Quantum Variance of Maass-Hecke Cusp Forms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
April 2010 Contents
International Association of Mathematical Physics News Bulletin April 2010 Contents International Association of Mathematical Physics News Bulletin, April 2010 Contents Reflections on the IAMP Geography 3 Aharonov-Bohm & Berry Phase Anniversaries 50/25 5 The 25th anniversary of the founding of HARL 8 An interview with Huzihiro Araki 10 Shing-Tung Yau the Wolf Prize laureate 2010 in Mathematics 14 News from the IAMP Executive Committee 22 A new associated member: PIMS 26 Bulletin editor Valentin Zagrebnov Editorial board Evans Harrell, Masao Hirokawa, David Krejˇciˇr´ık, Jan Philip Solovej Contacts [email protected] http://www.iamp.org Cover photo (courtesy of Professor A.Tonomura): From double-slit experiment to the Aharonov-Bohm effect. See a comment at the end of the page 7. The views expressed in this IAMP News Bulletin are those of the authors and do not necessary represent those of the IAMP Executive Committee, Editor or Editorial board. Any complete or partial performance or reproduction made without the consent of the author or of his successors in title or assigns shall be unlawful. All reproduction rights are henceforth reserved, mention of the IAMP News Bulletin is obligatory in the reference. (Art.L.122-4 of the Code of Intellectual Property). 2 IAMP News Bulletin, April 2010 Editorial Reflections on the IAMP Geography by Pavel Exner (IAMP President) The topic of today’s meditation was inspired by complaints of American colleagues about the shaky position our discipline enjoys in the U.S. True, such woes are ubiquitous since com- petition for resources in science was and will always be tough. -
Sastra Prize 2011
UF SASTRA PRIZE Mathematics 2011 Research Courses Undergraduate Graduate News Resources People ROMAN HOLOWINSKY TO RECEIVE 2011 SASTRA RAMANUJAN PRIZE The 2011 SASTRA Ramanujan Prize will be awarded to Roman Holowinsky, who is now an Assistant Professor at the Department of Mathematics, Ohio State University, Columbus, Ohio, USA. This annual prize which was established in 2005, is for outstanding contributions by very young mathematicians to areas influenced by the genius Srinivasa Ramanujan. The age limit for the prize has been set at 32 because Ramanujan achieved so much in his brief life of 32 years. The $10,000 prize will be awarded at the International Conference on Number Theory, Ergodic Theory and Dynamics at SASTRA University in Kumbakonam, India (Ramanujan's hometown) on December 22, Ramanujan's birthday. Dr. Roman Holowinsky has made very significant contributions to areas which are at the interface of analytic number theory and the theory of modular forms. Along with Professor Kannan Soundararajan of Stanford University (winner of the SASTRA Ramanujan Prize in 2005), Dr. Holowinsky solved an important case of the famous Quantum Unique Ergodicity (QUE) Conjecture in 2008. This is a spectacular achievement. In 1991, Zeev Rudnick and Peter Sarnak formulated the QUE Conjecture which in its general form concerns the correspondence principle for quantizations of chaotic systems. One aspect of the problem is to understand how waves are influenced by the geometry of their enclosure. Rudnick and Sarnak conjectured that for sufficiently chaotic systems, if the surface has negative curvature, then the high frequency quantum wave functions are uniformly distributed within the domain. -
Scientific Report for 2013
Scientific Report for 2013 Impressum: Eigent¨umer,Verleger, Herausgeber: The Erwin Schr¨odingerInternational Institute for Mathematical Physics - U of Vienna (DVR 0065528), Boltzmanngasse 9, A-1090 Vienna. Redaktion: Goulnara Arzhantseva, Joachim Schwermer. Supported by the Austrian Federal Min- istry of Science and Research (BMWF) through the U of Vienna. Contents Preface 3 The Institute and its Mission in 2013 . 3 Scientific activities in 2013 . 4 The ESI in 2013 . 6 Scientific Reports 7 Main Research Programmes . 7 Teichm¨ullerTheory . 7 The Geometry of Topological D-branes, Categories, and Applications . 11 Jets and Quantum Fields for LHC and Future Colliders . 18 GEOQUANT 2013 . 25 Forcing, Large Cardinals and Descriptive Set Theory . 28 Heights in Diophantine Geometry, Group Theory and Additive Combinatorics . 31 Workshops organized independently of the Main Programmes . 36 ESI Anniversary - Two Decades at the Interface of Mathematics and Physics The [Un]reasonable Effectiveness of Mathematics in the Natural Sciences . 36 Word maps and stability of representations . 38 Complexity and dimension theory of skew products systems . 42 Advances in the theory of automorphic forms and their L-functions . 44 Research in Teams . 51 Marcella Hanzer and Goran Muic: Eisenstein Series . 51 Vladimir N. Remeslennikov et al: On the first-order theories of free pro-p groups, group extensions and free product groups . 53 Raimar Wulkenhaar et al: Exactly solvable quantum field theory in four dimensions . 57 Jan Spakula et al: Nuclear dimension and coarse geometry . 60 Alan Carey et al: Non-commutative geometry and spectral invariants . 62 Senior Research Fellows Programme . 64 Vladimir Korepin: The Algebraic Bethe Ansatz . 64 Simon Scott: Logarithmic TQFT, torsion, and trace invariants . -
The Role of the Ramanujan Conjecture in Analytic Number Theory
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 50, Number 2, April 2013, Pages 267–320 S 0273-0979(2013)01404-6 Article electronically published on January 14, 2013 THE ROLE OF THE RAMANUJAN CONJECTURE IN ANALYTIC NUMBER THEORY VALENTIN BLOMER AND FARRELL BRUMLEY Dedicated to the 125th birthday of Srinivasa Ramanujan Abstract. We discuss progress towards the Ramanujan conjecture for the group GLn and its relation to various other topics in analytic number theory. Contents 1. Introduction 267 2. Background on Maaß forms 270 3. The Ramanujan conjecture for Maaß forms 276 4. The Ramanujan conjecture for GLn 283 5. Numerical improvements towards the Ramanujan conjecture and applications 290 6. L-functions 294 7. Techniques over Q 298 8. Techniques over number fields 302 9. Perspectives 305 J.-P. Serre’s 1981 letter to J.-M. Deshouillers 307 Acknowledgments 313 About the authors 313 References 313 1. Introduction In a remarkable article [111], published in 1916, Ramanujan considered the func- tion ∞ ∞ Δ(z)=(2π)12e2πiz (1 − e2πinz)24 =(2π)12 τ(n)e2πinz, n=1 n=1 where z ∈ H = {z ∈ C |z>0} is in the upper half-plane. The right hand side is understood as a definition for the arithmetic function τ(n) that nowadays bears Received by the editors June 8, 2012. 2010 Mathematics Subject Classification. Primary 11F70. Key words and phrases. Ramanujan conjecture, L-functions, number fields, non-vanishing, functoriality. The first author was supported by the Volkswagen Foundation and a Starting Grant of the European Research Council. The second author is partially supported by the ANR grant ArShiFo ANR-BLANC-114-2010 and by the Advanced Research Grant 228304 from the European Research Council. -
Kuznetsov Trace Formula and the Distribution of Fourier Coefficients
A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms Jo~ao Leit~aoGuerreiro Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 c 2016 Jo~aoLeit~aoGuerreiro All Rights Reserved ABSTRACT A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms Jo~ao Leit~aoGuerreiro We study the problem of the distribution of certain GL(3) Maass forms, namely, we obtain a Weyl's law type result that characterizes the distribution of their eigenvalues, and an orthogonality relation for the Fourier coefficients of these Maass forms. The approach relies on a Kuznetsov trace formula on GL(3) and on the inversion formula for the Lebedev-Whittaker transform. The family of Maass forms being studied has zero density in the set of all GL(3) Maass forms and contains all self-dual forms. The self-dual forms on GL(3) can also be realised as symmetric square lifts of GL(2) Maass forms by the work of Gelbart-Jacquet. Furthermore, we also establish an explicit inversion formula for the Lebedev-Whittaker transform, in the nonarchimedean case, with a view to applications. Table of Contents 1 Introduction 1 2 Preliminaries 6 2.1 Maass Forms for SL(2; Z) ................................. 6 2.2 Maass Forms for SL(3; Z) ................................. 8 2.3 Fourier-Whittaker Expansion . 11 2.4 Hecke-Maass Forms and L-functions . 15 2.5 Eisenstein Series and Spectral Decomposition . 18 2.6 Kloosterman Sums . -
Fall 2006 [Pdf]
Le Bulletin du CRM • www.crm.umontreal.ca • Automne/Fall 2006 | Volume 12 – No 2 | Le Centre de recherches mathématiques A Review of CRM’s 2005 – 2006 Thematic Programme An Exciting Year on Analysis in Number Theory by Chantal David (Concordia University) The thematic year “Analysis in Number The- tribution of integers, and level statistics), integer and rational ory” that was held at the CRM in 2005 – points on varieties (geometry of numbers, the circle method, 2006 consisted of two semesters with differ- homogeneous varieties via spectral theory and ergodic theory), ent foci, both exploring the fruitful interac- the André – Oort conjectures (equidistribution of CM-points tions between analysis and number theory. and Hecke points, and points of small height) and quantum The first semester focused on p-adic analy- ergodicity (quantum maps and modular surfaces) The main sis and arithmetic geometry, and the second speakers were Yuri Bilu (Bordeaux I), Bill Duke (UCLA), John semester on classical analysis and analytic number theory. In Friedlander (Toronto), Andrew Granville (Montréal), Roger both themes, several workshops, schools and focus periods Heath-Brown (Oxford), Elon Lindenstrauss (New York), Jens concentrated on the new and exciting developments of the re- Marklof (Bristol), Zeev Rudnick (Tel Aviv), Wolfgang Schmidt cent years that have emerged from the interplay between anal- (Colorado, Boulder and Vienna), K. Soundararajan (Michigan), ysis and number theory. The thematic year was funded by the Yuri Tschinkel (Göttingen), Emmanuel Ullmo (Paris-Sud), and CRM, NSF, NSERC, FQRNT, the Clay Institute, NATO, and Akshay Venkatesh (MIT). the Dimatia Institute from Prague. In addition to the partici- The workshop on “p-adic repre- pants of the six workshops and two schools held during the sentations,” organised by Henri thematic year, more than forty mathematicians visited Mon- Darmon (McGill) and Adrian tréal for periods varying from two weeks to six months. -
Beyond Endoscopy for the Relative Trace Formula II: Global Theory
BEYOND ENDOSCOPY FOR THE RELATIVE TRACE FORMULA II: GLOBAL THEORY YIANNIS SAKELLARIDIS Abstract. For the group G = PGL2 we perform a comparison between two relative trace formulas: on one hand, the relative trace formula of Jacquet for the quotient T \G/T , where T is a non-trivial torus, and on the other the Kuznetsov trace formula (involving Whittaker periods), applied to non-standard test functions. This gives a new proof of the celebrated result of Waldspurger on toric periods, and suggests a new way of comparing trace formulas, with some analogies to Langlands’ “Beyond Endoscopy” program. Contents 1. Introduction. 1 Part 1. Poisson summation 18 2. Generalities and the baby case. 18 3. Direct proof in the baby case 31 4. Poisson summation for the relative trace formula 41 Part 2. Spectral analysis. 54 5. Main theorems of spectral decomposition 54 6. Completion of proofs 67 7. The formula of Waldspurger 85 Appendix A. Families of locally multiplicative functions 96 Appendix B. F-representations 104 arXiv:1402.3524v3 [math.NT] 9 Mar 2017 References 107 1. Introduction. 1.1. The result of Waldspurger. The celebrated result of Waldspurger [Wal85], relating periods of cusp forms on GL2 over a nonsplit torus (against a character of the torus, but here we will restrict ourselves to the trivial character) with the central special value of the corresponding quadratic base 2010 Mathematics Subject Classification. 11F70. Key words and phrases. relative trace formula, beyond endoscopy, periods, L-functions, Waldspurger’s formula. 1 2 YIANNIS SAKELLARIDIS change L-function, was reproven by Jacquet [Jac86] using the relative trace formula. -
18.785 Notes
Contents 1 Introduction 4 1.1 What is an automorphic form? . 4 1.2 A rough definition of automorphic forms on Lie groups . 5 1.3 Specializing to G = SL(2; R)....................... 5 1.4 Goals for the course . 7 1.5 Recommended Reading . 7 2 Automorphic forms from elliptic functions 8 2.1 Elliptic Functions . 8 2.2 Constructing elliptic functions . 9 2.3 Examples of Automorphic Forms: Eisenstein Series . 14 2.4 The Fourier expansion of G2k ...................... 17 2.5 The j-function and elliptic curves . 19 3 The geometry of the upper half plane 19 3.1 The topological space ΓnH ........................ 20 3.2 Discrete subgroups of SL(2; R) ..................... 22 3.3 Arithmetic subgroups of SL(2; Q).................... 23 3.4 Linear fractional transformations . 24 3.5 Example: the structure of SL(2; Z)................... 27 3.6 Fundamental domains . 28 3.7 ΓnH∗ as a topological space . 31 3.8 ΓnH∗ as a Riemann surface . 34 3.9 A few basics about compact Riemann surfaces . 35 3.10 The genus of X(Γ) . 37 4 Automorphic Forms for Fuchsian Groups 40 4.1 A general definition of classical automorphic forms . 40 4.2 Dimensions of spaces of modular forms . 42 4.3 The Riemann-Roch theorem . 43 4.4 Proof of dimension formulas . 44 4.5 Modular forms as sections of line bundles . 46 4.6 Poincar´eSeries . 48 4.7 Fourier coefficients of Poincar´eseries . 50 4.8 The Hilbert space of cusp forms . 54 4.9 Basic estimates for Kloosterman sums . 56 4.10 The size of Fourier coefficients for general cusp forms . -
From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond
From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond Owen Barrett, Frank W. K. Firk, Steven J. Miller, and Caroline Turnage-Butterbaugh Abstract The discovery of connections between the distribution of energy levels of heavy nuclei and spacings between prime numbers has been one of the most sur- prising and fruitful observations in the twentieth century. The connection between the two areas was first observed through Montgomery’s work on the pair correla- tion of zeros of the Riemann zeta function. As its generalizations and consequences have motivated much of the following work, and to this day remains one of the most important outstanding conjectures in the field, it occupies a central role in our discussion below. We describe some of the many techniques and results from the past sixty years, especially the important roles played by numerical and experimen- tal investigations, that led to the discovery of the connections and progress towards understanding the behaviors. In our survey of these two areas, we describe the com- mon mathematics that explains the remarkable universality. We conclude with some thoughts on what might lie ahead in the pair correlation of zeros of the zeta function, and other similar quantities. Owen Barrett, arXiv:1505.07481v1 [math.NT] 27 May 2015 Yale University, New Haven, CT 06520, e-mail: [email protected] Frank W. K. Firk, Yale University, New Haven, CT 06520 e-mail: [email protected] Steven J. Miller, Williams College, Williamstown, MA 01267 e-mail: [email protected]. edu,[email protected] Caroline Turnage-Butterbaugh, Duke University, Durham, NC 27708 e-mail: [email protected] 1 Contents From Quantum Systems to L-Functions: Pair Correlation Statistics and Beyond .................................................. -
Semiclassical Limits for the Hyperbolic Plane
Semi-classical limits for the hyperbolic plane Scott A. Wolpert∗ July 19, 1999 1 Introduction The correspondence principle of quantum mechanics provides that high-energy eigenfunc- tions of the Laplace-Beltrami operator concentrate along geodesics. The nature of the concentration for automorphic eigenfunctions and ergodic geodesic flow is of particular interest [2, 3, 4, 5, 6, 9, 17, 18, 20, 27, 32, 37, 38, 39, 40, 49, 50, 51, 52, 53]. For Γ a cofinite, non-cocompact, subgroup of SL(2; R) a cuspidal automorphic eigenfunction for the hyperbolic Laplacian D has a Fourier series expansion 1/2 2πinx (1.1) ϕ(z)=X an(y sinh πr) Kir(2π|n|y)e n=06 − − 1 2 for z = x+iy, y > 0, the variable for the upper half plane H, eigenvalue λ = ( 4 +r ) < − 1 4 and Kir the Macdonald-Bessel function [42, 45]. Also associated to an eigenfunction ϕ are the coefficient sums −1 1/2 2πinxˆ Sϕ(t, xˆ)=(πr ) X ane ; 1≤|n|≤rt(2π)−1 the sums are of independent interest [8, 10, 14, 29, 41]. A theme of our investigations is that at high-energy the concentration measure on the space of geodesics is approximately 2 given in terms of |Sϕ| . Our results have applications for general cofinite, non-cocompact subgroups, as well as, for congruence subgroups of SL(2; Z). The first application concerns a congru- ence subgroup Γ and unit-norm eigenfunctions; the spectral average of the sum squares ∗Research supported in part by NSF Grants DMS-9504176 and DMS-9800701 2 2 −1 |Sϕ(t, xˆ)| weak* converges inx ˆ to 8t(Area(Γ\H)) . -
January 2019 Volume 66 · Issue 01
ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society January 2019 Volume 66, Number 1 The cover art is from the JMM Sampler, page 84. AT THE AMS BOOTH, JMM 2019 ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices of the American Mathematical Society January 2019 Volume 66, Number 1 © Pomona College © Pomona Talk to Erica about the AMS membership magazine, pick up a free Notices travel mug*, and enjoy a piece of cake. facebook.com/amermathsoc @amermathsoc A WORD FROM... Erica Flapan, Notices Editor in Chief I would like to introduce myself as the new Editor in Chief of the Notices and share my plans with readers. The Notices is an interesting and engaging magazine that is read by mathematicians all over the world. As members of the AMS, we should all be proud to have the Notices as our magazine of record. Personally, I have enjoyed reading the Notices for over 30 years, and I appreciate the opportunity that the AMS has given me to shape the magazine for the next three years. I hope that under my leadership even more people will look forward to reading it each month as much as I do. Above all, I would like the focus of the Notices to be on expository articles about pure and applied mathematics broadly defined. I would like the authors, topics, and writing styles of these articles to be diverse in every sense except for their desire to explain the mathematics that they love in a clear and engaging way. -
Infosys Prize 2011 the Infosys Science Foundation
Prof. Kalyanmoy Deb Engineering and Computer Science Prof. Kannan Dr. Imran Siddiqi Soundararajan Life Sciences Mathematical Sciences Prof. Sriram Prof. Raghuram Ramaswamy G. Rajan Physical Sciences Social Sciences – Economics Dr. Pratap Bhanu Mehta Social Sciences – Political Science and International Relations INFOSYS SCIENCE FOUNDATION INFOSYS SCIENCE FOUNDATION Infosys Campus, Electronics City, Hosur Road, Bangalore 560 100 Tel: 91 80 2852 0261 Fax: 91 80 2852 0362 Email: [email protected] www.infosys-science-foundation.com Infosys Prize 2011 The Infosys Science Foundation Securing India's scientific future The Infosys Science Foundation, a not-for-profit trust, was set up in February 2009 by Infosys and some members of its Board. The Foundation instituted the Infosys Prize, an annual award, to honor outstanding achievements of researchers and scientists across five categories: Engineering and Computer Science, Life Sciences, Mathematical Sciences, Physical Sciences and Social Sciences, each carrying a prize of R50 Lakh. The award intends to celebrate success and stand as a marker of excellence in scientific research. A jury comprising eminent leaders in each of these fields comes together to evaluate the achievements of the nominees against the standards of international research, placing the winners on par with the finest researchers in the world. In keeping with its mission of spreading the culture of science, the Foundation has instituted the Infosys Science Foundation Lectures – a series of public talks by jurors and laureates of the Infosys Prize on their work that will help inspire young researchers and students. “Science is a way of thinking much more than it is a body of knowledge.” Carl Edward Sagan 1934 – 1996 Astronomer, Astrophysicist, Author, Science Evangelist Prof.