands and Central Western Slopes botanical divisions. For a land area occupying only 0.05% of these divisions, Wollemi is of paramount importance in regional conservation. Surveys within Wollemi National Park over the last decade have recorded several new populations of signiicant vascular plant species, including some sizeable range extensions. This paper summarises the current status of all rare or threatened taxa, describes habitat and associated species for many of these and proposes IUCN (2001) codes for all, as well as suggesting revisions to current conservation risk codes for some species. For Wollemi National Park 37 species are currently listed as Endangered (15 species) or Vulnerable (22 species) under the New South Wales Threatened Species Conservation Act 1995. An additional 50 species are currently listed as nationally rare under the Briggs and Leigh (1996) classiication, or have been suggested as such by various workers. Seven species are awaiting further taxonomic investigation, including Eucalyptus sp.
    [Show full text]
  • Redalyc.ARE OUR ORCHIDS SAFE DOWN UNDER?
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica BACKHOUSE, GARY N. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA Lankesteriana International Journal on Orchidology, vol. 7, núm. 1-2, marzo, 2007, pp. 28- 43 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339813005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 7(1-2): 28-43. 2007. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA GARY N. BACKHOUSE Biodiversity and Ecosystem Services Division, Department of Sustainability and Environment 8 Nicholson Street, East Melbourne, Victoria 3002 Australia [email protected] KEY WORDS:threatened orchids Australia conservation status Introduction Many orchid species are included in this list. This paper examines the listing process for threatened Australia has about 1700 species of orchids, com- orchids in Australia, compares regional and national prising about 1300 named species in about 190 gen- lists of threatened orchids, and provides recommen- era, plus at least 400 undescribed species (Jones dations for improving the process of listing regionally 2006, pers. comm.). About 1400 species (82%) are and nationally threatened orchids. geophytes, almost all deciduous, seasonal species, while 300 species (18%) are evergreen epiphytes Methods and/or lithophytes. At least 95% of this orchid flora is endemic to Australia.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • King Island Flora: a Field Guide - 2014 Addendum
    King Island Flora: A Field Guide - 2014 Addendum King Island Flora: A Field Guide – 2014 Addendum First published 2014 Copyright King Island Natural Resource Management Group Inc. Acknowledgements: The publication of this book has been coordinated by Nicholas Johannsohn, Graeme Batey, Margaret Batey, Eve Woolmore, Eva Finzel and Robyn Eades. Many thanks to Miguel De Salas, Mark Wapstra and Richard Schahinger for their technical advice. Text and editing: Nicholas Johannsohn, Eve Woolmore, Graeme Batey, Margaret Batey. Design: Nicholas Johannsohn Cover Image: Mark Wapstra Photographers are acknowledged in the text using the following initials – MW = Mark Wapstra MD = Manuel De Salas MB = Margaret Batey PC = Phil Collier Contents P 3 Introduction P 4 Corrections to 2002 Flora Guide P 5 New species name index New Species common name index P 6-8 Amendments to 2002 King Island Flora Guide taxa list, Recommended deletions, Subsumed into other taxa, Change of genus name P 9-13 New Species Profiles P 14 Bibliography Introduction It has been over ten years since the King Island Natural Resource Management Group published King Island Flora: A Field Guide. This addendum was created to incorporate newly listed species, genus name changes, subsumed species (i.e. incorporated into another genus), new subspecies and recommended deletions. It also provided the opportunity to correct mistakes identified in the original edition. The addendum also includes detailed profiles of ten of the newly identified species. Corrections to 2002 Edition Acacia Mucronata (variable sallow wattle p. 58) :Another common name for this species is Mountain Willow Gastrodia Species - There are very few collections of Gastrodia from King Island.
    [Show full text]